The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes
Mazx-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany
{hg,meyer,veanes}Ompi-sb.mpg.de

Abstract

We consider the restriction of the guarded fragment
to the two-variable case where, in addition, binary re-
lations may be specified as transitive. We show that (i)
this very restricted form of the guarded fragment with-
out equality is undecidable and that (ii) when allowing
non-unary relations to occur only in guards, the logic
becomes decidable. The latter subclass of the guarded
fragment is the one that occurs naturally when trans-
lating multi-modal logics of the type K/, S or S5 into
first-order logic. We also show that the loosely guarded
fragment without equality and with a single transitive
relation is undecidable.

1 Introduction

We consider first-order logic without non-constant
function symbols, but with equality and with relation
symbols of arbitrary arities. The class of all closed
formulas containing at most two variables is called
the two-variable fragment of first-order logic and is de-
noted by FO?. The decidability of FO* without equal-
ity was first noted by Scott [1962] by a reduction to
formulas with quantifier prefix ¥V3*, a fragment that
was proved decidable by Godel [1932]. Godel claimed
without proof that this fragment remains decidable
also with equality, which was later refuted by Goldfarb
[1984]. The decidability and finite model property for
the full class FO? was first established by Mortimer
[1975]. From Mortimer’s [1975] proof follows also that
(the satisfiability problem for) FO? is decidable in
nondeterministic doubly exponential time. This up-
per bound was recently improved by Gridel, Kolaitis
& Vardi [1997] to nondeterministic exponential time.
The NEXPTIME-hardness of FO? even without equal-
ity follows from results by Furer [1981].

Why the two-variable fragment? Since (propo-
sitional) modal logic can be embedded into FO?, that
was already shown by Gabbay [1971], the decidability
of FO?provides some understanding of the tractabil-
ity of (propositional) modal logics. However, while
several extensions of modal logic, like computational
tree logic or CTL [Clarke & Emerson 1981], remain

decidable (for validity), corresponding extensions of
FO? lead to undecidability. In particular, Vardi [1997]
shows that CTL can be embedded into FO?* frag-
ment of fixed-point logic. The validity problem of
the latter was recently shown to be undecidable by
Gridel, Otto & Rosen [1998], whereas Fischer & Lad-
ner [1979] have shown that the validity problem for
CTL is EXPTIME-complete. Similarly, Immerman &
Vardi [1997] show that, CTL can be viewed as a FO?
fragment of first-order logic with a transitive closure
operator (when restricted to finite structures), that
is again undecidable [Gréadel et al. 1998]. The lat-
ter result is also implied by Gréadel & Otto’s [1998]
strong undecidability result of FO? with several built-
in equivalence relations. In contrast, Otto [1998] has
shown very recently that FO? with a single built-in
equivalence relation is still decidable.

What is the guarded fragment? In order to
capture the nice properties of modal logics, Andréka,
van Benthem & Németi [1996] introduced the guarded
fragment or GF of first-order logic, where all quanti-
fiers are appropriately relativized by atoms. This frag-
ment was later generalized by van Benthem [1997] to
the loosely guarded fragment or LGF, where all quan-
tifiers are appropriately relativized by conjunctions
of atoms. These fragments are decidable and enjoy
several useful syntactic and model theoretic proper-
ties that do not, in general, hold for FO*[Andréka et
al. 1996, Gradel 1998b]. In particular, Gradel [19985]
shows that both GF and LGF, unlike FO?, have a
certain tree model property that generalizes the well-
known tree model property for modal logics. Moreover
GF has, like FO?, the finite model property. How-
ever, the satisfiability problem for LGF restricted to
a bounded number of variables or a bounded arity on
relation symbols is, unlike for FO?, in deterministic
exponential time [Gradel 1998b].

The role of the tree model property. Vardi
[1997] argues convincingly that the tree model prop-
erty is the main reason behind the decidability of var-
ious extensions of modal logic, since it provides one
with a powerful tool to prove decidability via Rabin’s



[1969] theorem. Unfortunately, the same is not true
for GF. As Gridel [1998b] demonstrates, already very
modest extensions of GF lead to undecidability: GF
with three variables and transitive relations, and GF
with three variables and counting quantifiers, are both
undecidable extensions of GF. In the second case the
result is optimal with respect to the number of vari-
ables, since FO? with counting quantifiers is decid-
able [Grédel, Otto & Rosen 1997, Pacholski, Szwast
& Tendera 1997].

The two-variable guarded fragment. In this
paper we consider certain restrictions and variants of
the fragment GF N FO? denoted as GF*(or GF? if
equality is not permitted). When encoding the Kripke
semantics of propositional multi-modal logics one ends
up in this subclass of the GF. For multi-modal log-
ics with modalities of type K4, S4, and S5, GFZ
with transitive relations appears as a natural choice
for a representation language. Multi-modal logics of
the above types are used to formalize epistemic logics
[Fagin, Halpern, Moses & Vardi 1995]. We show that
GF? with transitive relations is undecidable. More-
over, this is the case even when all non-unary rela-
tions are transitive binary relations. Hence this class
is too big to capture these multi-modal logics ade-
quately. On the other hand, when encoding proposi-
tional modal logics, the non-unary relations only ap-
pear as guards, such guarded formulas are said to be
monadic.

Our second result is that monadic GF? with binary
relations that are transitive, symmetric and/or reflex-
ive, is decidable. The latter result will be proved by
an encoding of this class in SkS (similar to how this
can be done for CTL) by which also the tree model
property is demonstrated. A potential interest of the
decidability result lies also in the context of knowl-
edge representation, due to the relation to description
logics [Gradel 19984a] and conceptual graphs [Baader,
Molitor & Tobies 1998].

The constructions in our undecidability proof were
strongly influenced by Gradel’s [1998b] techniques and
may be seen as generalizations of the them. Indepen-
dently, similar ideas are used by Gridel & Otto [1998]
to prove the undecidability of the whole class FO? with
equality and additional equivalence relations. In our
constructions equality is omitted. The new insight
is that it suffices to use an equivalence relation in-
stead. In the specific structures that we define, this
equivalence will always become a partial congruence,
although in general the substitutivity laws of a congru-
ence cannot be expressed as a guarded formula. With
this idea, also the corresponding proofs in [Gridel &

Otto 1998] could be modified to extend their results
also to FO? without equality. (That presence or ab-
sence of equality may make a difference for decidabil-
ity is exemplified with the Godel class, as mentioned
before.)

A remark about LGF. We also show that LGF
without equality becomes undecidable as soon as a sin-
gle relation is allowed to be transitive. The proof uses
a reduction from the intersection emptiness problem
for context-free languages.

2 Undecidability Results

The guarded fragment (GF) of first-order logic with
equality (we use & to denote formal equality) and con-
stants, but no function symbols of arity greater than
0, is defined as the least set of formulas such that (i)
T and L are in GF; (ii) any atom is in GF; (iii) GF
is closed under the boolean connectives; (iv) if A is
an atom and ¢ is in GF such that all free variables in
¢ occur as arguments in A, and if z is a list of vari-
ables then VZ(—A V ¢) (equivalently, VZ(A = ¢)) and
3Z(A A ¢)) are in GF.! The atoms A which relativize
a quantified formula are called guards. A formula in
GF is called a guarded formula. GF™ is the subset of
formulas in GF which contain occurrences of at most
n distinct variables. For GF? one may assume that ev-
ery predicate symbol is either unary or binary. GF _
is GF restricted to formulas without equality. We let
Trans[R1,... ,Ry] stand for the condition that each
R; is a transitive binary relation. The formula in the
following example is a classical one used to demon-
strate the existence of first-order formulas with only
infinite models. Here it shows that transitivity cannot
be expressed in GF and, therefore, has to be stip-
ulated on the meta-level, because GF has the finite
model property.

Example 1 Consider the formula ¢ in GF? express-
ing that a binary relation < is non-empty, serial, and
irreflexive: Jry (x < y) AVey(ex <y = Jo(y <
x)) A =3z (z < z). Clearly, ¢ A Trans[<] has only
infinite models. Se Figure 1.

We prove that the satisfiability problem for GF% +
Trans[Ry, ..., Rs] is undecidable (Theorem 1). More
specifically, it follows from the construction that all
non-unary relations can be transitive binary relations
(Theorem 2). The problem with omitting equality is
that the laws of substitutivity for equality cannot gen-
erally be specified in the guarded fragment: formulas

ISpecial cases of guarded quantification occur when ¢ = T
or ¢ = L, respectively; such trivial bodies of quantification are
usually omitted.
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Figure 1: Given ¢ as in Example 1. To the right, circles
are not possible because < is transitive and irreflexive.

such as Vz,y, z(x = y = (R(x,2) = R(y, z))) are not
in GF.

The main idea of the proof is as follows. We con-
struct a formula GRID in the two-variable guarded frag-
ment that describes a two-dimensional grid. (See Fig-
ure 2.) We then reduce Minsky machines M (two-
counter machines) to formulas () in the two-variable
guarded fragment that describe “walking” in that grid.
The conjunction of GRID, ¢y, and transitivity of five
binary relations is unsatisfiable if and only if M halts.

2.1 The GRID formula

We construct a closed formula GRID in the guarded
fragment with two variables, four transitive relations
Wo, W1, By, By, a transitive relation ~ called simi-
larity, four additional binary relations 1°,1%, %, -,
called arc relations, and some unary relations. When
equality is in the language then it can be used instead
of the similarity symbol. We use infix notation for the
similarity symbol and the arc relation symbols.

There is a unary predicate Node. In any structure
in the language of GRID, we are only interested in the
elements in Node, such elements are called nodes. We
will use the following lemma, that follows by easy in-
duction on guarded formulas.

Lemma 1 Let ¢ be a closed guarded formula such
that all elements that satisfy guards are nodes. Then,
for all structures A, A satisfies ¢ if and only if the
restriction of A to nodes satisfies .

In the end, we are only interested in models of GRID,
and in GRID all formulas are guarded in such a way
that the elements that satisfy the guards must be
nodes. GRID is a conjunction of formulas (1-17).

The set of nodes is non-empty, and ~ is reflexive
and symmetric on nodes:

JzNode(z) A
Vz(Node(x) = x ~ ) AVay(z ~y =y ~ x)

(1)
Hence, ~ is, due to the transitivity, an equivalence
relation on nodes. Given an equivalence relation E
and an n-ary relation R on a set A, E is a congruence

Figure 2: The grid structure. Diagonal nodes have the
same color. In the horizontal direction the labels of
nodes alternate between 0 and 1. In the vertical di-
rection the colors of nodes alternate between black
and white.

relation for R on A, if R(by,... ,b,) is true whenever
R(ay,... ,a,) and E(a;,b;) hold for 1 < i < n. We
will show that, similarity is a congruence relation on
nodes. This will allow us to treat similarity as equality
and simplify any further proofs.

The intended meaning of the following formulas is
best understood by examining Figure 2. When no
confusion can arise, we use the relaxed notation

V(AL V---V A, =)
for the logically equivalent (guarded) formula
V(A1 = o)A AY(A, = p).

Bottom nodes have no vertical predecessors and all
horizontal successors of bottom nodes are also bottom
nodes, similarly for left nodes, for ¢ = 0, 1:

Va(Botton(x) = (=Jy(y 1° 2) A ~Fy(y 1* ©)))

AVzy(z % y = (Bottom(z) = Bottom(y)))

(

( (2)

AVz(Left(z) = (-Iy(y > =) A ~Ty(y > x)))
AVzy(x 1y = (Left(z) = Left(y)))

All nodes are divided into black and white nodes with



labels 0 and 1, and the following properties hold:

Vz(Node(x) < (White(x) V Black(z))) A
Vz(White(r) < (Whiteg(z) V Whiter(x))) A
Vz(Black(z) < (Blacko(z) V Black;(x))) A

Vz(Whiteg(z) = (-White;(z) A =Black(x))) A
Vz(White; (z) = (-Whiteg(z) A =Black(x))) A
Vz(Blacke(z) = (—Black;(z) A —=White(z))) A (3)
Vz(Black; (z) = (-Blacke(z) A —=White(x))) A
Jz(0rigo(z)) A

Vz(Origo(r) = (Left(z) A Bottom(z))) A
Vz(Bottom(z) = (Left(z) = Origo(z))) A
Vz(Origo(z) = Whiteg(z))

The colors and labels of nodes alternate between white
and black, and 0 and 1 in both horizontal and vertical
directions as follows. For [ € {0,1},let [ =0if [ =1
and let [ =1if [ =0:

\

(4)

Vay(z 5 y = ((White (z) A Black;(y))
(Black;(x) A Whitej(y))))

Voy(z Y y = ((Whitey(z) A Black(y)) V
(Blackj(z) A Whitej(y))))

(

( (5)
Similar nodes have the same color and label:

Vay(x ~y = ((Blacke(z) A Blacke(y)) V

(Black; (z) A Black;(y)) V

(Whiteo(z) A Whiteo(y)) V

(White (z) A White; (y))))

(6)

The labeling and the coloring is such that every node
with a certain label and color has the following arcs
connected to it:

= (Fy( = ) AJy(@ 1° y) A
(Bottom(z) VIy(y ™ ) A (7)
(Left(z) vV Jy(y > 2)))
(Fy(z = y) Ady(z ty) A
Fy(y 1° 2) A Ty(y > 2)))
= (Jy(z > y) Ayl 1 y) A
Fy(y 1° =) A 9)
(Left(z) V Fy(y = ©))))

(3y(z = y) ATy(x 1° ) A
(Bottom(z) V Iy(y 1 z)) A (10)

Va(Whiteg(x)

Vz(White;(z) =

(8)

Vz(Blacke(z)

Vz(Black; (z) =

Jy(y > )

9,
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Figure 3: The relations Wy, W1 By, and B.

Note that all nodes with label [ have an outgoing hor-
izontal l-arc. We say that the arc relations induce a
diagonal if, whenever a« — b1 ¢ and a 1 d — ¢’ then
¢ ~ ¢, where — is either % or & and 1 is either 1°
or 1.

We say that an arc relation R is functional in both
arguments up to similarity if the following conditions
hold for all nodes a, a’, b, and b':

e if a ~da', R(a,b), and R(a’,b’) then b ~ V', and

e if b~ 1, R(a,b), and R(a',V’) then a ~ a'.

For each of the four transitive relations
Wo,W1,Bg,B1 we have the following formulas,
the purpose of which is to ensure that: similarity is a
congruence for the arc relations on nodes (Lemma 2);
the arc relations are functional up to similarity in
both arguments (Lemma 3); the arc relations induce
a diagonal (Lemma 4). For [ =0, 1:

(:chV:v—l>yVy—l>xV
ety vyt )

(g;waa:—l>yVy—l>$UV
zttyvyttav

(Whiteo(z) A White (y)
(White;(z) A Whiteg(y)
(Blacko(z) A Black (y)
(Black; (z) A Blacky(y))))

Vay (Wila,y) < "

Voy(Wi(z,y) =

Intuitively, W; is an equivalence relation between all
nodes that are connected in a rectangle where all arcs
have label [. The lower left corner of such a rectangle
is always a white node with label I. (See Figure 3.)
The formulas for By and B; have a similar struc-
ture. For {l =0,1,let I =0ifl =1 and let I = 1 if



[=0:

Vay (B (z,y) < (:Uwa:U—l>yVy Lav
2ty vyt z)

Vey(Bi(z,y) = (:Uwa:U—l>yVy Lav
x Tl_ yVuy Tl_ xV
(Whiteg(z) A Whiteq(y))
(Whiteq (z) A Whiteg(y))
(Blackg(z) A Black; (y))
( (z) ()

Black; (z) A Blacky(y))))

(13)

Voo
V
V

Intuitively, the nodes that are equivalent in B; corre-
spond to corners of rectangles with lower left corner
being a black node with label [. Finally, for each unary
predicate P and binary predicate R above, we have the
following formulas:

Vz(P(xz) = Node(z)) (15)
Vey(R(z,y) = (Node(z) A Node(y))) (16)

Thus all elements that satisfy any guard are nodes. In
addition, we add the following formula for all unary
predicates P, to enforce that ~ is a congruence for P
on nodes.

Vay(z ~y = (P(x) = P(y))) (17)

We now prove the following lemmas corresponding to
the three properties mentioned above.

Lemma 2 ~ is a congruence relation on nodes in all
models of Trans[Wy, Wy, By, B1, ~] A GRID.

Proof. Consider a model of GRID (in the language of
GRID). We must prove that ~ is a congruence on nodes
for all relations in that model. This is trivially so for
all unary relations by (17). For each binary relation
R we must prove:

For all nodes a,d’,b,v', if R(d',0'), a ~ d
and b ~ b’ then R(a,b).

For the binary relations Wy, W1, By and B; this holds
by transitivity of these relations and the fact that they
include similarity by (11) and (13). We prove the
statement for - only. The proofs for the relations
5,19 and 1! are symmetrical.

Assume @ ~ a’ > B ~ b We prove that a RN
b. From (11) follows that Wy(a,a'), Wo(a',b'), and
Wo(b',b), and thus Wy(a,b) by transitivity. From (6)
follows that the colors and labels of @ and a’ coincide,
and the same holds for b and b'. From (4) follows then

that, either (i) a is white and 0 and b is black and 1,
or (i) a is black and 0 and b is white and 1.

In either case a £ b by the disjointness of white and
black nodes and (6). From (12) follows that either:

a3b,b%a, at%b, orb1°a. From (4) follows that
if b > a then b has label 0. From (5) follows that if

either @ 1° b or b 1° a then a and b have the same
label. But these cases would contradict both (i) and

(ii). Hence, a 5 b X

Lemma 3 The arc relations are functional in both
arguments up to similarity, in all models of GRID A
Trans[Wg, Wl, Bg, Bl, N]

Proof. Consider a model of GRID. By Lemma 1 we
may assume that all elements are nodes. Then, by
Lemma 2, we may assume that all similar elements

are identical. Consider the arc relation — again. The
proof for the other arc relations is symmetrical. First
we prove that for all nodes a, b and c:

Ifa>band a2 cthen b=c.

Assume that ¢ > b and a > ¢. By (4), b and ¢ have
the same color and label. By (11) and transitivity of
Wo, Wo (b, ¢). Hence, by (12) b = ¢. Note that none of
the other cases are possible because b and ¢ have the
same color and the same label. Functionality in the
other direction is proved analogously. X

Lemma 4 The arc relations induce a diagonal in all
models of GRID A Trans[Woy, Wy, By, By, ~].

Proof. Consider a model of GRID. Assume, by using
Lemma 1 and 2, that all elements are nodes and sim-
ilarity is identity. Let a be a white node with label
0. Then we have, by (7-10) and Lemma 3, unique
nodes b, ', ¢, ¢ such that a 19 b > ¢ and a > b’ 10 ¢'.
By (4) and (5) ¢ and ¢’ are white nodes with label 1.
By (11) and transitivity of Wy, Wy(c, ') holds. Hence,
by (12), ¢ = ¢/. The proofs of the other three cases
are analogous. X

2.2 Reduction from Minsky Machines
Given a Minsky (two-counter) machine M with an
empty input string, we construct a formula ¢, in
the guarded fragment with two variables, using the
arc predicates and some unary predicates, such that
GRIDA )y is unsatisfiable if and only if M halts. The
execution of a Minsky machine can be viewed as walk-
ing in the grid. The starting point is the origo, and
for example, incrementing the first counter by one
means taking a step to the right, and decrementing



the second counter by one means taking a step down-
wards. Checking whether one of the counters is 0 or
not amounts to checking whether or not the current
position is on one of the borders.

For each state g of M we have a new unary pred-
icate P;. The formula ¢, is a conjunction of formu-
las (18-21) (and some additional ones for symmetrical
cases) and formula (17) for all P, (to ensure that sim-
ilarity is a congruence for all P,).

The initial state of M is go and the final state of M
is g¢. Initially, the position of M is origo:

Vz(Origo(z) = Py, (z)) (18)

For each transition 6(q,m,n) = (p,m+1,n) of M, i.e.,
in state g, M increments the first counter and enters
state p, there is a formula for [ € {0, 1}:

Vay(y = = = (Py(y) = Pp(x))) (19)

For each transition 6(¢,0,n) = (p,0,n), i.e., in state ¢
M checks whether the first counter is zero and enters
state p if so, there is a formula:

Vz(P,(z) = (Left(z) = P,(z))) (20)

For checking non-zero, Left(z) in (20) is simply re-
placed by —Left(z). The corresponding formulas with
respect to the second counter use Bottom and 1. Fi-
nally, we add the formula that the final state is not
reachable.

~3z(Py (2)) (21)
We can now prove the following lemma.

Lemma 5 M does not halt if and only if GRIDApp A
Trans[Wy, W1, By, By, ~] is satisfiable.

Proof. Assume M does not halt. Consider a struc-
ture with universe w x w, where (0, 0) is the origo, hori-
zontal arcs connect (m,n) with (m+1,n), and vertical
arcs connect (m,n) with (m,n + 1) for all m,n € w,
and similarity is equality. Obviously, such a structure
can be expanded to a model of GRID. Expand it further
to a structure A, by letting the P,’s be the minimal
subsets of wxw that satisfy the formulas (18-20). Now
P, is empty, because M does not halt. Hence, A is a
model of GRID A pyy.

Conversely, assume that GRID A s has a model A.
By Lemma 1 and Lemma 2 we may assume that all
elements are nodes and that similarity is equality. By
Lemma 3 and Lemma 4, we may assume that w x w is
a subset of the universe of A, where (0,0) is an origo

and where a > b or @ —» b if and only if @ = (m,n)

and b = (m + 1,n), and a 1° b or a 1 b if and only if
a = (m,n) and b = (m,n+1). So, the restriction of A
to w X w is a substructure of A that satisfies GRID and
is thus also a model of pys (because @)/ is equivalent
to a universal sentence). Hence, M does not halt. X

As a consequence, we obtain the following result,
improving the undecidability result by Gréadel [19980],
of GF? 4 Trans[Ry, Ry], with respect to the number of
variables and by omitting equality.

Theorem 1 The satisfiability problem for GF% +
Trans[Ry, ..., Rs] is undecidable.

All the arc relations are trivially transitive, consider
for example 2. there are no nodes a, b, and ¢, such

that @ - b - ¢. We therefore get the following result.
We write Trans[all] to denote the statement that all
non-unary relations are transitive binary relations.

Theorem 2 The satisfiability problem for GF% +
Trans[all] is undecidable.

The undecidability results for the above classes of
formulas may be improved to strong undecidability re-
sults, by encoding certain domino problems (instead
of Minsky machines) as in [Gridel 1998b], implying
that even the finite satisfiability problem for these for-
mula classes is undecidable. The main reason why we
have chosen to use Minsky machines, although at the
price of not obtaining this stronger result, is the more
elementary nature, and the conceptual simplicity of
Minsky machines.

2.3 The Loosely Guarded Fragment with
One Transitive Relation

In the loosely guarded fragment or LGF, the con-
cept of a guard for relativizing quantification is relaxed
to a conjunction of atoms which contains all the free
variables T of the body of the quantification such that
each pair of variables in Z occurs together among the
arguments of one of the atoms in the guard.? That is,
a formula such as Voyz (A(z,y) A B(y, z) A S(z,2) =
C(z, z)) is loosely guarded while the transitivity clause
Vayz (A(z,y) NA(y, z) = A(z, 2)) is not—the pair z, z
does not occur together in one of the negative literals.
The loosely guarded fragment with equality is decid-
able, even by syntactic methods based on superposi-
tion [Ganzinger & De Nivelle 1999].

For the LGF the presence of just a single transi-
tive relation causes undecidability. We show this by

2This definition of LGF admits less formulas but is essen-
tially the same as the the definition in [van Benthem 1997].



reduction from the intersection emptiness problem for
context-free languages [Hopcroft & Ullman 1979].

Consider two context-free grammars in Chomsky
normal form, with disjoint sets of nonterminals, start
symbols S7 and Ss, respectively, and common terminal
symbols a and b. The rules of the grammars are of one
of the three forms A::=BC, A::=a or A::=b, respec-
tively, with nonterminals A, B, and C. We construct
the following formula in LGF where the indices of the
conjunctions range over all rules of the two grammars
and Suffix is intended to be a transitive relation de-
noting the suffix property between strings:

Vay(Suffix(x,y) = (String(z) A String(y)))
AVz(String(z) = (Suffix(z,z) A
Jza(Suffix(z,z,) A

/\ A(xa,z)) A
Asi=a
Jp(Suffix(x, zu) A

A Ao, 2)))
A:=b

N Veyz (B(z,y) AC(y, 2)
Anz=BC A Suffix(z,z)) = A(z,z))

Az, (String(z.) A =Jy(Si(y, zc) A Sa(y, x.)))

Clauses Vx,y, z(B(z,y) A C(y,z) A Suffix(z,z) =
A(x,z)) represent the rule A:=BC in an encoding
with difference lists: the string x \ z is derivable from
C, if there is a string y such that z \ y is derivable
from A and y \ z is derivable from B. To make these
clauses loosely guarded, the additional (logically re-
dundant) guard Suffix(z,x) is added, requiring that
z be a suffix of . After Skolemization, the formula has
a Herbrand model (over a constant € and two unary
functions a and b for z., z,, and zy, respectively) if
and only if the intersection of the languages generated
by the two grammars is empty.

Theorem 3 The LGF without equality is undecidable
if one binary relation is transitive.

3 Decidability Results

Recall that a guarded formula is called monadic,
when every occurrence of every non-unary atom in
it is a guard. When encoding the Kripke semantics
of multi-modal propositional logics with modalities of
the type K4 in first-order logic, one ends up in monadic
GF? with transitive relations. The formula in Exam-
ple 1 is in monadic GF? , which shows that monadic

GF?2 is a nontrivial extension of the modal fragment?,
because the modal fragment retains the finite model
property under extensions like transitivity. This raises
the question as to whether monadic GF? with transi-
tive relations is decidable. This question is answered
positively in this section, by proving a more general
result (Theorem 4).

For the decidability proof of monadic GF? with
transitive relations Ry,...,R,, we consider satisfia-
bility of closed formulas of the form ¢pgr A pcc where
par is in monadic GF? and pce is a universal for-
mula consisting of the congruence axioms for &~ and
the transitivity axioms for Ry,...,R,. We use the
fact that pgr Apcc is satisfiable in FOL with equality
if and only if pgr A @cc is satisfiable in FOL with-
out equality which in turn is the case if and only if its
Skolemized form N Apcc has a Herbrand model. The
clausal normal form N of pgp can be constructed in
such a way that the clauses in N are monadic: the
arity of all function symbols as well as the number of
distinct variables in any positive literal is < 1. From
Example 1 we obtain

{0 <1, _'(w < y) Vy < f(y)7 —r < ZL“}, (22)

where 0 and 1 are new constants, and f is a new unary
function symbol, as a clausal normal form.

In our proof we will replace satisfiability of N Apcc
by satisfiability of N in Herbrand interpretations with
certain closure constraints that are derived from pcc.
A closure operator for n-ary relations over a domain
A is a function C' on the power set of A", such that,
for all R,R' C A",

1. R C C(R) (C is increasing),
2. if R C R' then C(R) C C(R') (C is monotone),
3. C(R) = C(C(R)) (C is idempotent).

Let E be an equivalence relation on A and ler R be a
relation on A. The E-closure of R, denoted by E(R),
is the least R’ that includes R such that E is a con-
gruence relation for R' (on A). Clearly, the E-closure
operator (also denoted by E) is indeed a closure op-
erator. We are particularly interested in closure op-
erators C', such that for all equivalence relations E,
the composition E o C o E, denoted by C®) | is also a
closure operator, hence in particular idempotent. Clo-
sure operators C' which enjoy this property are said to
be compatible with equivalences.

3The image of multi-modal propositional formulas ¢ under
the translation ¢®: for a propositional constant P, P® is P(x),
(eA)* is * Ap* (similarly for other connectives), and (O;¢)*
is Vy(Ri(w,y) = ¢Y).



From now on we assume that every relation symbol
R (other than =) is associated with a closure oper-
ator Cr that is compatible with equivalences. More
specifically, given N A pcc, if R is one of the tran-
sitive R;’s then Cg is the transitive closure operator,
otherwise Cg is the trivial closure operator ID which
is the identity on every relation. These closure oper-
ators are, in fact, compatible with equivalences. We
say that a Herbrand structure A satisfies the closure
constraints derived from the Cg, if ~4 is an equiva-

lence relation and C’}(%%A)(RA) = RA for every other
relation symbol R. Clearly for N A pcc, the closure
constraints are satisfied in A if and only if pcc is true
in A.

Our main technical result is that the satisfiability
problem of monadic clauses in Herbrand structures
with closure constraints is decidable for certain types
of closure constraints. The decidability proof is by re-
duction to SkS and, intuitively, the admissible closure
constraints are those that can be expressed through
monadic second-order formulas in SkS including tran-
sitivity and Euclideanness®. In the following let ¥ be
a fixed finite signature with function symbols of arity
at most 1.

3.1 The theory SkS

The tree here is defined as the term algebra of ¥
with empty basis, i.e., whose universe is the set of all
ground Y-terms with each function symbol having the
Herbrand interpretation. We write 7 or 7y both for
the tree and its universe. The elements of the tree are
called nodes.

The formal equality symbol in SkS will be denoted
by =. The set of monadic second-order or mso formu-
las of ¥ includes all atomic formulas s = ¢ and X (s),
where s and ¢ are terms and X is a unary set variable.
The set of mso formulas is closed under the logical
connectives, the first-order quantifiers over individual
variables (3z and Vz), and the second-order quanti-
fiers over the set variables (3X and VX). An atom
s =t is true in the tree if and only if s and ¢ denote
the same node, i.e., s and t are identical terms. The
truth value of an arbitrary formula with parameters is
defined as usual, e.g., VX¢ is true in the tree if and
only if ¢ is true in the tree for all sets X of nodes. Let
(zi)i>1 be a fixed enumerable sequence of first-order
variables. Given an mso formula (21, ... ,z,), we let
[¢(z1,...,2n)] denote the set of all tuples of nodes

4A binary relation R is Euclidean if Voyz(R(z,y)AR(x, z) =
R(y, z)). In epistemic logics, Euclideanness of the accessibility
relation corresponds to negative introspection that is usually
stated as the modal axiom —O¢ = O-0¢ (if you don’t know ¢
then you know that you don’t know ¢). See [Fagin et al. 1995].

(ai,...,a,) such that ¢(ay,...,a,) holds in the tree.
Hence, every mso formula ¢(z1,... ,2,) defines an n-
ary relation [¢] over the nodes. The formula ¢ may
include parameters that are free set variables (but,
without loss of generality, no free individual variables
besides the z;’s), so that the interpretation of the pa-
rameters and, hence, the relation [¢], is dependent on
the context. A relation that can be defined by an mso
formula is said to be mso. Given an mso formula v
that defines an equivalence relation, it is easy to see
that the following mso formula defines the [¢']-closure

of [¢]:

n

Say - aa((\ Wi 2)) Al . )

i=1

Note that this holds uniformly (for all interpretations
of the parameters).

The theory SkS is the monadic second-order theory
of the tree, i.e., the set of all mso sentences that are
true in the tree. The decidability of SkS is known as
Rabin’s Tree Theorem [Rabin 1969].

3.2 Reduction to SkS

We are interested in closure properties that can be
expressed as mso formulas. We write ¢[1,--- %] to
denote a formula context (i.e., a formula where some
subformulas are missing and occur as placeholders -;
for some i) and @[p1, - -+ , 1] denotes the formula that
is obtained by simultaneously replacing all occurrences
of - in ¢[-1,--+, %] by ¢i.

Given a closure operator C' over n-ary relations,
we say that C is mso if there exists an mso for-
mula context C[-] such that, for all mso formulas ¢,
[Cl¢]l = C([#]) holds uniformly. The formula con-
text O[] is said to define C. For example, the trivial
closure operator ID is defined by the empty context
ID[)] = -. Note that if a closure operator Cg is mso,
so is C’I(%E), for any mso equivalence E. The follow-
ing lemma shows the well-known facts how to define
closure operators for the usual closure properties.

Lemma 6 The following closure properties are mso:
transitivity, reflexivity + transitivity, reflevivity +
symmetry + transitivity, and Euclideanness

Proof. Let ¢(z1, 22) be an mso formula that defines a
binary relation. Consider the mso formula ¢*(z1, 22):

VX (X (21) AVay(X(z) A p(z,y) = X(y) = X(22))

It is easy to see that ¢* defines the transitive and
reflexive closure of []. A formula ¢ that defines just
the transitive closure of [¢] is obtained easily by using



¢ and ¢*. The Euclidean closure of [¢] is defined by
the formula:

p(z1,22) V
(Ew(z z1) A
X(X(z1) A

where “X is e-closed” says that two nodes are in X

whenever they can be reached from a common node
via one or more [p]-steps:

A “X is e-closed” = X (z2))),

Vay (X (z) A3z(p™ y) = X(y))-

A formula that defines the reflexive + symmetric +
transitive closure of [¢] is a simple modification of
the formula ¢*. X

(z,2) Aop™ (2,

We will write RST for the reflexive, symmetric, and
transitive closure operator and RST|[-] for a defining
mso formula context. The main result of this section
is the following theorem.

Theorem 4 The satisfiability problem for finite sets
of monadic clauses over Herbrand structures with clo-
sure constraints where the closure operators are mso
definable is decidable.

Proof. Let N be a finite set of monadic clauses and
consider the class of Herbrand structures for the lan-
guage of N. We will effectively construct a closed mso
formula MSOI[N] that is true in the tree if and only
if N has a Herbrand model that satisfies the closure
constraints.

For each predicate P in N (including =), say of
arity n, we first collect all the positive occurrences of
P into a formula ¢p as follows. Let P(£1),... , P(im)
(where t = ti,... ,tin) be a sequence of all the pos-
itive P-literals in N. We may assume that m > 1.
We write #;[s] to denote the result of replacing the
variable (if any) in f; by the term (or node) s. For
each atom a above, let X, be a new set variable. Let
vp(z1,...,2,) stand for the mso formula

\/EIZ

where z is a new first-order variable.

Let ¢, be RST[p~], hence, [1h~] is the equivalence
closure of [y ] for any interpretation of the set vari-
ables. (Note that if [¢x] is empty, e.g., when there are
no positive occurrences of & in N, then, by reflexivity,
[1~] is simply the identity relation.)

For every other predicate symbol P, by exploiting
the mso definability of Cp, and hence of C’I(DE), we

YA z1 =ty [Z] AN Nzy = tm[Z])

first construct an mso formula context m[-l, -2] such
that, for any interpretation of the free set variables in
Ve, C~ Pt~ 2] defines the closure operator Cp ([v=])
Let ¢p denote the mso formula Cn, PV, pP)- Hence,

[~ plom opll = C37V (Lor]).
For each clause x = \/,c;a; in N, let
MSO[x] = \/ MSOas],
il
where
Xo(z), if « is a non-ground
_ atom containing ;
M50[a] = 32X, (2), if ais a ground atom;
—pp(t), if ais a literal =P ().

Finally, let

MSO[N] = 3Xvz \ MSO[x],

XEN

where X contains all the free set variables in the con-
junction and Z contains all the free individual vari-
ables in the conjunction. In the following we prove
that MSO[N] is true in the tree if and only if N has
a Herbrand model satisfying the closure constraints.

(«<=) Assume that N has a Herbrand model A sat-
isfying the closure constraints. First, we define wit-
nesses for the set variables in X. For each ground
positive literal « in NV, let X, be non-empty if and
only if a holds in A. For each non-ground positive
literal o = P(t) in N, let

X, ={a€eT: P(ila)) is true in A}.

From this definition and the definition of ¢ p it follows
immediately that

[ep] € PA.

Secondly, consider a clause x(Z) in N and a sequence @
of nodes. We know that x (@) holds in A. So, one literal
a(d) of x(a) is true in A. We prove that MSO[ (@)
is true in 7 by showing that MSO[a](@) is true. There
are three cases: If a is a non-ground atom P(f), then
includes a variable z; and MSO[a] = X, (x;). Hence,
X (a;) is true in 7 by the definition of X.

If o is a ground atom P(f), then X, is non-empty,
and so MSO|a] is true in T by definition of X,.

Finally, if « is a negative literal —|P(t_), then
MSOl[a] = ~p(t). In order to show that MSO[a](@)
is true in the tree, it is enough to show that [¢p] C
PA. There are two subcases.



(i) Assume that P = o ¢
RST([e~]). It follows from %)
monotonicity of RST that [ix]
RST(~4) = =4,

(ii) Assume that P # = and let E = [¢)x]. Hence,

[vp] = [Cx,plton, epl] = clF )([[<pp]]). From the pre-
vious case we know that F g ~4, and thus, for all

relations R, E(R) C ~*(R). So, by [¢p] C P* and
monotonicity of the closure operators,
Ci2 ([or]) = B(Cr(E(lpr])
A
~(Cp(x(PY) = O (PY) = PA.

m.L.L

(=) Assume that MSO[N] is true in the tree. Con-
sider fixed witnesses for the set variables. We con-
struct a Herbrand model A that satisfies N and the
closure constraints. For every relation symbol P in N,
let P4 = [¢pp]. Let also F = [1h~].

To begin with, we show that the closure constraints
are satisfied. First, consider =:

= [n] = [RST[p~]] = RST([¢x]) =
RST(RST([p~])) = RST(x™).

Second, consider any P other than ~:

= [r] = [Crp o, rll = CF ([op]) =

~A ~A
S (er) = CED (O Terl) = €57 (PY),
where we used the idempotency of C'(N )Tt re-
mains to show that A satisfies all clauses in N. Let
x(z1,...,x,) be aclause in N and let @ = aq,... ,a,
be a sequence of nodes. We must show that x(a@) holds
in A. We know that MSO[x](@), and thus a disjunct
MSOl[a](@) of MSO[x](d), is true in the tree. There
are three cases:

Let # = xy,... ,, and suppose that a(Z) is a non-
ground atom P(f]z;]) with the variable z;, i.e., a(@) =
P(tla;]) and MSO[a](@) = X4 (a;). Since X, (a;) holds
in 7, it follows from the definition of ¢ p that ¢ p(ta;))
is true in 7. But [pp] C C([¢pr]) (where C = RST, if
Pis~; C = CJ(DE), otherwise), and C([pp]) = [vr] =
PA. Hence P(t]a;]) holds in A.

Suppose that a is a ground atom. This case is sim-
ilar to the previous one.

Finally, if (@) is a negative literal =P (%), then
MSO[a)(@) = —~pp(t). Since [¢p] = PA, a(@) holds
in A.

Hence, x(@) is true in A, as was to be shown. X

The following example illustrates the constructions in
the proof of Theorem 4.

Example 2 Consider the clause set (22). Then

0<(21,22) = F2(Xycs(y)(2) N2t =2 A 22 = 8(2)) V
32(X0<1(Z) N 21 = 0/\22 = ].)

Let T'C be the transitive closure operator. In this case
[1~] is the identity relation and TC = TC[¥=D_ By
Theorem 4, the clause set (22) 4+ Trans[<] is satisfiable
if and only if the following formula is true in the tree:

3X0<1 Ele<s(y) (EZ(XoﬂZ)) A
vay(—iC'[<p<](:C,y) \ Xy<s(y) (y)) A
V(- TCle<](z, 2))).

Theorem 5 Satisfiability of monadic GF? with bi-
nary relations that are, possibly, transitive, reflexive
+ transitive, reflezive + symmetric + transitive, or
Euclidean, is decidable.

Proof. By using the fact that the corresponding clo-
sure constraints can be specified by a universal first-
order formula, satisfiability of formulas in the given
class reduces effectively to satisfiability of monadic
clauses without equality in Herbrand structures with
appropriate closure constraints, that are, by Lemma 6,
mso definable. Hence, the claim follows from Theo-
rem 4. X

Note that, also many non-monadic guarded and
even non-guarded formulas translate into monadic
clauses via standard Skolemization, e.g., all guarded
formulas in GF? where all positive occurrences of
atoms that are not guards have at most one distinct
variable, and all universal, purely negative disjunc-
tions, such as Veyz((R(z,y) A R(y, 2)) = —x ~ z).

4 Conclusions

In this paper we studied the guarded fragment re-
stricted to two variables, GF2. We showed that al-
ready GF2 is undecidable when extended with tran-
sitive relations, improving a recent result of Gridel
[1998b]. We also identified a so-called monadic sub-
fragment of GF? (where all non-guard atoms are
unary), that retains the robustness of modal logics
under various extensions (such as transitivity), while
being a nontrivial extension of the modal fragment.
An open question at this time is the decidability of
the whole GF with transitive relations where transi-
tive relations are only admitted in guards, but where
non-transitive relations and equality are allowed to oc-
cur everywhere. There are very few known decidable
extensions of GF, one exception is the recent decid-
ability result of the extension of GF with least and
greatest fixed-points by Gridel & Walukiewicz [1999].



Recently, Hans de Nivelle showed® that S4 reduces
to monadic GF? . His reduction exploits the fact that,
guarded formulas of the form VeyR(x,y) = (P(z) =
P(y)) can be used to encode transitivity of R. The
idea is similar to the construction of ¢* in Lemma 6.
Such results are relevant in the context of epistemic
logics [Fagin et al. 1995] and in the context of knowl-
edge representation, due to the connections to de-
scription logics [Gridel 1998a] and conceptual graphs
[Baader et al. 1998]. Recently, Ganzinger & De Nivelle
[1999] have designed a superposition theorem prover
for GF and LGF. An open problem is the computa-
tional complexity of the monadic GF? with transitive
relations.
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