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Orientation: Ambients

An ambient is a named, bounded place where computation happens;

it is both a unit of mobility and a security perimeter.

A capability represents a right to move into or out of an ambient, or to

dissolve its boundary.

Ambient security rests on the controlled distribution of capabilities; the

right to enter an ambient does not imply the right to exit it.

We are investigating a process calculus based on ambients, with the

goal of developing a flexible, secure, and typeful model for mobile

computation.
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Mobile Ambients: a packet from a to b

Machine az }| {

a[m[out a:in b:hMi]| {z }

a! b : M

] j

Machine bz }| {

b[open m:(x):P| {z }

receive x; P
]

� Ambients may model both machines and packets

� Ambients are mobile: m[� � �] moves out of a and into b

� You need capability out a to exit a; capability in b to enter b; and

capability open m to dissolve m

� There is an ether local to each ambient for message exchange
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Ambient Behaviour, By Example

There are four basic reduction rules in the calculus:
a[m[out a:in b:hMi]] j b[open m:(x):P]

! a[] j m[in b:hMi] j b[open m:(x):P]

! a[] j b[m[hMi] j open m:(x):P]

! a[] j b[hMi j (x):P]

! a[] j b[Pfx Mg]
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The Restriction-Free Ambient Calculus

Expressions and Processes:

M;N ::= expressions P;Q; R ::= processes

n name 0 inactivity

in M can enterM P j Q composition

out M can exit M !P replication

open M can openM M[P] ambient

� null M:P action

M:M 0 path (n):P input

hMi output

Reduction:

n[P j in m:Q] jm[R]! m[n[P j Q] j R] P! Q) P j R! Q j R

m[n[P j out m:Q] j R]! n[P j Q] jm[R] P! Q) n[P]! n[Q]

n[P] j open n:Q! P j Q P 0 � P;P! Q;

hMi j (n):P! Pfn Mg Q � Q 0 ) P 0 ! Q 0
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A Vexing Problem

A recurring issue is how to state behavioural properties of ambients.

We have tools for establishing equational properties.

But many properties cannot easily be formulated as equations.

For example, type systems for ambients guarantee certain properties,

such as that some ambients are immobile, some are persistent.

It’s hard to write down equations for immobility or persistence!

Our solution: invent a modal logic for ambients.
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A Modal Logic

for Mobile Ambients
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Modal Formulas

In a modal logic, the truth of a formula is relative to a state.

In our case, formulas such as the following are true relative to an

ambient calculus process:

(1) “there’s an ambient p here”

(2) “somewhere there’s an ambient p”

(3) “if (2) then forever (2)”

(4) “somewhere there’s an ambient p with a child q”

(5) “if (4) then forever (4)”
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A Logic of Spacetime

To talk about time, we use standard temporal operators.

To talk about space, we introduce spatial operators:

Process Formula

0 0 (there is nothing here)

n[P] n[A] (there is one thing here)

P j Q A j B (there are two things here)
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Syntax of the Logic

Logical Formulas:

� a namen or a variable x

A;B ::= formula

T true

:A negation

A_ B disjunction

0 inaction

�[A] ambient match

A j B composition match

8x:A universal quantification

�A sometime modality (temporal)

✧A somewhere modality (spatial)

A@� location adjunct

A . B composition adjunct
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Semantics of the Logic

Satisfaction: P j= A (where A has no free variables)

P j= T

P j= :A

�
= :(P j= A)

P j= A_ B

�
= P j= A_ P j= B

P j= 0

�
= P � 0

P j= n[A]

�
= 9P 0:P � n[P 0]^ P 0 j= A

P j= A j B

�
= 9P 0; P 00:P � P 0 j P 00 ^ P 0 j= A^ P 00 j= B

P j= 8x:A

�
= 8m:P j= Afx mg

P j= �A

�
= 9P 0:P!� P 0 ^ P 0 j= A

P j= ✧A

�
= 9P 0:P #� P 0 ^ P 0 j= A

P j= A@n

�
= n[P] j= A

P j= A . B

�
= 8P 0:P 0 j= A) P j P 0 j= B

P # P 0 iff 9n;P 00:P � n[P 0] j P 00 #� is the reflexive, transitive closure of #
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Congruence Preserves Satisfaction

Structural congruence P � Q equates processes we would never

wish to tell apart.

For example:

� P j Q � Q j P

� P j (Q j R) � (P j Q) j R

� P j 0 � P

The logic is a way of writing down predicates that are automatically

preserved by structural congruence:

If P j= A and P � Q then Q j= A.
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The Characteristic Equivalence

Any modal logic induces an equivalence on states:

Let P 4 Q

�
= 8closed A:P j= A, Q j= A

If P � Q then P 4 Q. On the other hand, �[hmi] 4 �[hni] but

�[hmi] 6� �[hni]. So we have the strict inclusion � � �.

If we added formulas fQg such that P j= fQg, P � Q, we would

have the identity � = �.

Finally, the characteristic equivalence is finer than most behavioural

equivalences. For instance, it does not satisfy !n[] j !n[] 4 !n[].

(Consider the formula: Inf n j Inf n where Inf n
�

= T .�an n.)
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Location
n[] j= n[T]

n[] j 0 j= n[T], because n[] j 0 � n[]

n[m[]] j= n[m[T]]

:0 j= n[T]

:n[] j= m[T], if m 6= n

Composition

n[] j m[] j= m[T] j n[T], because n[] j m[] � m[] j n[]

n[] j= n[T] j T, because n[] � n[] j 0

!n[] j= n[T] j T, because !n[] � n[] j !n[]
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Inaction
m[] j n[] j= :0 j :0

n[] j= :(:0 j :0) (read: n[] is single-threaded)

Spatial Modality

n[m[]] j= ✧m[T]

:n[m[] j m[]] j= ✧m[T]

m[n[p[q[]]]] j= ✧(p parents q),

where p parents q
�

= p[q[T] j T] j T
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Temporal Modality
n[m[]] j open n j= �m[T]

n[n[]] j open n j= �an n, where an n
�

= n[T] j T

Location Adjunct

n[] j= m[n[T]]@m

n[out m] j= (�an n)@m

Composition Adjunct

n[] j= m[T] . (n[T] j m[T])

open n:m[] j= (�n[T]) . (�m[T])
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Derived Connectives:

F

�
= :T false

A^ B

�
= :(:A_:B) conjunction

A) B

�
= :A_ B implication

A k B

�
= :(:A j :B) decomposition

A� �
= A k F every component satisfies A

A+

�
= A j T some component satisfiesA

9x:A

�
= :8x::A existential quantification

�A

�
= :�:A everytime modality (temporal)

❏A

�
= :✧:A everywhere modality (spatial)

AF �
= A . F A is unsatisfiable

An B

�
= :(A . :B) some new A component makes B hold.
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Semantic Reasoning:

A Decidable Sublogic



Anytime, Anywhere 19

A Model-Checking Algorithm

We consider only replication-free processes, and .-free formulas.

For replication-free processes P, and .-free formulas A,

the truth of P j= A is decidable.

Propositional logic is easy:

Checking propositional logic:

Check(P;T) = T

Check(P;:A) = :Check(P;A)

Check(P;A_ B) = Check(P;A)_ Check(P;B)
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Normal Forms

Let a prime process , �, be one of

M[P],H:P, (x):P, or hMi

for H 2 fin N; out N; open N;ng.

Let a normal form be a process of the form
�1 j � � � j �k j 0

with k � 0, written as

Q
i21::k �i.

There is a terminating procedure Norm such that for all replication-free

P, if Norm(P) = [�1; : : : ; �k] then P �
Q

i21::k �i.
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Checking inaction:

Check(P; 0) =
8<

:
T if Norm(P) = []

F otherwise

We rely on the fact that

Q
i21::k �i � 0 iff k = 0.
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Checking ambient matching and its adjunct:

Check(P;n[A]) =
8<

:
Check(Q;A) if Norm(P) = [n[Q]] for some Q

F otherwise

Check(P;A@n) = Check(n[P];A)
We rely on the fact that

Q
i21::k �i � n[P] iff k = 1 and 9Q such

that �1 = n[Q] and P � Q.
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Checking composition matching:

Check(P;A j B) = let [�1; : : : ; �k] = Norm(P) in8>>>>><
>>>>>:

T if 9I; J:I [ J = 1::k^ I \ J = ;^

Check(
Q

i2I
�i;A)^

Check(
Q

j2J
�j;B)

F otherwise

We rely on the fact that

Q
i21::k �i � P j Q iff 9I; J such that

I \ J = ;, I [ J = 1::k,

Q
i2I �i � P, and

Q
j2J �j � Q.
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Checking universal quantification:

Check(P;8x:A) = let fm1; : : : ;mkg = fn(P)[ fn(A) in

let m0 =2 fm1; : : : ;mkg be some fresh name in8<
:
T if Check(P;Afx mig) for all i 2 0::k

F otherwise

We rely on the fact that if fm1; : : : ;mkg = fn(P)[ fn(A), and

m0 =2 fm1; : : : ;mkg, then

P j= 8x:A, 8i 2 0::k:P j= Afx mig
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Checking the temporal modality:

Check(P;�A) = let [P1; : : : ; Pk] = Reachable(P) in8<
:

T if Check(Pi;A) for some i 2 1::k

F otherwise

We rely on a terminating procedure Reachable such that if

[P1; : : : ; Pk] = Reachable(P).

(1) For all i 2 1::k, P!� Pi.

(2) If P!� Q then Q � Pi for some i 2 1::k.

Problem: cannot define Reachable directly from P! Q.

Solution: use a labelled transition system.
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Checking the spatial modality:

Check(P;✧A) = let [P1; : : : ; Pk] = SubLocations(P) in8<
:

T if Check(Pi;A) for some i 2 1::k

F otherwise

We rely on a terminating procedure SubLocations such that if

[P1; : : : ; Pk] = SubLocations(P).

(1) For all i 2 1::k, P #� Pi.
(2) If P #� Q then Q � Pi for some i 2 1::k.

Problem: cannot define Sublocations directly from P # Q.

Solution: go via normal forms.
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Syntactic Reasoning:

A Sequent Calculus
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Validity

For closed formulas, validity is given by:

Validity and Satisfiability:

vld A

�
= 8P:P j= A A (closed) is valid

sat A

�
= 9P:P j= A A (closed) is satisfiable

We have a sequent calculus for deriving the validity of formulas, based
on the following definitions:

Sequents and Inference Rules:

A ` B

�
= vld(A) B) sequent

A1 ` B1; � � � ;Ak ` Bk  A ` B

�
= A1 ` B1 ^ � � �^Ak ` Bk ) A ` B inference rule
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Highlights of our Sequent Calculus

� Propositional logic

� Predicate logic

� Location logic

� S4 (but not S5) axioms for time and space modalities

� Linear logic
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Location Logic

Monoid laws:

(j 0)  A j 0 a` A
(X j)  A j B a` B j A
(A j)  A j (B j C) a` (A j B) j C

Adjunctions:

(n[] @) n[A] ` B  A ` B@n
(j .) A j C ` B  A ` C . B
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Time and Space Modalities

They are S4 modalities:
(�)  �A a` :�:A (✧)  ✧A a` :❏:A

(� K) �(A) B) ` �A) �B (❏ K) ❏(A) B) ` ❏A) ❏B

(� T) �A ` A (❏ T) ❏A ` A

(� 4) �A ` ��A (❏ 4) ❏A ` ❏❏A

(� `) A ` B  �A ` �B (❏ `) A ` B  ❏A ` ❏B

But they are not S5:

:vld �A) ��A :vld ✧A) ❏✧A

Time and space are not quite symmetric:
(�n[])  n[�A] ` �n[A] (✧n[])  n[✧A] ` ✧A

(� j)  �A j �B ` �(A j B) (✧ j)  ✧A j B ` ✧(A j T)
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Connections with Linear Logic

Like many logics, ours can interpret intuitionistic linear logic:

1IL

�
= 0 A� B

�
= A_ B !A
�

= 0 ^ (:(0) A)) . F

?IL

�
= F A & B

�
= A^ B (so that P j= !A,

>IL

�
= T A
 B

�
= A j B P � 0 ^ 0 j= A)

0IL

�
= F A( B

�
= A . B

These definitions correspond to the standard quantale model of IL.

A1; : : : ;An `IL B is valid in IL iff vld (A1 j � � � j An ` B).

If A1; : : : ;An `IL B then A1 j � � � j An ` B.

So some, but not all, of our spatial operators are already familiar!
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Application:

Logical Properties of

Type Systems
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Application: Expressing Persistence

In work with Ghelli, we invented a type system that statically tracks

whether each ambient is locked or not.

The logic solves the problem of stating properties of well-typed

processes independently of the typing rules.

If P is well-typed given that n is a name for a locked ambient, then

P j= �(✧an n) �✧an n)

(Unfortunately, the current logic cannot express that the number of

ambients named n never decreases, nor can it talk about a unique

ambient named n.)
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Application: Expressing Immobility

Another type system additionally tracks whether an ambient is

immobile or not.

If P is well-typed given that p is a name for a locked ambient, and q is

a name for a locked, immobile ambient, then

P j= �(✧(p parents q)) �✧(p parents q))

where p parents q
�

= p[q[T] j T] j T.
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Related Work

A plethora of modal logics for process calculi was inaugurated by

Hennessy-Milner logic for CCS.

We have not found much closely related work on spatial properties of

processes.

Operators akin to A j B can be found in the systems of Holmström

(1988) and Damm (1989), and in linear logic.

There is a long logical tradition of A^ B specifying a system

assembled from components satisfying A and B.
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Future Work

Recursive formulas would allow us to say more things, such as: “there

is a unique ambient named n”:

an n

�
= n[T] j T

no n

�
= :✧an n

� = �

�
= �[T]@�

unique n

�
= �X:no n j (n[no n]_ 9x:x[X]^ :(x = n))

Other tasks: restore restriction, model check processes with

finite-state recursion.
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Contributions

The novel aspects of our logic lie in its treatment of space:

� New logical primitives

� New rules of inference

� New model checking techniques

The first application is expressing properties of type systems.


