
Anytime, Anywhere 1

Anytime, Anywhere:
Modal Logics for
Mobile Ambients

Luca Cardelli
Andy Gordon

Anytime, Anywhere 2

Orientation: Ambients

An ambient is a named, bounded place where computation happens;

it is both a unit of mobility and a security perimeter.

A capability represents a right to move into or out of an ambient, or to

dissolve its boundary.

Ambient security rests on the controlled distribution of capabilities; the

right to enter an ambient does not imply the right to exit it.

We are investigating a process calculus based on ambients, with the

goal of developing a flexible, secure, and typeful model for mobile

computation.

Anytime, Anywhere 3

Mobile Ambients: a packet from a to b

Machine az }| {

a[m[out a:in b:hMi]| {z }

a! b : M

] j

Machine bz }| {

b[open m:(x):P| {z }

receive x; P
]

� Ambients may model both machines and packets

� Ambients are mobile: m[� � �] moves out of a and into b

� You need capability out a to exit a; capability in b to enter b; and

capability open m to dissolve m

� There is an ether local to each ambient for message exchange

Anytime, Anywhere 4

Ambient Behaviour, By Example

There are four basic reduction rules in the calculus:
a[m[out a:in b:hMi]] j b[open m:(x):P]

! a[] j m[in b:hMi] j b[open m:(x):P]

! a[] j b[m[hMi] j open m:(x):P]

! a[] j b[hMi j (x):P]

! a[] j b[Pfx Mg]

Anytime, Anywhere 5

The Restriction-Free Ambient Calculus

Expressions and Processes:

M;N ::= expressions P;Q; R ::= processes

n name 0 inactivity

in M can enterM P j Q composition

out M can exit M !P replication

open M can openM M[P] ambient

� null M:P action

M:M 0 path (n):P input

hMi output

Reduction:

n[P j in m:Q] jm[R]! m[n[P j Q] j R] P! Q) P j R! Q j R

m[n[P j out m:Q] j R]! n[P j Q] jm[R] P! Q) n[P]! n[Q]

n[P] j open n:Q! P j Q P 0 � P;P! Q;

hMi j (n):P! Pfn Mg Q � Q 0) P 0 ! Q 0

Anytime, Anywhere 6

A Vexing Problem

A recurring issue is how to state behavioural properties of ambients.

We have tools for establishing equational properties.

But many properties cannot easily be formulated as equations.

For example, type systems for ambients guarantee certain properties,

such as that some ambients are immobile, some are persistent.

It’s hard to write down equations for immobility or persistence!

Our solution: invent a modal logic for ambients.

Anytime, Anywhere 7

A Modal Logic

for Mobile Ambients

Anytime, Anywhere 8

Modal Formulas

In a modal logic, the truth of a formula is relative to a state.

In our case, formulas such as the following are true relative to an

ambient calculus process:

(1) “there’s an ambient p here”

(2) “somewhere there’s an ambient p”

(3) “if (2) then forever (2)”

(4) “somewhere there’s an ambient p with a child q”

(5) “if (4) then forever (4)”

Anytime, Anywhere 9

A Logic of Spacetime

To talk about time, we use standard temporal operators.

To talk about space, we introduce spatial operators:

Process Formula

0 0 (there is nothing here)

n[P] n[A] (there is one thing here)

P j Q A j B (there are two things here)

Anytime, Anywhere 10

Syntax of the Logic

Logical Formulas:

� a namen or a variable x

A;B ::= formula

T true

:A negation

A_ B disjunction

0 inaction

�[A] ambient match

A j B composition match

8x:A universal quantification

�A sometime modality (temporal)

✧A somewhere modality (spatial)

A@� location adjunct

A . B composition adjunct

Anytime, Anywhere 11

Semantics of the Logic

Satisfaction: P j= A (where A has no free variables)

P j= T

P j= :A

�
= :(P j= A)

P j= A_ B

�
= P j= A_ P j= B

P j= 0

�
= P � 0

P j= n[A]

�
= 9P 0:P � n[P 0]^ P 0 j= A

P j= A j B

�
= 9P 0; P 00:P � P 0 j P 00 ^ P 0 j= A^ P 00 j= B

P j= 8x:A

�
= 8m:P j= Afx mg

P j= �A

�
= 9P 0:P!� P 0 ^ P 0 j= A

P j= ✧A

�
= 9P 0:P #� P 0 ^ P 0 j= A

P j= A@n

�
= n[P] j= A

P j= A . B

�
= 8P 0:P 0 j= A) P j P 0 j= B

P # P 0 iff 9n;P 00:P � n[P 0] j P 00 #� is the reflexive, transitive closure of #

Anytime, Anywhere 12

Congruence Preserves Satisfaction

Structural congruence P � Q equates processes we would never

wish to tell apart.

For example:

� P j Q � Q j P

� P j (Q j R) � (P j Q) j R

� P j 0 � P

The logic is a way of writing down predicates that are automatically

preserved by structural congruence:

If P j= A and P � Q then Q j= A.

Anytime, Anywhere 13

The Characteristic Equivalence

Any modal logic induces an equivalence on states:

Let P 4 Q

�
= 8closed A:P j= A, Q j= A

If P � Q then P 4 Q. On the other hand, �[hmi] 4 �[hni] but

�[hmi] 6� �[hni]. So we have the strict inclusion � � �.

If we added formulas fQg such that P j= fQg, P � Q, we would

have the identity � = �.

Finally, the characteristic equivalence is finer than most behavioural

equivalences. For instance, it does not satisfy !n[] j !n[] 4 !n[].

(Consider the formula: Inf n j Inf n where Inf n
�

= T .�an n.)

Anytime, Anywhere 14

Location
n[] j= n[T]

n[] j 0 j= n[T], because n[] j 0 � n[]

n[m[]] j= n[m[T]]

:0 j= n[T]

:n[] j= m[T], if m 6= n

Composition

n[] j m[] j= m[T] j n[T], because n[] j m[] � m[] j n[]

n[] j= n[T] j T, because n[] � n[] j 0

!n[] j= n[T] j T, because !n[] � n[] j !n[]

Anytime, Anywhere 15

Inaction
m[] j n[] j= :0 j :0

n[] j= :(:0 j :0) (read: n[] is single-threaded)

Spatial Modality

n[m[]] j= ✧m[T]

:n[m[] j m[]] j= ✧m[T]

m[n[p[q[]]]] j= ✧(p parents q),

where p parents q
�

= p[q[T] j T] j T

Anytime, Anywhere 16

Temporal Modality
n[m[]] j open n j= �m[T]

n[n[]] j open n j= �an n, where an n
�

= n[T] j T

Location Adjunct

n[] j= m[n[T]]@m

n[out m] j= (�an n)@m

Composition Adjunct

n[] j= m[T] . (n[T] j m[T])

open n:m[] j= (�n[T]) . (�m[T])

Anytime, Anywhere 17

Derived Connectives:

F

�
= :T false

A^ B

�
= :(:A_:B) conjunction

A) B

�
= :A_ B implication

A k B

�
= :(:A j :B) decomposition

A� �
= A k F every component satisfies A

A+

�
= A j T some component satisfiesA

9x:A

�
= :8x::A existential quantification

�A

�
= :�:A everytime modality (temporal)

❏A

�
= :✧:A everywhere modality (spatial)

AF �
= A . F A is unsatisfiable

An B

�
= :(A . :B) some new A component makes B hold.

Anytime, Anywhere 18

Semantic Reasoning:

A Decidable Sublogic

Anytime, Anywhere 19

A Model-Checking Algorithm

We consider only replication-free processes, and .-free formulas.

For replication-free processes P, and .-free formulas A,

the truth of P j= A is decidable.

Propositional logic is easy:

Checking propositional logic:

Check(P;T) = T

Check(P;:A) = :Check(P;A)

Check(P;A_ B) = Check(P;A)_ Check(P;B)

Anytime, Anywhere 20

Normal Forms

Let a prime process , �, be one of

M[P],H:P, (x):P, or hMi

for H 2 fin N; out N; open N;ng.

Let a normal form be a process of the form
�1 j � � � j �k j 0

with k � 0, written as

Q
i21::k �i.

There is a terminating procedure Norm such that for all replication-free

P, if Norm(P) = [�1; : : : ; �k] then P �
Q

i21::k �i.

Anytime, Anywhere 21

Checking inaction:

Check(P; 0) =
8<

:
T if Norm(P) = []

F otherwise

We rely on the fact that

Q
i21::k �i � 0 iff k = 0.

Anytime, Anywhere 22

Checking ambient matching and its adjunct:

Check(P;n[A]) =
8<

:
Check(Q;A) if Norm(P) = [n[Q]] for some Q

F otherwise

Check(P;A@n) = Check(n[P];A)
We rely on the fact that

Q
i21::k �i � n[P] iff k = 1 and 9Q such

that �1 = n[Q] and P � Q.

Anytime, Anywhere 23

Checking composition matching:

Check(P;A j B) = let [�1; : : : ; �k] = Norm(P) in8>>>>><
>>>>>:

T if 9I; J:I [J = 1::k^ I \ J = ;^

Check(
Q

i2I
�i;A)^

Check(
Q

j2J
�j;B)

F otherwise

We rely on the fact that

Q
i21::k �i � P j Q iff 9I; J such that

I \ J = ;, I [J = 1::k,

Q
i2I �i � P, and

Q
j2J �j � Q.

Anytime, Anywhere 24

Checking universal quantification:

Check(P;8x:A) = let fm1; : : : ;mkg = fn(P)[fn(A) in

let m0 =2 fm1; : : : ;mkg be some fresh name in8<
:
T if Check(P;Afx mig) for all i 2 0::k

F otherwise

We rely on the fact that if fm1; : : : ;mkg = fn(P)[fn(A), and

m0 =2 fm1; : : : ;mkg, then

P j= 8x:A, 8i 2 0::k:P j= Afx mig

Anytime, Anywhere 25

Checking the temporal modality:

Check(P;�A) = let [P1; : : : ; Pk] = Reachable(P) in8<
:

T if Check(Pi;A) for some i 2 1::k

F otherwise

We rely on a terminating procedure Reachable such that if

[P1; : : : ; Pk] = Reachable(P).

(1) For all i 2 1::k, P!� Pi.

(2) If P!� Q then Q � Pi for some i 2 1::k.

Problem: cannot define Reachable directly from P! Q.

Solution: use a labelled transition system.

Anytime, Anywhere 26

Checking the spatial modality:

Check(P;✧A) = let [P1; : : : ; Pk] = SubLocations(P) in8<
:

T if Check(Pi;A) for some i 2 1::k

F otherwise

We rely on a terminating procedure SubLocations such that if

[P1; : : : ; Pk] = SubLocations(P).

(1) For all i 2 1::k, P #� Pi.
(2) If P #� Q then Q � Pi for some i 2 1::k.

Problem: cannot define Sublocations directly from P # Q.

Solution: go via normal forms.

Anytime, Anywhere 27

Syntactic Reasoning:

A Sequent Calculus

Anytime, Anywhere 28

Validity

For closed formulas, validity is given by:

Validity and Satisfiability:

vld A

�
= 8P:P j= A A (closed) is valid

sat A

�
= 9P:P j= A A (closed) is satisfiable

We have a sequent calculus for deriving the validity of formulas, based
on the following definitions:

Sequents and Inference Rules:

A ` B

�
= vld(A) B) sequent

A1 ` B1; � � � ;Ak ` Bk  A ` B

�
= A1 ` B1 ^ � � �^Ak ` Bk) A ` B inference rule

Anytime, Anywhere 29

Highlights of our Sequent Calculus

� Propositional logic

� Predicate logic

� Location logic

� S4 (but not S5) axioms for time and space modalities

� Linear logic

Anytime, Anywhere 30

Location Logic

Monoid laws:

(j 0)  A j 0 a` A
(X j)  A j B a` B j A
(A j)  A j (B j C) a` (A j B) j C

Adjunctions:

(n[] @) n[A] ` B  A ` B@n
(j .) A j C ` B  A ` C . B

Anytime, Anywhere 31

Time and Space Modalities

They are S4 modalities:
(�)  �A a` :�:A (✧)  ✧A a` :❏:A

(� K) �(A) B) ` �A) �B (❏ K) ❏(A) B) ` ❏A) ❏B

(� T) �A ` A (❏ T) ❏A ` A

(� 4) �A ` ��A (❏ 4) ❏A ` ❏❏A

(� `) A ` B  �A ` �B (❏ `) A ` B  ❏A ` ❏B

But they are not S5:

:vld �A) ��A :vld ✧A) ❏✧A

Time and space are not quite symmetric:
(�n[])  n[�A] ` �n[A] (✧n[])  n[✧A] ` ✧A

(� j)  �A j �B ` �(A j B) (✧ j)  ✧A j B ` ✧(A j T)

Anytime, Anywhere 32

Connections with Linear Logic

Like many logics, ours can interpret intuitionistic linear logic:

1IL

�
= 0 A� B

�
= A_ B !A
�

= 0 ^ (:(0) A)) . F

?IL

�
= F A & B

�
= A^ B (so that P j= !A,

>IL

�
= T A
 B

�
= A j B P � 0 ^ 0 j= A)

0IL

�
= F A(B

�
= A . B

These definitions correspond to the standard quantale model of IL.

A1; : : : ;An `IL B is valid in IL iff vld (A1 j � � � j An ` B).

If A1; : : : ;An `IL B then A1 j � � � j An ` B.

So some, but not all, of our spatial operators are already familiar!

Anytime, Anywhere 33

Application:

Logical Properties of

Type Systems

Anytime, Anywhere 34

Application: Expressing Persistence

In work with Ghelli, we invented a type system that statically tracks

whether each ambient is locked or not.

The logic solves the problem of stating properties of well-typed

processes independently of the typing rules.

If P is well-typed given that n is a name for a locked ambient, then

P j= �(✧an n) �✧an n)

(Unfortunately, the current logic cannot express that the number of

ambients named n never decreases, nor can it talk about a unique

ambient named n.)

Anytime, Anywhere 35

Application: Expressing Immobility

Another type system additionally tracks whether an ambient is

immobile or not.

If P is well-typed given that p is a name for a locked ambient, and q is

a name for a locked, immobile ambient, then

P j= �(✧(p parents q)) �✧(p parents q))

where p parents q
�

= p[q[T] j T] j T.

Anytime, Anywhere 36

Related Work

A plethora of modal logics for process calculi was inaugurated by

Hennessy-Milner logic for CCS.

We have not found much closely related work on spatial properties of

processes.

Operators akin to A j B can be found in the systems of Holmström

(1988) and Damm (1989), and in linear logic.

There is a long logical tradition of A^ B specifying a system

assembled from components satisfying A and B.

Anytime, Anywhere 37

Future Work

Recursive formulas would allow us to say more things, such as: “there

is a unique ambient named n”:

an n

�
= n[T] j T

no n

�
= :✧an n

� = �

�
= �[T]@�

unique n

�
= �X:no n j (n[no n]_ 9x:x[X]^ :(x = n))

Other tasks: restore restriction, model check processes with

finite-state recursion.

Anytime, Anywhere 38

Contributions

The novel aspects of our logic lie in its treatment of space:

� New logical primitives

� New rules of inference

� New model checking techniques

The first application is expressing properties of type systems.

