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Abstract

We study two widely used algorithms for the Potts model on rectangular subsets of
the hypercubic lattice Zd – heat bath dynamics and the Swendsen-Wang algorithm –
and prove that, under certain circumstances, the mixing in these algorithms is torpid
or slow. In particular, we show that for heat bath dynamics throughout the region of
phase coexistence, and for the Swendsen-Wang algorithm at the transition point, the
mixing time in a box of side length L with periodic boundary conditions has upper
and lower bounds which are exponential in Ld−1. This work provides the first upper
bound of this form for the Swendsen-Wang algorithm, and gives lower bounds for both
algorithms which significantly improve the previous lower bounds that were exponential
in L/(log L)2.

1 Introduction

Convergence to equilibrium of heat bath dynamics and other dynamics for several lattice
spin models of statistical mechanics has been of significant interest, for well over a decade,
in probability theory, statistical physics, combinatorics and theoretical computer science.
While the excellent monograph [33] provides a testament to this, many exciting new results
and new techniques have since been developed. Fine examples of this development include,
on the fast mixing front, results for Glauber dynamics on trees [5], for Swendsen-Wang
algorithm on various classes of graphs [17], for a simple random walk on the super critical
percolation cluster [4, 23]. On the slow mixing side, results on the Swendsen-Wang for the
Potts model on the complete graph [24], the heat bath algorithm for the Ising model at low
temperature [39], and on quasi-local algorithms for the hardcore lattice gas model at low
temperature [8] form similarly interesting and technically challenging examples.

In this paper, we study two Monte Carlo Markov chains (MCMC), heat bath dynamics
and the empirically more rapid Swendsen-Wang algorithm, for the q-state Potts model. Our
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work is a continuation of the work begun some time ago in collaboration with several other
authors [8], where we obtained weaker bounds than those we establish here.

The point of our previous work was to relate the mixing times of MCMC in several models,
including the Potts model, to the phase structure of the underlying equilibrium models. The
Potts model is known to undergo a phase transition from a so-called disordered phase with
a unique equilibrium state to an ordered phase with the coexistence of multiple equilibrium
states. In our previous work we showed that, for the q-state Potts model on rectangular
subsets of the hypercubic lattice Zd with periodic boundary conditions, heat bath dynamics
is slow or torpid throughout the region of phase coexistence, while the Swendsen-Wang
algorithm is torpid at the transition point, provided that q is large enough. There the lower
bounds on the mixing time in a box of side length L with periodic boundary conditions were
exponential in L/(logL)2. In this paper, we show that the mixing is even slower, obtaining
essentially optimal results: both lower and upper bounds on the mixing time which are
exponential in Ld−1.

Slowness of the Swenden-Wang algorithm for the Potts model at the transition point was
proved first on the complete graph [24]. This result initially came as a surprise to many
physicists who had tacitly assumed that the algorithm was fast at all temperatures. Our
previous work [8] was the first to establish such a result on subsets of the hypercubic lattice, a
case which is both more physically relevant and technically much more challenging than the
complete graph. To overcome these difficulties, we used some deep results from mathematical
physics, which we now extend. In particular, our work brings to bear and extends, statistical
physics expansion techniques for the problem of controlling the number of cutsets in graphical
expansions of these models. Specifically, we use the so-called Pirogov-Sinai theory [35] from
the statistical physics literature, in the form adapted to the Potts model by Borgs, Kotecký
and Miracle-Sole ([10], [11]). We also use the isoperimetric inequalities of Bollobás and
Leader [6], as well as a large deviations technique borrowed from [7].

For Markov chains that change the value of only a bounded number of spins – such as
the heat bath algorithm, it is easy to obtain upper bounds exponential in Ld−1 using either
refined canonical path arguments as in [5] or recursive bounds on the Dirichlet form as in [14],
see [33] for a review. However, for the Swendsen-Wang algorithm, which is highly non-local
in the spin representation, such an upper bound is not obvious. However, it turns out that
a refinement of the bounds on the Dirichlet form can be used to obtain the desired upper
bound. More generally, introducing a new graph parameter which we call the“decomposition
width,” we derive upper bounds for Swendsen-Wang on arbitrary graphs, which as a special
case proves that Swendsen-Wang on trees is polynomial in the number of vertices for all
temperatures.

The real challenge is to obtain a lower bound which is exponential in Ld−1, significantly
improving the e−cL/ log2 L lower bound of [8]. While the previous bound required that we
consider only contours which can be embedded into Zd, this optimal lower bound requires
that we deal explicitly with the topology of the torus. In particular, we must distinguish
between surfaces with vanishing and non-vanishing winding numbers, which we call contours
and interfaces respectively. Moreover, in order to deal optimally with the contours, we need
to define an appropriate notion of exterior and interior which allows us to establish a partial
order on the set of contours. This in turn is used to develop the appropriate Pirogov-Sinai
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theory on the torus.
In order to state our results precisely, we need a few definitions. Let G = (V,E) be a

finite graph and let β > 0. For a positive integer q, let [q] = {1, 2, . . . , q}. The Gibbs measure
of the (ferromagnetic) q-state Potts model on G at inverse temperature β is a measure on
[q]V with density

µG(σ) =
e−βHG(σ)

ZG
, (1.1)

where σ ∈ [q]V is a spin configuration. Here

HG(σ) =
∑
xy∈E

(1− δ(σx, σy)) (1.2)

is the Hamiltonian, and the normalization factor

ZG =
∑

σ∈[q]V

e−βHG(σ) (1.3)

is the partition function. (In the above, δ denotes the Kronecker delta function.)
For a finite Λ ⊂ Zd we define the measure µΛ,1 with the “1-boundary condition” by

setting all the spins at the external boundary of Λ to 1. Explicitly, for σ ∈ {1, 2, . . . , q}Λ, let

HΛ,1(σ) = HG[Λ](σ) +
∑
x∈Λ
y∈Λc

|x−y|=1

(1− δ(σx, 1)) ,

where G[Λ] is the induced subgraph of Λ and | · | is the l1 distance.
Then µΛ,1 is the probability measure with density

µΛ,1(σ) =
e−βHΛ,1(σ)

ZΛ,1

, (1.4)

where ZΛ,1 is the appropriate normalization factor.
The infinite volume magnetization is defined as M(β) = limL→∞MΛL(β) where ΛL =

{1, . . . , L}d and

MΛ(β) =
1

|Λ|
∑
x∈Λ

(
µΛ,1({σx = 1})− 1

q

)
.

By standard correlation inequalities, the limit limL→∞MΛL(β) is known to exist and to be
monotone nondecreasing in β. The transition point is defined by

β0 = β0(Zd) = inf{β : M(β) > 0}.

The model is known to have a unique (infinite-volume) Gibbs state for β < β0 and q
extremal tranlation-invariant Gibbs states for β > β0. For q small enough (depending on d),
the model is believed to have a unique Gibbs state at β0, whereas for q large enough, it is
known to have q + 1 extremal translation-invariant Gibbs states at β0 = 1

d
log q +O(q−1/d).
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Next we define the mixing time of a finite Markov chain with state space Ω. Let P
denote the transition probability matrix of an irreducible Markov chain with the (unique)
stationary measure µ. The (variational) mixing time of such a chain is defined as

τ = min

{
t : d(t) ≤ 1

2e

}
, (1.5)

where
d(t) = max

σ∈Ω
max
A⊂Ω

∣∣∣µ(A)−
∑
σ′∈A

P t(σ,σ′)
∣∣∣.

In this paper, we will consider several Markov chains for the Potts model on the torus

TL,d = (Z/LZ)d .

The chains we consider are the heat bath (or Glauber) dynamics, and the presumably much
faster SW algorithm; see Section 2.1 of the definition of these chains. We denote the mixing
times of these algorithms for the q-state Potts model on the torus TL,d by τHB = τHB(TL,d)
and τSW = τSW(TL,d).

Theorem 1.1 There are universal constants k1, k2 < ∞ such that, for β > 0, d ≥ 2 and
any positive integer L, the following bounds hold

τHB(TL,d) ≤ e(k1+k2β)Ld−1

(1.6)

τSW(TL,d) ≤ e(k1+k2β)Ld−1

. (1.7)

In order to prove this, in Section 3, we introduce the “partition width” of a graph, a
notion that may be of independent interest. As a corollary of our proof, we also obtain that
the mixing time of SW on a tree with n vertices, maximum degree dmax, and depth O(log n)
is bounded by n1+O(βdmax), see Corollary 3.2 for the precise statement. This generalizes
the result of [5], which gives polynomial mixing for the HB algorithm on trees, to the SW
algorithm.

Theorem 1.2 Let d ≥ 2. Then there exists a constant k3 = k3(d) > 0 such that, for q and
L sufficiently large, the following bounds hold:

τHB(TL,d) ≥ ek3βLd−1

for all β ≥ β0(Zd) (1.8)

τSW(TL,d) ≥ ek3βLd−1

for all β = β0(Zd). (1.9)

Very roughly speaking, the reason for the heat bath lower bound is that this algorithm
cannot move quickly among (the finite analogs of) the q translation-invariant extremal states
present for β > β0. On the other hand, the Swendsen-Wang algorithm can move quickly
among these q states, but cannot move quickly between these q states and the one additional
translation-invariant extremal state present at β = β0. Whenever the algorithm cannot move
quickly between states, in order for the system to mix, it must pass through a configuration
with a “separating surface” of size at least Ld−1 between the relevant states.
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The organization of this paper is as follows. In Section 2, we define the algorithms and
the necessary notions from the theory of MCMC. In Section 3, we introduce the notion of
partition width and establish the upper bound on the mixing time. In order to obtain the
corresponding lower bound, we need some preparation: in Section 4 we construct the contour
representation of the model, while Section 5 establishes the required geometric properties of
contours and interfaces. This section can perhaps be skipped on first reading. In the next
section, we state the necessary bounds from Pirogov-Sinai (to be proved in the appendix),
and use these to establish two key estimates needed for the main proof: a bound on the
probability of interfaces, and a suitable large deviation bound. Using these bounds, we then
prove our main result in Section 7.

The reader only interested in the main flavor of our proofs should perhaps start with Sec-
tion 2.3, where we explain the main proof strategy, and then immediately jump to Section 7,
glancing back at Section 4 and Section 6.1 as necessary.

2 MCMC Preliminaries

2.1 Algorithms for the Potts Model

There are several MCMC algorithms that are used to generate a random sample from the
distribution corresponding to the ferromagnetic Potts model. The heat bath is perhaps the
simplest such Markov chain. Its transitions are as follows: Choose a vertex at random, and
modify the spin of that vertex by choosing from the distribution conditional on the spins of
the other vertices remaining the same. In contrast, the Swendsen-Wang algorithm can alter
the spins on many vertices in each iteration.

Throughout this section G = (V,E) is a fixed finite graph. For a subgraph G̃ = (Ṽ , Ẽ) of
G, we denote the set of (connected) components of G̃ by C(G̃) = C(Ṽ , Ẽ), and its cardinality
by c(G̃) = c(Ṽ , Ẽ). Finally, for a spin configuration σ ∈ [q]V , let E(σ) be the set of
“monochromatic edges” xy ∈ E with σx = σy.

Heat Bath: From a spin configuration σ ∈ [q]V , we construct a new configuration σ′ as
follows:

HB1 Choose v uniformly at random from V .

HB2 Take σ′w = σw, for all w ∈ V \ {v}, and change σv to σ′v with probability

µG
(
σ′v
∣∣σV \{v}

)
=

exp
{
β
∑
w∈V
vw∈E

δ(σ′v, σw)
}

q∑
k=1

exp
{
β
∑
w∈V
vw∈E

δ(k, σw)
} .

For future reference we denote the transition matrix of this chain by

PHB
G (σ,σ′) =

1

|V |
∑
v∈V

(
µG
(
σ′v
∣∣σV \{v}

)∏
w 6=v

δ(σ′w, σw)
)
.
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In practice, an alternative method, the Swendsen-Wang algorithm [38], is often preferred.

Swendsen-Wang Algorithm: For σ ∈ [q]V :

SW1 Let E(σ) ⊂ E be the set of monochromatic edges. Delete each edge of E(σ) inde-
pendently with probability 1 − p, where p = 1 − e−β. This gives a random subset
A ⊂ E(σ).

SW2 The graph (V,A) consists of connected components. For each component, choose a
color (spin) k uniformly at random from [q], and for all vertices v within that compo-
nent, set σ′v = k.

Again for future reference, we denote the transition matrix of this chain by

P SW
G (σ,σ′) =

∑
A⊂E(σ)

p|A|(1− p)|E(σ)\A|
∏

C∈C(V,A)

(1

q

q∑
k=1

∏
v∈V (C)

δ(σ′v, k)
)
.

The Swendsen-Wang algorithm was motivated by the equivalence of the ferromagnetic
q-state Potts model and the random cluster model of Fortuin and Kasteleyn [22], which we
now describe. Fortuin and Kasteleyn realized that the Potts model partition function ZG
and expectations with respect to the measure µG can be rewritten in terms of a weighted
graph model on spanning subgraphs (V,A) ⊂ G with weights

νG(A) =
1

ZG
p|A|(1− p)|E\A|qc(V,A). (2.1)

The relationship between the two models is elucidated in a paper by Edwards and Sokal
[21]. The Potts and random cluster models are defined on a joint probability space [q]V ×2E.
The joint probability π(σ, A) is defined by

πG(σ, A) =
1

ZG
p|A|(1− p)|E\A|

∏
xy∈A

δ(σx, σy). (2.2)

By summing over σ or A we see that the marginal distributions are νG or µG respectively.
A step σ → σ′ of the Swendsen-Wang algorithm can be seen as (i) choose a random A′

according to πG(σ, ·)/µG(σ) and then (ii) choose a random σ′ according to π(·, A′)/νG(A′).
After Step SW1, we say that we are in the random cluster representation of the chain.

2.2 Mixing Time and Related Quantities

Throughout this section, let P be the transition matrix of an irreducible Markov chain on a fi-
nite state space Ω, let µ be the stationary distribution of P , i.e., µ(σ′) =

∑
σ∈Ω µ(σ)P (σ,σ′),

and let µmin = minσ∈Ω µ(σ). We denote the mixing time, defined in (1.5), by τ(P ), and define
the inverse gap (or eigentime) τ̃(P ) as

τ̃(P ) = sup
g

Var g

E(g, g)
, (2.3)
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where the supremum is over all real valued functions g on Ω with Var g > 0. Here as usual,

Var g = Varµ g =
1

2

∑
σ,σ′

(g(σ)− g(σ′))
2
µ(σ)µ(σ′),

and

E(g, g) = EP (g, g) =
1

2

∑
σ,σ′

(g(σ)− g(σ′))
2
µ(σ)P (σ,σ′).

If P is reversible, τ̃(P ) is just (1− β2(P ))−1, where β2(P ) is the second largest eigenvalue of
P .

It is well known that the inverse gap can be bounded above in terms of the mixing
times; if the chain is lazy, i.e., if the minimal self-loop probability minσ P (σ,σ) is uniformly
bounded from below, a bound in the opposite direction is also not very hard to prove, see,
e.g., [2]. However, the SW chain is not lazy. Instead of the standard upper bound on τ(P )
in terms of τ̃(P ), we therefore use a bound from [34]. For reversible chains, this bound gives

τ(P ) ≤ τ̃(P 2) log
( e2

µmin

)
, (2.4)

where, as usual, P 2(σ,σ′) =
∑

σ′′∈Ω P (σ,σ′′)P (σ′′,σ′), denotes the transition matrix of the
two-step chain.

We will also need an identity for the mixing time of a product chain. Let Ω1,Ω2 be finite
sets, and let P1, P2 be the transition matrices of two irreducible Markov chains on Ω1 and
Ω2 with stationary distributions µ1 and µ2 respectively. Let Ω1 × Ω2 be the set of all pairs
σ = (σ(1),σ(2)) with σ(1) ∈ Ω1 and σ(2) ∈ Ω2. Then the product chain is defined as the
chain with the transition matrix

(P1 × P2)
(
σ, σ̃

)
= P1(σ(1), σ̃(1))P2(σ(2), σ̃(2)). (2.5)

Let
(µ1 × µ2)(σ) = µ1(σ(1))µ2(σ(2)).

If both P1 and P2 have non-negative eigenvalues, then P1×P2 has non-negative eigenvalues
and β2(P1×P2) = max{β2(P1), β2(P2)}. Using this fact, one immediately shows that P1×P2

is irreducible with stationary distribution µ1 × µ2 and obeys the bound

τ̃(P1 × P2) = max
{
τ̃(P1), τ̃(P2)

}
. (2.6)

For our lower bounds, we use the notion of conductance and its relation to the mixing
time. Setting

Q(S, S ′) =
∑
σ∈S

∑
σ′∈S′

µ(σ)P (σ,σ′),

the conductance of a set S ⊂ Ω can be defined as

ΦS =
Q(S, Sc)

µ(S)µ(Sc)
. (2.7)
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Finally the conductance of a Markov chain with the transition matrix P is

Φ(P ) = min
S:0<µ(S)<1

ΦS. (2.8)

The mixing time can be easily bounded from below in terms of the conductance, see
[7],[15], [19]:

τ(P ) ≥ e− 1

e

1

Φ(P )
. (2.9)

2.3 Proof Strategy

In order to prove Theorem 1.1, we will want to give an upper bound on the inverse gap τ̃
defined in (2.3). To this end, it will be convenient to consider the SW algorithm on a general
graph G. We then iteratively partition the set V of vertices of G into two sets V1 and V2,
and show that the inverse gap of (P SW

G )2 is bounded by the inverse gap of the product chain
for SW on the two induced graphs G[V1] and G[V2], times a factor which is exponential in
the number of edges with one endpoint in V1 and one endpoint in V2. With the help of (2.6)
and (2.4), this allows us to bound the mixing time of SW by a number which is exponential
in a quantity we call the partition width of the graph G. Applied to the torus TL,d, this gives
a bound which is exponential in Ld−1, and applied to a tree, this will give a bound which
is polynomial in the number of vertices. The bound for the HB algorithm follows a similar
strategy.

To prove Theorem 1.2, we will use the lower bound (2.9). To this end, we will want to
find a set of spin configurations S such that ΦS is exponentially small in Ld−1. Recalling
that the Potts model at the transition point exhibits the coexistence of q ordered phases
and one translation invariant phase, we will want to exploit the fact that the SW algorithm
cannot transition easily between (the finite volume analogue of) the ordered phases and
the disordered phase. To make this precise, we define S to be the set S = {σ : |E(σ)| ≥
(1 − α)dLd}, where α > 0 is a small constant, say α = 1/3. Thus S consists of the
configurations whose set of monochromatic edges form almost all of E.

For large q the inverse transition temperature β0 is large as well, implying that at β = β0,
the probability of deleting an edge in the first step of the SW algorithms is small; starting
from a configuration σ ∈ S it is therefore unlikely that after one step of the Markov chain,
the new configuration σ′ is such that the number of edges in E(σ′) is much smaller than
(1−α)dLd. (The probability that it is smaller than, say αdLd, is actually exponentially small
in Ld). But it is also unlikely that a configuration σ′ ∈ Sc has a number of monochromatic
edges which is larger than αdLd, since both requirements together imply that the number of
edges lies between αdLd and (1−α)dLd. This corresponds neither to an ordered phase (which
would have more than (1− α)dLd monochromatic edges), nor to a disordered phase (which
would have less than αdLd monochromatic edges), and thus to a configuration which has low
probability. Thus with high probability a configuration σ ∈ S leads to a new configuration
σ′ which is in S as well, showing that φS is small.

To make this quantitative, we will have to show that the weight of the configurations in
S0 = {σ′ : αdLd ≤ |E(σ′)| ≤ (1−α)Ld} is exponentially small in Ld−1. To this end, we will
first switch to the FK representation (2.1), and then describe an edge configuration A ⊂ E
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in terms of a hypersurface separating regions with edges in A from regions with edges in
E \ A. We then decompose this hypersurface into connected components, some of which to
be called contours, and others to be called interfaces. While contours can have small or large
size, interfaces will always have size at least Ld−1.

To prove our desired bounds on µ(S0), we will show that the probability of a configuration
with an interface is exponentially small in the size of the interface, leaving us with the
analysis of configurations without interfaces. These will come in two classes: configurations
describing perturbations of A = E (we denote the set of these configurations by Ωord), and
configurations describing perturbations of A = ∅ (to be denoted by Ωdis). Our last step then
consists of a large deviations bound showing that with high probability, for configurations
A ∈ Ωord, the common exterior of a set of contours has size at least (1 − 1

2
α)Ld, and

similarly for configurations A ∈ Ωdis. This will imply that with high probability, the set of
monochromatic edges of an ordered configuration σ has at least (1−α)dLd edges, while that
of a disordered configuration has at most αdLd edges. Put together, these estimates give the
desired bound for µ(S0).

Our approach differs in several aspects from the approach taken in [8], which led to a
conductance bound that was exponentially small in L/(log2 L).

First, the bounds in [8] relied on a combination of Pirogov-Sinai theory with the finite-size
scaling theory developed in [10] and [11], where contours were by definition objects that could
be embedded in Rd. This allowed for an immediate application of standard Pirogov-Sinai
results, but produced error terms that were only exponential in L, which is not strong enough
for our current purpose. To avoid this problem, we define contours in a purely topological
manner, by requiring that their Z2 winding number with respect to the torus is equal to
zero. This has the advantage that the objects which cannot be classified as contours (we call
them interfaces) must have size at least Ld−1, since all surfaces of smaller size have winding
number zero. The price we have to pay is that the set of contours now contains objects like
long tubes winding around the torus which cannot be embedded into Rd, preventing us from
applying the standard Pirogov-Sinai machinery as more or less a black box.

Instead, we will show that Pirogov-Sinai theory does not really rely on the topology of
Rd, but rather on the implied structure of partial order on contours. More precisely, it relies
on the fact that for any set of pairwise non-overlapping contours and interfaces, this partial
order leads to a Hasse diagram that is a forest – this is expressed in Lemma 5.5, see also
Lemma 4.3 and Definition 4.4.

Second, we will use a large deviation bound obtained by adding an artificial magnetic field
to the contour model, see Section 6.3 for details. This turns out to be much more efficient
than the iterative, combinatorial arguments from [8], allowing us to improve a bound that
is exponentially small in L/(logL)2 to one which is exponentially small in Ld−1.

3 Upper Bound on Mixing Time

In order to prove our upper bound on the mixing time, it will be convenient to prove a more
general theorem, involving a new notion, called the “partition width” of a graph, which we
expect may be of independent interest. We need some notation.
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Given a graph G = (V,E), we define a hierarchical partition P of V by first dividing
V into two non-empty subsets V1, V2, and then successively subdividing each set with more
than one element into two further subsets until all sets contain only one element. Each
such partition can be described by a rooted binary tree as follows: the vertices are subsets
of V , with the root being V , the leaves being the singletons {x}, x ∈ V . In addition, we
have the constraint that for any vertex Vi with children Vi1, Vi2, we have Vi = Vi1 ∪ Vi2 and
Vi1 ∩ Vi2 = ∅. If Vi has children Vi1 and Vi2, we define the weight wP(Vi) of Vi as the number
of edges between Vi1 and Vi2 in G; if Vi is a leaf, we set its weight to zero.

For x ∈ V , we now define the separation cost sepP(x) of x as the sum of all vertex
weights along the path from the root to x. The cost of a partition P is then defined as
sep(P) = maxx∈V sepP(x), and the partition width of G is defined as ω(G) = minP sep(P).

Theorem 3.1 For any finite graph G = (V,E), the mixing time of the SW algorithm obeys
the upper bound

τ(P SW
G ) ≤ e5βω(G)

(
2 + |V | log 2 + β|E|

)
.

Before proving the theorem, we state (and prove) the following corollary, which illustrates
the usefulness of our notion of partition width.

Corollary 3.2 Let Λ be a rectilinear subset of Zd, let TL,d be the d-dimensional torus of
side length L, and let T be a tree on n vertices with maximum degree dmax and depth c log n.
Then

τ(P SW
Λ ) ≤ e45β|A(Λ)|(2 + (log 2 + dβ)|Λ|

)
, (3.1)

τ(P SW
TL,d

) ≤ e75βLd−1(
2 + (log 2 + dβ)Ld

)
, (3.2)

τ(P SW
T ) ≤ n5cβdmax

(
2 + (log 2 + β)n

)
. (3.3)

Here A(Λ) is the volume of Λ divided by the minimal side length.

Note that the second bound of corollary implies the bound (1.7) in Theorem 1.1. The
bound (1.6) of this theorem can either be proved by generalizing Theorem 3.1 to the heat
bath algorithm (the proof is actually easier for this case), or by using the canonical path
techniques of [5].
Proof of Corollary 3.2. Let G = (V,E) be an arbitrary finite graph, and let V = V1∪V2 be
a decomposition of V into two disjoint subsets. Using the definition of the partition width,
one easily verifies that

ω(G) ≤ |E12|+ max{ω(G[V1]), ω(G[V2])} , (3.4)

where E12 is the set of edges between V1 and V2. Using this bound, it is easy to verify by
induction, that for a tree T of maximal degree dmax and depth D, one has

ω(T ) ≤ dmaxD,

which in turn gives the bound in the corollary for trees.

10



We are thus left with proving upper bounds for the partition width for cubic subsets of
Zd and the torus TL,d. We start with a rectilinear subset of side-lengths L1 ≥ L2 ≥ · · · ≥ Ld,
which we denote by [L1, . . . , Ld]. To this end, we first note that

ω(G′) ≤ ω(G) ,

whenever G′ is a spanning subgraph of G, implying that ω([L1, . . . , Ld]) is non-decreasing
in the side-lengths Li. Consider a set of sidelength L1 ≥ · · · ≥ Ld with L1 ≥ 2. Using the
bound (3.4), the monotonicity of ω([L1, . . . , Ld]) and the fact that dLi/2e ≤ 2Li/3, whenever
Li ≥ 2, we then bound

ω
([
L1, . . . , Ld

])
≤ L2 · · ·Ld + ω

([
dL1

2
e, L2, . . . , Ld

])
≤ L2 · · ·Ld + dL1

2
eL3 · · ·Ld + ω

([
dL1

2
e, dL2

2
e, . . . , Ld

])
≤ . . .

≤
(

1 +
2

3
+
(2

3

)2

+ · · ·
(2

3

)k−1
)
L1 · · ·Ld−1

+ ω
([
dL1

2
e, dL2

2
e, . . . , dLd

2
e
])

≤ 3L1 · · ·Ld−1 + ω
([
dL1

2
e, dL2

2
e, . . . , dLd

2
e
])
.

(3.5)

where k is the smallest i such that Li ≥ 2. Using this bound, it is now easy to prove by
induction that

ω([L1, . . . , Ld]) ≤ 9A([L1, . . . , Ld]),

implying the desired bound for the inverse gap on rectilinear sets.
Next, we would like to bound the partition width of the torus TL,d using the just estab-

lished bound for rectilinear sets. To this end we successively cut the torus in the d different
coordinate directions, proceeding as in the proof above. Here, however, since we have a torus
rather than a rectilinear set, we need two cuts rather than one cut in each direction to obtain
two components. Keeping this in mind, we get

ω
(
TL,d

)
≤ 2

(
1 +

2

3
+
(2

3

)2

+ · · ·
(2

3

)d−1
)
L1 · · ·Ld−1

+ ω
([
dL

2
e, dL

2
e, . . . , dL

2
e
])

≤ 6Ld−1 + 9Ld−1 = 15Ld−1,

(3.6)

which implies the desired bound on the mixing time. �
The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.3 Let G = (V,E), let PG = P SW
G and G0 = (V,E0), where E0 is an arbitrary

subset of E. Then
τ̃(P 2

G) ≤ τ̃(P 2
G0

) e5β|E\E0|.
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Proof. Recall that a single transition of the SW dynamics consists of two steps. Given a
current Potts configuration σ, the first step identifies connected components of color classes
and performs random edge deletion with probability e−β independently for each monochro-
matic edge. We denote the resulting configuration by E ′. The second step assigns colors
independently for each new connected component (cluster) in E ′, resulting in a new Potts
configuration σ′.

Let E(σ) = {xy ∈ E : σx = σy}. Let G and G0 be as in the statement of the lemma,
and let E1 = E \ E0. Then

PG(σ,σ′) =
∑

E′⊆E(σ)

(
1− e−β

)|E′|
eβ|E(σ)\E′|

∏
C∈C(V,E′)

1

q

∏
x,y∈C

δ(σ′x, σ
′
y)

≥ e−β|E1|
∑

E′⊆E(σ)\E1

(
1− e−β

)|E′|
eβ|{E(σ)\E1}\E′|

∏
C∈C(V,E′)

1

q

∏
x,y∈C

δ(σ′x, σ
′
y)

≥ e−β|E1|PG0(σ,σ′),

implying that
P 2
G(σ,σ′) ≥ e−2β|E1|P 2

G0
(σ,σ′). (3.7)

Next we observe that, by the definition of HG, we have

e−βHG0
(σ)e−β|E1| ≤ e−βHG(σ) ≤ e−βHG0

(σ).

implying that
µG0(σ)e−β|E1| ≤ µG(σ) ≤ µG0(σ)eβ|E1|.

Combined with (3.7) and the definition of variance and the Dirichlet form, this proves that

VarµG g

EP 2
G

(g, g)
≤

e2β|E1|VarµG0
g

e−3β|E1| EP 2
G0

(g, g)
≤ e5β|E1|

VarµG0
g

EP 2
G0

(g, g)
,

and hence

τ̃(P 2
G) = sup

g

VarµG g

EP 2
G

(g, g)
≤ e5β|E1|τ̃(P 2

G0
).

�
Having established Lemma 3.3, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Given a graph G = (V,E) and a decomposition of V into two
disjoint subsets V1 and V2, let E12 be the set of edges in E that join V1 and V2, and let
E0 = E \E12. Let G1 = G[V1], G2 = G[V2] and G0 = (V,E0). Observing that no edge in G0

joins V1 and V2, we clearly have PG0 = PG1 × PG2 and thus P 2
G0

= P 2
G1
× P 2

G2
. Combining

Lemma 3.3 with the identity (2.6) for P 2
G1

and P 2
G2

, we thus have

τ̃(P 2
G) ≤ max{τ̃(P 2

G1
), τ̃(P 2

G2
)} e5β|E12|.

Applying this bound recursively for the decompositions in a hierarchical partition P of G,
we obtain that

τ̃(P 2
G) ≤ e5βω(G)

∏
x∈V

τ̃(P 2
G[{x}]).

Since the inverse gap for the SW algorithms on a single site is one, we get τ̃(P 2
G) ≤ e5βω(G).

Combined with the bound (2.4), this proves the theorem. �
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4 Contour Representation

In this section, we derive a representation for the Potts model in terms of contours and
interfaces. This representation is a modified version of the representation of [11]. We use
T = TL,d to denote the d-dimensional discrete torus of sidelength L, with vertex set V =
VL,d = (Z/LZ)d and edge set E = EL,d, and Ω to denote the SW configuration space 2E, i.e.,
the set of all edge configurations A ⊂ E.

We start from the random cluster representation (2.1). Given A ⊂ E, let V (A) =
∪{x,y}∈A{x, y}, and let G̃(A) = (V (A), A). Recalling the definition of c(A) as the number
of connected components of the graph G(A) = (V,A), we introduce c̃(A) as the number of
connected components of G̃(A). Observe that c(A) = c̃(A) + |V \ V (A)| and

2|A| = 2d|V (A)| − |δ1A| − 2|δ2A|,

where
δkA = {{x, y} ∈ E \ A; |{x, y} ∩ V (A)| = k} k = 1, 2.

Using the notation δA = {{x, y} ∈ E \ A; |{x, y} ∩ V (A)| > 0} and ‖δA‖ = |δ1A| + 2|δ2A|,
we rewrite the weight w(A) = ZTνT (A) of a configuration A in (2.1) as

w(A) =
(

(1− p)dq
)|V \V (A)|

pd|V (A)|
(

1− p
p

)‖δA‖/2
qc̃(A)

= qc̃(A)e−edis|V \V (A)|e−eord|V (A)|e−κ‖δA‖
(4.1)

where

edis = − log
(

(1− p)dq
)

= dβ − log q, (4.2)

eord = −d log p = −d log
(

1− e−β) = O(e−β), (4.3)

κ = −1

2
log

(
1− p
p

)
=

1

2
log
(
eβ − 1

)
=
β

2
+O(e−β). (4.4)

This already shows that there are three regions of interest: for β � 1
d

log q, the dominant
configurations are those with most vertices belonging to V \ V (A), i.e., most vertices are
isolated, corresponding to a “disordered high-temperature phase;” for β � 1

d
log q, the dom-

inant configurations have most vertices in the “ordered region” V (A) corresponding to an
“ordered low-temperature phase;” and for β ≈ 1

d
log q and q (and hence κ) large, the domi-

nant configurations fall into two classes, one with mostly isolated vertices and the other with
most vertices in V (A). As we will see, even the SW algorithm has difficulties transitioning
between these two classes, which leads to slow mixing at β0 = 1

d
log q +O(q−1/d).

We will decompose δA into several pieces called “interfaces” and “contours”. More
precisely, we will first “fatten” the set A into a subset V(A) of the continuum torus V =
(R/(LZ))d and then decompose the boundary of V(A) into components, some of which will
be called interfaces, and some of which will be called contours.

For an edge e = {x, y} ∈ E, let e be the set of points in V that lie on the line between
x and y. Given A, we call a closed k-dimensional unit hypercube c ⊂ V with corners in
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V occupied if all edges e with e ⊂ c are in A. We then define the set V(A) ⊂ V as the
1/4-neighborhood of the union of all occupied k-dimensional hypercubes, k = 1, . . . , d, i.e.,
V(A) = {x ∈ V : ∃ c occupied, such that dist(x, c) ≤ 1/4}, where dist(x, y) is the `∞-
distance between the two points x and y in the torus V and dist(x, c) = infy∈c dist(x, y).
Note that the set V(A) is a union of cubes of side-length 1/2 with centers in V1/2 = (1

2
Z/LZ)d,

and that the set V (A) defined at the beginning of this section is just the intersection of V(A)
with the vertex set V of the discrete torus T .

Alternatively, one can define the set V(A) by constructing its complement, the “dis-
ordered region” V \ V(A) as follows: Let (E \ A)? be the set of d − 1 dimensional unit
hypercubes dual to the edges in E \A. It is then easy to see that the union of the open 3/4-
neighborhood of V \ V (A) and the open 1/4-neighborhood of (E \A)? is just the disordered
region V \V(A) (see Lemma 5.1 in Section 5).

For i = 1, 2, . . . , d, let Li be the fundamental loop Li = {y ∈ V|yi = 1}. If A is a union of
cubes with diameter 1/2 and centers in V1/2 and γ is a component of ∂A, then the winding
vector N(γ) ∈ {0, 1}d, with its ith component being equal to the number of intersections
(mod 2) of γ with Li.

Definition 4.1 Let A be a configuration in Ω. The contours corresponding to the configu-
ration A are defined as those connected components γ of the boundary of V(A) which have
winding number zero, N(γ) = 0; the remaining connected components of the boundary of
V(A) are called the interfaces corresponding to A; the set of these interfaces is called the
interface network corresponding to A. We denote the set of contours corresponding to A by
Γ(A), and the interface network corresponding to A by S(A).

Without reference to a configuration, we say that γ is a contour if there exists a con-
figuration A such that γ ∈ Γ(A), and similarly for an interface and an interface network.
We define two contours (or two interfaces, or one interface and one contour) γ, γ′ to be
compatible, if dist(γ, γ′) ≥ 1/2. We define a contour γ and an interface network S to be
compatible if γ is compatible with all interfaces in S.

Note that the contours and interfaces corresponding to a configuration A ∈ Ω are ori-
entable in the standard topological sense (see e.g. [12] or[3]); in fact, they are oriented, with
an “ordered side” facing V(A), and a “disordered side”, facing the complement of V(A).
Thus our contours are “labeled contours”, with labels ` ∈ {ord, dis} indicating which side is
ordered, and which is disordered.

Note also that the contours and interfaces corresponding to a configuration A are pair-
wise compatible. It is not true, however, that any set of pairwise compatible contours and
interfaces correspond to a configuration A ∈ Ω. In order to get a one-to-one correspondence,
we define the notion of “matching labels.”

Definition 4.2 Let S be an interface network, and let Γ be a set of contours. We say that
S ∪ Γ is a set of matching contours and interfaces if the following conditions hold:
(i) The contours and interfaces in Γ ∪ S are pairwise compatible.
(ii) The labels are matching in the sense that, for each component C of V \

⋃
γ∈Γ∪S γ,

there exists a label `(C) ∈ {ord, dis} such that the ordered side of each contour (respectively,
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interface) faces an ordered component (i.e., a component with label `(C) = ord), and similarly
for the disordered sides.

For a set of matching contours and interfaces, we denote the union of the ordered com-
ponents by Vord, and the union of the disordered components by Vdis.

With this definition, the set of contours and interfaces corresponding to a configuration
A ∈ Ω are clearly matching. It turns out (see Corollary 5.11 in Section 5) that the converse
is also true, namely that any set of matching contours and interfaces corresponds to exactly
one configuration A ∈ Ω. Using this fact, we rewrite the partition function Z as a sum over
sets of matching contours and interfaces.

To this end, we first note that the number of components c̃(A) is clearly equal to the
number of components c(V(A)) of the continuum set V(A), and hence also to the number of
components of the set Vord. Note also that both Vord and Vdis are functions of the matching
contours and interfaces (Γ,S). As a consequence, the weight (4.1) can be rewritten as a
function of (Γ,S) according to:

w(A) = qc(V(A))e−edis|V \V(A)|e−eord|V ∩V(A)|e−κ‖∂V(A)‖

= qc(Vord)e−edis|Vdis∩V |e−eord|Vord∩V |
∏
S∈S

e−κ‖S‖
∏
γ∈Γ

e−κ‖γ‖, (4.5)

where ‖∂V(A)‖ is the number of intersections of ∂V(A) with the continuum set E =
⋃
e∈E e,

and similarly for ‖S‖ and ‖γ‖. Together with the already mentioned Corollary 5.11, about
the one-to-one correspondence between configurations and sets of matching contours and
interfaces, this leads to the desired representation of the partition function Z = ZT =∑

Aw(A):

Z =
∑
S,Γ

qc(Vord)e−edis|Vdis∩V |e−eord|Vord∩V |
∏
S∈S

e−κ‖S‖
∏
γ∈Γ

e−κ‖γ‖, (4.6)

where the sum runs over sets of matching contours and interfaces.
Next we define the interior and exterior of a contour. To this end, we need the following

geometric lemma. Its proof is deferred to Section 5.

Lemma 4.3 Let A be a configuration in Ω, and let γ be a contour of A.
i) The set V \ γ has exactly two components.
ii) Let C and D be the two components of V \ γ, and let S1, S2 be two (not necessarily

compatible) interfaces that are both compatible with γ. Then both S1 and S2 lie either in C
or D.

For the purpose of the next definition, it is convenient to define the size of a set W ⊂ V
as the cardinality of W ∩ V .

Definition 4.4 Let γ be a contour. If there exists an interface S (not necessarily corre-
sponding to the same configuration) that is compatible with γ, we define the exterior, Ext γ,
of γ as the component of V\γ that contains S; otherwise we choose the larger of the two com-
ponents; finally, if both of these components have the same size, we choose that containing a
distinguished point, x0 ∈ V. The interior is defined as the set Int γ = V \ (γ ∪ Ext γ).
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Given a set of pairwise compatible contours Γ, we define a contour γ ∈ Γ to be an external
contour in Γ if there exists no contour γ′ ∈ Γ \ {γ} such that Int γ ⊂ Int γ′. We also define
the exterior of Γ as the set

Ext Γ =
⋂
γ∈Γ

Ext γ. (4.7)

Finally, we say that γ1, . . . , γn are mutually external if they are pairwise compatible and
Int γi ∩ Int γj = ∅ for all i 6= j.

The next lemma states several properties of the set Ext Γ(A) of a set of contours corre-
sponding to a configuration A without interfaces. Its proof is again deferred to Section 5.

Lemma 4.5 Let A be a configuration with S(A) = ∅, and let Aext be the set of edges with
both endpoints in Ext Γ(A). Then the following statements hold
(i) Ext Γ(A) is a connected subset of the continuum torus V.
(ii) Ext Γ(A) is either a subset of the ordered region V(A) or the disordered region V\V(A).
(iii) If Ext Γ(A) ⊂ V(A), then (V (Aext), Aext) is a connected subgraph of TL,d.

5 The Geometry of Contours and Interfaces

5.1 Elementary Topological Notions

We start by reviewing some standard notions from algebraic topology. Let T1/2 = ((1
2
Z)/LZ)d

be the torus with two points connected by an edge if they differ by 1/2 (mod L) in one
component. Its vertex and edge sets will be denoted by V1/2 and E1/2, respectively.

We define k-cells in V1/2 as the k-dimensional elementary cubes in V1/2, so that the points
in V1/2 are 0-cells, the edges are 1-cells, etc. We also consider the dual V ∗1/2 of V1/2, consisting
of the barycenters of the d-cells in V1/2, when considered as subsets of the continuum torus
(R/LZ)d. As usual, given a k-cell c in V1/2, we define its dual as the d − k cell c∗ in V ∗1/2
that has the same barycenter as c, and similarly for the dual of a k-cell in V ∗1/2. Note that

(c∗)∗ = c.
Given a k-cell c, we define its boundary as the set of all (k − 1)-cells that are subcubes

of c (note that there are 2k such subcubes). More generally, for a set K of k-cells, we define
the (Z2-)boundary of K as the set of all (k − 1)-cells which are in the boundaries of an odd
number of cells in K. We denote this boundary by ∂K. The co-boundary of a k-cell c is
defined to be the set of (k+1)-cells which have c in their boundaries (there are 2(d−k) such
(k + 1)-cells).

We often identify a k-cell with the closed k-dimensional continuum cube with corners
being the vertices of the discrete cell. In this context, ∂K is identified with the corresponding
continuum boundary.

The (d−1)-cells in V ∗1/2 are called facets; the set of all such facets is denoted by F ∗1/2. We

say two facets are connected (or adjacent) if they share a (d − 2)-dimensional cell in their
boundaries.

A sequence of points x0, . . . , xk ∈ V1/2 is called a loop in T1/2 if x0 = xk and {xi, xi+1} ∈
E1/2 for all i ∈ {0, k−1}. Such a loop is called a fundamental loop in the ith lattice direction

16



if k = 2L and all edges point in the ith lattice direction, and it is called an elementary loop
if k = 4 and neither x0 = x2 nor x1 = x3. Note that there are exactly 2d(2d − 2)(2L)d

elementary loops in T1/2.
Consider now a set of edges X ⊂ E1/2 and its dual X∗ = {e∗ : e ∈ X}, and assume that

X is orientable. If ∂X∗ = ∅, then we say that X∗ is an orientable closed surface, and we
define the Z2-winding vector of X∗ as the vector N(X∗) = (N1, . . . , Nd) ∈ {0, 1}d with Ni

equal to the number of times X∗ intersects a fundamental loop in the ith lattice direction
mod 2.

5.2 Preliminaries

Our first lemma summarizes several simple properties of the construction used in the defini-
tion of contours. It involves both facets in V ∗1/2, the objects dual to the 1-cells in V1/2, and

(d−1)-dimensional unit hypercubes dual to the edges in E. While the first will be considered
to be abstract objects in the sense of algebraic topology, the second will be considered to be
closed hypercubes in V. We trust that this does not cause any confusion to the reader.

Lemma 5.1 i) For A ∈ Ω, the boundary ∂V(A) of V(A) is regular in the sense that each
(d− 2)-cell with corners in V ∗1/2 is shared by either zero or two facets in ∂V(A).

ii) Let A ∈ Ω, and let C be a component of V \ ∂V(A). Then C is either a component
of V(A) or of V \V(A).

iii) Let C1, . . . ,Ck be the connected components of V(A), let Vi = V ∩ Ci, and let Ai
be the set of edges whose endpoints lie in Ci. Then (V1, A1), . . . , (Vk, Ak) are the connected
components of (V,A), and Ci = V \V(Ai).

iv) Let (E \A)? be the union of all d−1 dimensional unit cubes that are dual to the edges
in E \A, and let Vdis(E \A) be the union of the open 3/4-neighborhood of V \V (A) and the
open 1/4-neighborhood of (E \ A)?. Then V \V(A) = Vdis(E \ A).

v) Let C be a component of Vdis(E \ A), and let EC be the set of edges whose midpoint
lies in C. Then C = Vdis(EC \ A).

Proof.
(i) Given a configuration A ∈ Ω, let V1/2(A) be the intersection of V(A) with the vertex

set V1/2 of the discrete torus T1/2. The boundary of V(A) can then be rewritten as the union
of all facets that are dual to an edge e ∈ E1/2 joining V1/2(A) to its complement in V1/2.
Using this fact, we easily prove the first statement of the lemma.

Indeed, let e be a (d − 2)-cell with corners in V ∗1/2, and let f1, f2, f3, f4 be the four
facets in the co-boundary of e. Then f1, f2, f3, f4 are dual to edges x1x2, x2x3, x3x4, x4x1,
where the points x1, x2, x3, x4 comprise a closed path of length four in the torus T1/2. Let
c(x1), . . . , c(x4) be the four d-cells with centers x1, . . . x4. Exactly one of these four cubes,
say the cube c(x1), will be a cube whose center lies in the original vertex set V (recall that
vertices in V have twice the spacing of those in V1/2). Our convention of filling in only those
hypercubes in the original torus TL,d whose edges are all in A implies that either none or all
or exactly one of the four cubes c(x1), . . . , c(x4) lies in V(A). In the first two cases, none of
the facets f1, f2, f3, f4 are in the boundary of V(A), and in the third case exactly two are in
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the boundary of V(A), which proves that each (d− 2)-cell with corners in V ∗1/2 is shared by
either zero or two facets, as claimed.

(ii) This is obvious.
(iii) This now follows immediately from our fattening procedure for the ordered region,

which respects the component structure of (V,A).
(iv) We first prove that Vdis(E \ A) ⊂ V \V(A). Consider first an edge e ∈ E \ A and

its dual e?. We claim that all points with distance less than 1/4 from e? lie in V \ V(A).
Since the set V(A) increases if A increases, it is clearly enough to prove this statement for
A = E \ {e}, in which case it follows immediately from the way we set up our fattening
procedure for V(A). In a similar way, one proves that all points with distance less than 3/4
from the vertices in V \ V (A) lie in V \V(A).

To prove that V\V(A) ⊂ Vdis(E\A), let x ∈ V\V(A), and let c ⊂ V be a d-dimensional
unit cube with corners in V such that x ∈ c. If x has distance less than 1/4 from the center
of c, then at least one edge e ⊂ c ∩ V must lie in E \ A, since otherwise c would have been
filled in our fattening procedure, contradicting x ∈ V \ V(A). But the 1/4 neighborhood
N1/4(e?) of e? contains all points with distance less than 1/4 from the center of c, implying
that x ∈ N1/4(e?) ⊂ Vdis(E \A). If x has distance 1/4 or more from the center of c, it must
have distance less than 1/4 from a d− 1 dimensional unit cube c1 in the boundary of c. If
the projection, x1, of x onto c1 has distance less than 1/4 from the center of c1, then one
of the edges in c1 ∩ V must lie in E \ A, which again implies x ∈ N1/4(e?) ⊂ Vdis(E \ A).
Continuing inductively, we are left with the case that x has distance at most 1/4 from one
of the corners, y, of c. But this means that none of the edges containing y can lie in A, thus
y ∈ V \ V (A), and hence x ∈ N3/4(V \ V (A)) ⊂ Vdis(E \ A).

(v) Noting that the midpoint of an edge lies in Vdis(E \ A) if and only if its dual lies in
Vdis(E \A), this is an immediate consequence of our fattening procedure for the disordered
region. �

Lemma 5.2 Let S1 and S2 be two interfaces with S1 ∩ S2 = ∅. Then N(S1) = N(S2).

Proof. The interfaces S1 and S2 are closed orientable submanifolds of the torus (R/LZ)d. In
the language of algebraic topology, the winding numbers N(S1) and N(S2) are the Poincare
duals of the submanifolds S1 and S2. The Poincare dual of the transverse intersection of
two such submanifolds is then given by the wedge product of the Poincare duals of the
submanifolds, see [12], Section 6. Since empty intersection is a special case of transverse
intersection, we conclude that the wedge product of N(S1) and N(S2) must be zero. Let
~ei be the unit vector whose jth coordinate is δi,j. Recalling that ~ei ∧ ~ei = 0 and ~ei ∧ ~ej =
−~ej ∧ ~ei for all i, j, the condition N(S1) ∧ N(S2) = 0 is equivalent to the

(
d
2

)
conditions

Ni(S1)Nj(S2) − Nj(S1)Ni(S2) = 0, which implies that N(S1) and N(S2) are multiples of
each other. Since both are different from 0, we conclude that N(S1) = N(S2). �

We close this section with an elementary lemma about “cutsets”. It is best formulated
in the context of a general connected graph G = (V,E). As usual, a subset E ′ ⊂ E is a
cutset if (V,E \E ′) is disconnected. It is called a minimal cutset if no proper subset of E ′ is
a cutset. The following lemma is elementary; its proof is left to the reader.
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Lemma 5.3 Let G = (V,E) be a connected graph, and let W ⊂ V . If the edge-boundary of
W is a minimal cutset then both the induced graph on W and V \W are connected.

5.3 Proofs of Lemma 4.3 and 4.5

We start with the proof of Lemma 4.3.

Proof of Lemma 4.3. i) γ has no boundary, is orientable, and has winding number zero.
Therefore any closed path intersects γ an even number of times, implying that γ is the
boundary of some open set C. Let D be the set D = V \ (C ∪ γ). Then both C and D
must be connected. Indeed, considering γ as dual to a minimal cutset on the half-integer
lattice, the connectedness of C and D follows immediately from the corresponding statement
(Lemma 5.3) for minimal cutsets.

ii) The interfaces S1, S2 are connected subsets of V. Since they do not intersect γ, each
of them must lie in one of the connected components of V \ γ. We will have to prove that
they both lie in the same component of V \ γ.

Assume, by contradiction, that S1 ⊂ C and S2 ⊂ D. Since C ∩ D = ∅, this implies
S1 ∩ S2 = ∅, which in turn, by Lemma 5.2 implies that N(S1) = N(S2). Together with the
fact that N(γ) = 0 we conclude that the winding number of γ ∪ S1 ∪ S2 is zero, implying
that any loop in V must intersect γ ∪ S1 ∪ S2 an even number of times.

Consider now a component Ni(S1) of the winding vector N(S1) that is not equal to 0, and
let ω be a fundamental loop in the ith direction, oriented in an arbitrary but fixed fashion.
To reach our contradiction, we will modify ω in such a way that it does not intersect γ or
S2, while intersecting S1 an odd number of times. First, we note that the original loop ω
intersects S1 an odd number of times. If it does not intersect γ, then it does not intersect
S2 either, since S2 lies in D, while S1 lies in C. If ω intersects γ, let x be one of the
intersection points, and let y be the next intersection point (since N(γ) = 0, the number
of these intersection points must be even, so there must be such a y). Recalling that γ is
connected, we now replace the segment of ω that joins x to y by a path in γ, and then
deform this segment in such a way that it lies completely in C without intersecting S1 (this
is possible since dist(S1, γ) ≥ 1/2). Given that the original segment from x to y did not
intersect S1 since S1 ⊂ C while the segment was a path in D, we have not changed the
number of intersections with S1, so this number is still odd. Repeating this step until we
have no intersections with γ, we remove all parts of ω that lie outside of C, ending up with
a path inside C that intersects S1 an odd number of times, as desired. Note that the final ω
may not be a lattice path, but nevertheless it gives the desired contradiction, since winding
numbers are topological invariants in the continuum as well. �

Definition 5.4 Let γ and γ′ be two contours. We say that γ and γ′ are mutually external
(and write γ ⊥ γ′) if γ is compatible with γ′ and Int γ ∩ Int γ′ = ∅, and we say that γ lies
inside of γ′ (and write γ < γ′) if γ is compatible with γ′ and Int γ ⊂ Int γ′.

Lemma 5.5 Let γ, γ′ and γ′′ be contours.
(i) If γ and γ′ are compatible, then exactly one of the following three holds: γ < γ′, γ′ < γ,
or γ ⊥ γ′.
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(ii) If γ ⊥ γ′, then dist(Int γ, Int γ′) ≥ 1/2, and if γ < γ′, then dist(Int γ,Ext γ′) ≥ 1/2.
(iii) If γ < γ′ and γ′ < γ′′ then γ < γ′′.
(iv)If γ < γ′ and γ′ ⊥ γ′′ then γ ⊥ γ′′.

Proof. (i) Let Int γ and Ext γ be the two components of V \ γ. Since γ′ is connected
and γ ∩ γ′ = ∅, γ′ must lie in one of the two components of V \ γ; therefore we have that
either γ′ ⊂ Int γ or γ′ ⊂ Ext γ. Since the same statement holds with the roles of γ and γ′

exchanged, we get that exactly one of the following four cases must hold:

γ ⊂ Ext γ′ and γ′ ⊂ Ext γ (5.1)

γ ⊂ Int γ′ and γ′ ⊂ Ext γ (5.2)

γ ⊂ Ext γ′ and γ′ ⊂ Int γ (5.3)

γ ⊂ Int γ′ and γ′ ⊂ Int γ (5.4)

We claim that the last case is impossible.
To prove this, we first show that (5.4) implies that Ext γ ∩ Ext γ′ 6= ∅. Recalling

Definition 4.4 of Ext γ, note that Ext γ is defined differently in several distinct cases. Let us
first consider the case that there exists an interface S with dist(S, γ) ≥ 1/2 and S ⊂ Ext γ. If
dist(S, γ′) < 1/2, then also dist(S, Int γ) < 1/2 by our assumption that γ′ ⊂ Int γ. But this
is not compatible with dist(S, γ) ≥ 1/2 and S ⊂ Ext γ. Thus we have dist(S, γ′) ≥ 1/2. But
if dist(S, γ′) ≥ 1/2, then S ⊂ Ext γ′ as well, implying in particular that Ext γ ∩Ext γ′ 6= ∅.

Let us now consider the cases in the definitions of Ext γ and Ext γ′ such that there is
no interface S compatible with either γ or γ′. Consider the subcase that Ext γ is defined
by size, so that |Ext γ ∩ V | > |Int γ ∩ V | and |Ext γ′ ∩ V | ≥ |Int γ′ ∩ V |. This implies that
|Ext γ∩V | > |V |/2 and |Ext γ′∩V | ≥ |V |/2 which in turn implies that Ext γ∩Ext γ′ 6= ∅.
The case where Ext γ′ is defined by size is strictly analogous, so we are left with the subcase
where both Ext γ and Ext γ′ are defined by containing the distinguished point x0. Again,
this implies that Ext γ ∩ Ext γ′ 6= ∅.

Now we show that the condition Ext γ ∩ Ext γ′ 6= ∅ rules out the case (5.4). Let
u ∈ Ext γ ∩ Ext γ′, and let x ∈ Int γ. Consider a path ω from x to u, and let y be the
last exist point from Int γ along ω. This implies y ∈ γ, and by our assumption (5.4), we
therefore have y ∈ Int γ′. But this implies there exists a point z ∈ γ′ ⊂ Int γ after y, which
is a contradiction. Thus case (5.4) is impossible.

Next we prove that the three remaining cases imply that Int γ′ ∩ Int γ = ∅, Ext γ′ ∩
Int γ = ∅ and Int γ′ ∩Ext γ = ∅, respectively, showing that either γ ⊥ γ′, γ < γ′ or γ′ < γ,
respectively.

We prove all three statements in one sweep, by setting A = Ext γ and A′ = Ext γ′ in the
first case, A = Ext γ and A′ = Int γ′ in the second case, and A = Int γ and A′ = Ext γ′ in
the third case. Our assumption then reads γ ⊂ A′ and γ′ ⊂ A, and our claim is B ∩B′ = ∅,
where B = Ac \ γ and B′ = (A′)c \ γ′. In a preliminary step, we prove that γ ⊂ A′ implies
B \ B′ 6= ∅. Indeed, assume the contrary, i.e., B ⊂ B′. Taking the closure on both sides,
this gives γ ∪ B ⊂ γ′ ∪ B′, and hence γ ⊂ γ′ ∪ B′ = (A′)c, a contradiction. Now we prove
the main claim B ∩ B′ = ∅. Assume the contrary, that there exists an x ∈ B ∩ B′. From
our preliminary claim, we also know that there exists a y ∈ B \ B′. Since B is connected,
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we conclude that there must be a path ω ⊂ B from x to y. Let z be the first time this path
exits B′. Then z ∈ B ∩ ∂B′ = B ∩ γ′. Thus B ∩ γ′ 6= ∅, a contradiction.

(ii) Both statements follow from the observation that if A∩A′ = ∅, then dist(∂A, ∂A′) ≤
dist(A,A′).

(iii) Assume that γ < γ′ and γ′ < γ′′. Then Int γ ⊂ Int γ′ ⊂ Int γ′′, so we need
only prove that γ and γ′′ are compatible, i.e. that dist(γ, γ′) ≥ 1/2. On the other hand,
Int γ ⊂ Int γ′. Taking the closure of both sides and using a trivial inclusion, this implies
that γ ⊂ γ ∪ Int γ ⊂ γ′ ∪ Int γ′. Thus

dist(γ, γ′′) ≥ dist(γ′ ∪ Int γ′, γ′′ ∪ Ext γ′′) = dist(Int γ′,Ext γ′′) ≥ 1/2

where we used (ii) in the last step.
(iv) This is proved strictly analogously to the proof of (iii). �
The next lemma is an easy corollary of Lemma 5.5.

Lemma 5.6 Let Γ be a set of pairwise compatible contours. Then Ext Γ is a connected
subset of V.

Proof. Let Γext be the set of external contours in Γ. It follows immediately from the
definition of Ext Γ and the last lemma that Ext Γ = Ext Γext. It is therefore enough to
consider a set Γ of mutually external contours. We prove the statement by induction on the
number of contours in Γ. The statement is trivial if Γ = ∅. Assume the statement is proved
for Γ = {γ1, . . . , γn−1}. Adding an additional mutually external contour γn will not change
the connectivity. Indeed, let x, y ∈ Ext (Γ∪{γn}), and let ω be a path in Ext Γ that joins x
to y. If ω does not intersect γn ∪ Int γn there is nothing to prove. Otherwise, let x′ ∈ γn be
the first entry point into γn ∪ Int γn, and let y′ ∈ γn be the last exit point from γn ∪ Int γn.
Since γn is connected, we can replace the path ω from x′ to y′ by a path in γn, leading to a
path ω′ joining x and y in γn ∪ Ext (Γ ∪ {γn}). By deforming ω′ this immediately leads to
a path in Ext (Γ ∪ {γn}), proving the lemma. �

We are now ready to prove Lemma 4.5.

Proof of Lemma 4.5.
(i) Since the contours corresponding to a configuration A are pairwise compatible, this

statement follows immediately from the previous lemma.
(ii) Using the fact that the boundary of V(A) is equal to the union over all contours in

Γ(A), we conclude that Ext Γ(A) is a connected subset of V \ ∂V(A). But this implies that
Ext Γ(A) ⊂ V(A) or Ext Γ(A) ⊂ V \V(A), as claimed.

(iii) This follows immediately from (i) and the third statement of Lemma 5.1. �

5.4 Isoperimetric Estimates

We need the notion of the diameter, diamγ, of a contour γ. It is defined as the side-length
of the minimum cube C ⊂ V such that Int γ ⊂ {x ∈ V : dist(x,C) ≤ 3/4}, where, as usual,
a cube C ⊂ V is considered a cube of sidelength k if C contains kd points.
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Lemma 5.7 For every contour γ, we have

|Int γ ∩ V | ≤ 1

2
‖γ‖ diamγ (5.5)

and
‖γ‖ ≥ diamγ. (5.6)

Proof. We start with the proof of the first inequality. Let W = Int γ ∩ V , and let ∂edgeW
be the edge-boundary of W . If |W | ≤ Ld/2, then

|∂edgeW | ≥ min
i=1,...,d

2i|W |1−1/iLd/i−1 ≥ 2 min
i
|W |1−1/iLd/i−1 = 2|W |1−1/d ,

by the isoperimetric inequality of Bollobás-Leader [6]. Since |W | ≤ (diamγ)d, this implies
that

|W | ≤ 1

2
|∂edgeW | |W |1/d ≤

1

2
‖γ‖ diamγ.

If |W | > Ld/2, then, by the definition of Ext γ, there exists an interface S such that
S ⊂ Ext γ. Without loss of generality, let us assume that the first component of the
winding vector N(S) is 1. This implies that every line in the 1-direction intersects S at least
once. Hence, for all x ∈ W = Int γ ∩ V , a line through x in the 1-direction intersects γ at
least twice, implying that

|Int γ ∩ V | ≤ 1

2
‖γ‖ diamγ.

Now we prove the second inequality of the lemma. Let C ⊂ V be a minimal cube of
sidelength k = diamγ such that Int γ ⊂ C̄ := {x : dist(x,C) ≤ 3/4}, and let

D+
i = {x ∈ C̄ : ∃y ∈ V \ C̄, xi > yi − 1} ,

and
D−i = {x ∈ C̄ : ∃y ∈ V \ C̄, xi < yi + 1} .

Since C is minimal, there exists an i such that Int γ ∩D+
i 6= ∅ as well as Int ∩D−i 6= ∅.

Next, let Bi,j, j = 1, . . . , k be the jth layer of C, where in particular, Bi,1 = D+
i ∩V , and

Bi,k = D−i ∩ V . If γ does not intersect an edge in Bi,j, then

B̄i,j = {x ∈ C̄ : ∃y ∈ Bi,l, dist(x, y) ≤ 1/4}

has the same label as the exterior of γ. Together with the connectedness of γ, this contradicts
the fact that both Int γ ∩D+

i 6= ∅, and Int γ ∩D−i 6= ∅.

5.5 Matching Contours and Interfaces

In this section we will show that the partition function Z can be written as a sum over sets
of matching contours and interfaces. To this end, we establish a sequence of lemmas. We
start with the following lemma.
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Lemma 5.8 Let γ be a contour. Then there exists a configuration A such that S(A) = ∅
and Γ(A) = {γ}.

Proof. By definition, there exists a configuration A1 such that γ is one of the contours
corresponding to A1. Thus γ is a connected component of ∂V(A1), and hence a connected
component of the boundary of one of the components, C, of V(A1). Let A2 be the set of
edges in A1 whose endpoints both lie in C. Then (V (A2), A2) is a component of (V,A1),
and, by Lemma 5.1 (iii), the set V(A2) is nothing but the component C of V(A1).

Thus γ is a component of ∂V(A2). Consider now the complement D = V \V(A2), and
its components D0, . . .Dk. Then γ is the boundary of one of these components, say D0. Let
A0 be the set of edges whose midpoint lies in V \D0. By Lemma 5.1 (iv) and (v), we have
that D0 = V \V(A0), which in turn implies that γ = ∂V(A0). �

Lemma 5.9 Let S be an interface network. Then there exists a configuration A such that
S(A) = S and Γ(A) = ∅.

Proof. The proof is identical to that of the previous lemma.
Recall that each contour has an ordered and a disordered side. We call γ a contour with

external label ord if the side facing Ext γ is ordered. Otherwise it is called a contour with
external label dis, for disordered.

Lemma 5.10 Let A ⊂ Ω. If γ is a contour with dist(V(A), Int γ) ≥ 1/2 and external label
dis, or a contour with dist(V \V(A), Int γ) ≥ 1/2 and external label ord, then there exists
a configuration A′ ⊂ Ω such that Γ(A′) = Γ(A) ∪ {γ} and S(A) = S(A′).

Proof. Consider first the case that ` = dis. Define A1 to be the set of edges with both
endpoints in Int γ. By Lemma 5.1 (iii), we have that V(A ∪ A1) = V(A) ∪ V(A1) =
V(A) ∪ Int γ, which shows that A ∪ A1 is the desired configuration.

For ` = ord, we define E1 to be the set of edges whose midpoint lies in Int γ. Using
Lemma 5.1 (iv) and (v), we now conclude that A \ E1 is the desired configuration. �

Corollary 5.11 Let A ⊂ Ω. Then the contours and interfaces corresponding to a con-
figuration A ∈ Ω are matching. Conversely, any set of matching contours and interfaces
corresponds to exactly one configuration A ∈ Ω.

Proof. The first statement is obvious. The second follows from Lemmas 5.9 and the
previous lemma by induction on the number of contours. Indeed, by Lemma 5.5, the partial
order on contours leads to a forest on any set Γ = {γ1, . . . , γn} of pairwise compatible
contours, in such a way that γ′ < γ whenever γ′ is a child of γ. Adding the interface network
as a common root, we may proceed by induction from this root to add contours in such a
way that the new contour added always obeys the condition from the previous lemma. �

Note that this corollary, together with the representation (4.5) for the weights of a con-
figuration A, established the representation (4.6) for the partition function Z.
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6 Key Ingredients for the Lower Bound

As explained in Section 2.3, we will prove our lower bound on the mixing time by proving an
upper bound on the conductance. This in turn will require both a bound on the probability
of the set of configurations with at least one interface, and a large deviation bound on
configurations for which the joint exterior of all contours contains less than (1−α)Ld points
in V , see Lemmas 6.1 and 6.2 below. We will start with the decomposition of the partition
function into terms with and without interfaces.

6.1 Decomposition of the Partition Function

Let
Ωtunnel = {A ∈ Ω | S(A) 6= ∅}, (6.1)

Ωord = {A ∈ Ω \ Ωtunnel | Ext Γ(A) ⊂ V(A)} (6.2)

and
Ωdis = {A ∈ Ω \ Ωtunnel | Ext Γ(A) ⊂ V \V(A)}. (6.3)

By Lemma 4.5 (ii), Ω = Ωord ∪ Ωdis ∪ Ωtunnel. As a consequence

Z = Zdis + qZord + Ztunnel, (6.4)

where
Ztunnel =

∑
A∈Ωtunnel

w(A), Zdis =
∑
A∈Ωdis

w(A), (6.5)

and

Zord =
1

q

∑
A∈Ωord

w(A). (6.6)

Note the extra factor of q in (6.4), which accounts for the fact that there are q different
ordered phases.

The results of this section are summarized in the next two lemmas. The first is a finite-
size scaling bound analogous to those proved in [9, 10, 11]. The second is a large deviations
bound.

Lemma 6.1 For all d ≥ 2, there are constants c > 0, q0 < ∞ and L0 < ∞ such that the
following statements hold for q ≥ q0 and L ≥ L0:
(a) If β ≥ β0, then

ν(Ωtunnel) ≤ e−cβL
d−1

(6.7)

and
ν(Ωord) ≥ q

q + 1
− e−cβL. (6.8)

(b) If β = β0, then ∣∣∣ν(Ωord)− q

q + 1

∣∣∣ ≤ e−cβL. (6.9)
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To state the next lemma, we define

Ω
(α)
ord = {A ∈ Ωord : |Ext Γ(A) ∩ V | ≥ (1− α)Ld},

Ω
(α)
dis = {A ∈ Ωdis : |Ext Γ(A) ∩ V | ≥ (1− α)Ld}.

Lemma 6.2 Let d ≥ 2 and 0 < α < 1. Then there are constants c = c(α) > 0 and
q0 = q0(α) such that for q ≥ q0 and β ≥ β0 we have

ν
(
Ωord \ Ω

(α)
ord

)
≤ e−cβL

d−1

(6.10)

and
ν
(
Ωdis \ Ω

(α)
dis

)
≤ e−cβL

d−1

. (6.11)

In order to prove Lemma 6.1, we will need upper bounds on Ztunnel and Zdis, as well as
upper and lower bounds on Zord. Since contours and interfaces are suppressed if β (and hence
κ) is large, the leading configurations to Zord and Zdis are those without contours, giving a
contribution of e−eordL

d
and e−edisL

d
, respectively. For Ztunnel, the leading configurations have

a single pair of parallel interfaces of area Ld−1 each, and no contours, giving a contribution
of at most e−2κLd−1

max{qe−eordL
d
, e−edisL

d}. If we took only the leading configurations into
account, we therefore would get that Ztunnel/Z is exponentially suppressed like e−2κLd−1

, as
required for the first bound in Lemma 6.1. But of course, this is too naive, since subleading
contributions have to be taken into account. A systematic way to do this is provided by the
powerful theory of Pirogov and Sinai.

6.2 Ingredients from Pirogov-Sinai Theory

In this section we will prove Lemma 6.1. To this end, we will express Ztunnel in terms of
partition functions that are analogs of Zord and Zdis for a subset Λ ⊂ V such that

Λ is a connected component of V \ ∂V(A0) for some A0 ∈ Ω. (6.12)

We say that a contour γ is a contour in Λ if dist(V (γ),V \Λ) ≥ 1/2, and we say that a set
of contours Γ with matching labels has external label ` ∈ {ord, dis}, if the external contours
in Γ have external label `. We then set

Zdis(Λ) =
∑

Γ

qc(Vord)e−edis|Vdis∩V ∩Λ|e−eord|Vord∩V ∩Λ|
∏
γ∈Γ

e−κ‖γ‖, (6.13)

where the sum goes over sets of contours Γ with matching labels such that the external label
of Γ is dis, and similarly for Zord(Λ):

qZord(Λ) =
∑

Γ

qc(Vord)e−edis|Vdis∩V ∩Λ|e−eord|Vord∩V ∩Λ|
∏
γ∈Γ

e−κ‖γ‖. (6.14)

Note that in this notation, the partition functions Zdis and Zord introduced in (6.4) are just
the partition functions Zdis(V) and Zord(V).
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With these definitions, the partition function Ztunnel can be rewritten as

Ztunnel =
∑
S

∏
S∈S

e−κ‖S‖
∏

Λ∈Cdis(S)

Zdis(Λ)
∏

Λ∈Cord(S)

(
qZord(Λ)

)
, (6.15)

where the first sum goes over interface networks, while Cord(S) is the set of components
of V \

⋃
S∈S S with `(C) = ord, and Cdis(S) is the set of components of V \

⋃
S∈S S with

`(C) = dis. The formal proof of this, by now almost obvious, identity uses again the forest
structure of sets of pairwise compatible contours established in Lemma 5.5, and is similar to
that of Corollary 5.11.

6.2.1 An alternative representation

We will need a representation for the partition functions Zdis(Λ) and Zord(Λ) which does
not involve the restriction of matching labels. To this end, first sum all terms in (6.13) and
(6.14) which lead to the same set, Γext, of external contours. Taking into account the forest
structure of sets of pairwise compatible contours established in Lemma 5.5, this leads to the
identities

Zord(Λ) =
∑
Γext

e−eord|Λ∩Ext Γext∩V |
∏
γ∈Γext

e−κ‖γ‖Zdis(Int γ) (6.16)

and
Zdis(Λ) =

∑
Γext

e−edis|Λ∩Ext Γext∩V |
∏
γ∈Γext

e−κ‖γ‖qZord(Int γ), (6.17)

where the sums run over sets of mutually external contours in Λ which all have external
label ord and dis, respectively.

Defining

Kord(γ) = e−κ‖γ‖
Zdis(Int γ)

Zord(Int γ)
, (6.18)

we rewrite (6.16) as

Zord(Λ) =
∑
Γext

e−eord|Λ∩Ext Γext∩V |
∏
γ∈Γext

Kord(γ)Zord(Int γ). (6.19)

Inserting (6.19) inductively into itself, and using the forest structure of sets of pairwise
compatible contours one last time, we finally arrive at the representation

Zord(Λ) = e−eord|Λ∩V |
∑

Γ

∏
γ∈Γ

Kord(γ) (6.20)

where the sum now runs over sets Γ of pairwise compatible contours in Λ which all have
external label ord. In a similar way, one shows that

Zdis(Λ) = e−edis|Λ∩V |
∑

Γ

∏
γ∈Γ

Kdis(γ), (6.21)

26



where the sum runs over sets Γ of pairwise compatible contours in Λ which all have external
label dis, and

Kdis(γ) = e−κ‖γ‖
qZord(Int γ)

Zdis(Int γ)
. (6.22)

The representations (6.20) and (6.21) give Zord(Λ) and Zdis(Λ) as partition functions of
the so-called abstract polymer systems, see, e.g., [13] or [7], for a review. As a consequence,
the logarithms of Zord(Λ) and Zdis(Λ) can be analyzed by absolutely convergent expansions
(so-called Mayer-expansions), provided the weights (6.18) and (6.22) are sufficiently small.

The following lemma gives the bounds needed to apply these expansions. Given the
geometric preparations of the last section, its proof follows by a careful extension of the
methods of [10, 11]. For the convenience of the reader, we give it in the appendix.

Lemma 6.3 Let d ≥ 2. Then there are constants q0 > 0 and c > 0, as well as two real-
valued functions ford = ford(q, β) and fdis = fdis(q, β) such that the following statements hold
for ` ∈ {ord, dis}, q ≥ q0, and β ≥ β0:

(i) Let f = min{ford, fdis}, and let a` = f`− f . If γ is a contour with external label ` and
a` diamγ ≤ cβ, then

K`(γ) ≤ e−cβ‖γ‖ . (6.23)

(ii) If Λ ⊂ V is of the form (6.12), then

Z`(Λ) ≥ e−(f`+εL)|Λ∩V |e−‖∂Λ‖ (6.24)

and
Z`(Λ) ≤ e(−f+εL)|Λ∩V |e2‖∂Λ‖max

Γext

e−
a`
2
|Λ∩Ext Γext∩V |

∏
γ∈Γext

e−
c
2
β‖γ‖, (6.25)

where the maximum goes over sets of mutually external contours in Λ which all have external
label `, and εL = 2e−cβL.

(iii) ford ≤ fdis if β ≥ β0, with equality if β = β0.

6.2.2 Proof of Lemma 6.1

We start by noting that β ≥ β0 implies that β ≥ 1
d

log q − 1 and κ ≥ 1
2d

log q − 1/2 provided
q is large enough (depending on d).

To prove (6.7), we combine (6.15) with (6.25), to conclude that

Ztunnel ≤
∑
S

∏
S∈S

e−κ‖S‖
∏

Λ∈Cdis(S)

e−f |Λ∩V |e2‖∂Λ‖+LdεL
∏

Λ∈Cord(S)

qe−f |Λ∩V |e2‖∂Λ‖+LdεL

= e−fL
d
∑
S

∏
S∈S

qe2LdεL−(κ−4)‖S‖,
(6.26)

where the sum goes over interface networks. In the last step we used that each interface
bounds precisely one ordered and one disordered component. Using the facts that q ≤ e2dκed,
that there are at most 2dL(Cd)k interfaces of size k in VL,d (for an appropriate universal
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constant C <∞), and that the sum over interface networks contains at least two interfaces,
the bound (6.26) implies that for q and L large enough (depending on d), we have

Ztunnel ≤ e−fL
d
∑
n≥2

( ∑
k≥Ld−1

e2dκ+d 2dL(Cd)ke2LdεL−(κ−4)k
)n

≤ e−fL
d

e−
β
2
Ld−1

.

(6.27)

Applying the bound (6.25) to Zdis = Zdis(VL,d), we get

Zdis ≤ e−fL
d+LdεL ≤ e−fL

d

(1 + e−cβL/2) ,

while the bound (6.24), together with the fact that ford = f if β ≥ β0, gives

Zord ≥ e−fL
d−LdεL ≥ e−fL

d

(1− e−cβL/2) .

Together with (6.4), this gives the first statement of the lemma.
To prove the second statement, we use that f = fdis = ford if β = β0 which, together

with (6.24) and (6.25) gives

| logZdis + fLd| ≤ LdεL ≤ e−cβL/2 and | logZord + fLd| ≤ LdεL ≤ e−cβL/2 .

6.3 Large Deviation Bounds

We now prove Lemma 6.2, by starting with the proof of (6.10). Let

Z<α
ord =

1

q

∑
A∈Ωord :

|Ext Γ(A)∩V |<(1−α)Ld

w(A) ,

so that

ν(Ωord \ Ω
(α)
ord) =

qZ<α
ord

Z
≤ Z<α

ord

Zord

. (6.28)

Proceeding as in the derivation of (6.20), we rewrite

Z<α
ord = e−eordL

d
∑

Γ: |Ext Γ∩V |<(1−α)Ld

∏
γ∈Γ

Kord(γ) ,

where the sum runs over sets Γ of pairwise compatible contours in VL,d, all of which have
external label ord. Using the fact that |Ext Γ∩V | < (1−α)Ld implies that

∑
γ∈Γ |Int Γ∩V | ≥

αLd, we then bound

Z<α
ord ≤ e−eordL

d
∑

Γ

eh(
P
γ |Int γ∩V |−αLd)

∏
γ∈Γ

K(γ) = e−αhL
d

Z
(h)
ord , (6.29)

where
Z

(h)
ord = e−eordL

d
∑

Γ

∏
γ∈Γ

eh|Int γ∩V |Kord(γ) .
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Next we estimate the dependence of Z
(h)
ord on h. To this end, we setKh(γ) = eh|Int γ∩V |Kord(γ)

and bound
d

dh
Z

(h)
ord = e−eordL

d
∑

Γ

(∑
γ∈Γ

|Int γ ∩ V |
)∏
γ∈Γ

Kh(γ)

= e−eordL
d
∑
γ⊂VL,d

|Int γ ∩ V |
∑
Γ3γ

∏
γ∈Γ

Kh(γ)

≤
( ∑
γ⊂VL,d

|Int γ ∩ V |Kh(γ)
)
Z

(h)
ord ,

where we used a standard Peierl’s argument in the last step, and the sums over γ ⊂ VL,d
denote sums over contours in VL,d with external label ord. Hence,

d

dh
logZ

(h)
ord ≤

∑
γ⊂VL,d

|Int γ ∩ V |Kh(γ)

≤
∑
γ⊂VL,d

1

2
‖γ‖Leh‖γ‖Le−cβ‖γ‖ ,

where we used the bounds (5.5) and (6.23), together with the fact that ford = f for β ≥ β0,
in the last step.

Now assume that h ≤ cβ/(2L). Since there are most dLd(Cd)k contours of size k in VL,d,
we conclude that

d

dh
logZ

(h)
ord ≤

1

2

∑
k≥2

dLd(Cd)kkLe−cβk/2 ≤ α

4
Ld ,

and thus
Z

(h)
ord ≤ Zord e

αhLd/4 ,

provided β is large enough (depending on d and α.) Inserted into (6.29) and (6.28), this
gives

ν(Ωord \ Ωα
ord) ≤ e−3αhLd/4 = e−3cαβLd−1/8 ,

where we have set h equal to cβ/(2L) in the last step.
This proves (6.10). For adisL ≤ cβ, the bound (6.11) is proved in exactly the same way,

but for adisL > cβ, this strategy does not work, since (6.23) is not at our disposal anymore.
In stead, we use (6.24), (6.25) and (5.5) to bound

ν(Ωdis \ Ω
(α)
dis ) ≤ ν(Ωdis) ≤

Zdis

Zord

≤ e2LdεL max
Γext

e−
adis

2
|Ext Γext∩V |

∏
γ∈Γext

e−
c
2
β‖γ‖

≤ e2LdεL max
Γext

e−
cβ
2L
|Ext Γext∩V |

∏
γ∈Γext

e−
cβ
L
|Int γ∩V |

≤ e2LdεLe−
cβ
2L
Ld ,

where we used that |Ext Γext∩V | = Ld−
∑

γ∈Γext
|Int γ∩V | in the last step. This concludes

the proof of the lemma.
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7 Lower bounds on the mixing time

Lemma 6.1 and Lemma 6.2 give us the necessary ingredients to prove our main result. We
start by proving a key theorem which expresses the statements of these lemmas in terms of
the probability measure µ on spin configurations, rather than the probability measure ν on
SW configurations.

7.1 An Important Probabilistic Estimate

Recall that for a spin configuration σ ∈ [q]V , we defined E(σ) to be the set of all edges
whose two endpoints have the same color. We also introduce the set, C(σ), of connected
components of the graph (V,E(σ)), that is, the set of monochromatic components.

Theorem 7.1 Let d ≥ 2 and 0 < α < 1/2. Then there are constants c > 0, q0 < ∞ and
L0 <∞ such that for q ≥ q0 and L ≥ L0 the following statements hold:
(a) If β = β0, then

µ
(
αdLd ≤ |E(σ)| ≤ (1− α)dLd

)
≤ e−cβL

d−1

(7.1)

and ∣∣∣µ(|E(σ)| ≥ (1− α)dLd
)
− q

q + 1

∣∣∣ ≤ e−cβL. (7.2)

(b) If β ≥ β0, then

µ

(
αLd < max

C∈C(σ)
|V (C)| < (1− α)Ld

)
≤ e−cβL

d−1

(7.3)

and

µ

(
max
C∈C(σ)

|V (C)| ≥ (1− α)Ld
)
≥ q

q + 1
− e−cβL. (7.4)

Proof. To relate the statements of Lemmas 6.1 and 6.2 to the theorem, we use that both
the spin measure µ and the FK-measure ν are marginals of the Edwards-Sokal measure π.
Consider thus a configuration (σ, A) with positive measure π((σ, A)). Under this condition,
all spins in a component of (V,A) must have the same color, implying in particular that

A ⊂ E(σ) and max
C∈C(σ)

|V (C)| ≥ max
C∈C(V,A)

|V (C)|. (7.5)

It turns out that with high probability, |A| is not much smaller than |E(σ)| either. More
precisely, we will prove that for 0 < α < 1,

π
(
|E(σ)| ≥ |A|+ αdLd

)
≤ e−αβL

d−1

. (7.6)

To prove this bound, we rewrite the left hand side as

π
(
|E(σ)| ≥ |A|+ αdLd

)
=
∑

σ

π
(
|E(σ)| ≥ |A|+ αdLd

∣∣∣σ)µ(σ).
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But given σ, a configuration A according to the conditional measure π(· | σ) is obtained
by deleting the edges in E(σ) independently with probability e−β. The number of deleted
edges is therefore equal to a binomial random variable with parameters m and e−β, where
m = |E(σ)| ≤ dLd. We now bound the probability that the number of deleted edges X is
larger than αdLd as follows:

Pr(X ≥ αdLd) =
∑

k≥αdLd

(
m

k

)
e−βk(1− e−β)m−k ≤ e−βαdL

d

2dL
d

. (7.7)

Recalling that β ≥ β0 = 1
d

log q + O(q−1/d), we see that for q (and hence β) large enough,

the right hand side is bounded by e−βαdL
d/2 ≤ e−βαL

d−1
. This implies the bound (7.6).

Next we observe that if A ∈ Ω
(α)
ord then V(A) ⊃ Ext Γ(A) (by the definition of Ωord)

and thus |V (A)| = |V(A) ∩ V | ≥ |Ext Γ(A) ∩ V | ≥ (1 − α)Ld. This in turn implies
|V \ V (A)| ≤ αLd, and thus

|A| = dLd − |{xy ∈ E | {x, y} ∩ V \ V (A) 6= ∅}| ≥ dLd − 2dαLd = (1− 2α)dLd.

In summary

A ∈ Ω
(α)
ord =⇒ |V (A)| ≥ (1− α)Ld =⇒ |A| ≥ (1− 2α)dLd. (7.8)

In a similar way

A ∈ Ω
(α)
dis =⇒ |V \ V (A)| ≥ (1− α)Ld =⇒ |A| ≤ αdLd. (7.9)

We now turn to the first bound of the theorem. Taking into account the bounds (7.5)
and (7.6), we have that the left hand side of (7.1) is bounded by

ν
(1

2
αdLd < |A| < (1− α)dLd

)
+ e−

1
2
αβLd−1

.

But by (7.8) and (7.9), the probability of the event 1
2
αdLd < |A| < (1 − α)dLd is bounded

µ(Ω\(Ω(α/2)
ord ∪Ω

(α/2)
dis )), which in turn can be bounded with the help of the bounds (6.7), (6.10)

and (6.11). Putting everything together, we therefore obtain that there exists a constant
c > 0 depending on α and d such that

µ
(
αdLd < |E(σ)| < (1− α)dLd

)
≤ 4e−cβL

d−1 ≤ e−
c
2
βLd−1

,

provided q (and hence β) is large enough. This proves the bound (7.1).
The proof of the bound (7.2) is similar. Indeed, using again that E(σ) ⊃ A if π((σ, A)) >

0, we have

µ
(
|E(σ)| ≥ (1− α)dLd

)
≥ ν

(
|A| ≥ (1− α)dLd

)
≥ ν(Ω

(α/2)
ord ) ≥ q

q + 1
− e−cβLd−1 − e−cβL.
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where we used the implication (7.8) in the second to last step, and the bounds (6.8) and
(6.10) in the last step. To prove the upper bound in (7.2), we start with the bound (7.6),
and that (1− α)2 = 1− α− α(1− α), in saying that

µ
(
|E(σ)| ≥ (1− α)dLd

)
≤ ν

(
|A| ≥ (1− α)2dLd

)
+ e−cβL

d−1

,

where c = α(1 − α). Let α′ = 1 − (1 − α)2 and α̃ = min{α′, 1 − α′}. If |A| ≥ (1 − α′)dLd,
then A ∈ Ω \ Ω

(α̃)
dis by the implication (7.9). Combining the bounds (6.7), (6.10) and (6.11),

we may now conclude that for β = β0, we have

µ
(
|E(σ)| ≥ (1− α)dLd

)
≤ ν

(
Ω

(α′)
ord

)
+ 4e−βcL

d−1

≤ q

q + 1
+ 4e−βcL

d−1

+ e−cβL ≤ e−cβL/2,

where we also used the bound (6.9) in the second to last step. This completes the proof of
the bound (7.2).

The bounds of part (b) are proved in a similar way. Indeed, let A ∈ Ω
(α)
ord and let

Aext be the set of edges with both endpoints in Ext Γ(A). By Lemma 4.5 (iii), the graph
(V (Aext), Aext) is connected, implying that maxC∈C(V,A) |V (C)| ≥ (1 − α)Ld whenever A ∈
Ω

(α)
ord. Taking into account the second bound in (7.5) we get that

A ∈ Ω
(α)
ord and π((σ, A)) > 0 =⇒ max

C∈C(σ)
|V (C)| ≥ (1− α)Ld . (7.10)

Together with (6.8) and (6.10), this immediately gives the bound (7.4).
We are thus left with the bound (7.3). To prove this bound, we note that |V (A)| ≤ 1

2
αLd

and |E(σ)| ≤ |A| + 1
2
αLd implies the largest component of (V,E(σ)) is at most of size

|V (A)| + 1
2
αLd ≤ αLd. Combined with the bound (7.6), we conclude that there exists a

constant c > 0 (depending on d and α) such that

π
(
A ∈ Ω

(α/2)
dis and max

C∈C(σ)
|V (C)| ≥ αLd

)
≤ e−cβL

d−1

.

Combined with (7.10), this implies that the left hand side of (7.3) can be bounded by

µ
(

Ω \ (Ω
(α)
ord ∪ Ω

(α/2)
dis )

)
+ e−cβL

d−1

.

Together with the bounds (6.7), (6.10) and (6.11), this gives the desired bound (7.3). �

7.2 Proof of the SW bound in Theorem 1.2

Let β = β0. Let S = {σ : |E(σ)| ≥ (1−α)dLd}. We will show that ΦS is exponentially small
in βLd−1, which will establish the theorem. For q (and hence β0) large enough, π(S) ≥ 1/2,
using (7.2). Also, π(Sc) ≥ 1/q − e−cβL ≥ 1/2q, if L is large enough. Thus

ΦS =
Q(S, Sc)

µ(S)µ(Sc)
≤ 4qQ(S, Sc). (7.11)
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Let S0 = {σ : αdLd ≤ |E(σ)| ≤ (1− α)Ld}. Then

Q(S, Sc) = Q(S, Sc \ S0) +Q(S, S0). (7.12)

Now
Q(S, S0) = Q(S0, S) ≤ π(S0) ≤ e−cβL

d−1

,

using (7.1), while

Q(S, Sc \ S0) = π(S) Pr
(
E(σ′) < αdLd |E(σ) ≥ (1− α)dLd

)
,

where σ is a µ-random spin configuration, and σ′ is constructed from one step of the SW
algorithm. The above probability is in turn the probability that at least (1− 2α)dLd edges

are deleted in one step of the SW algorithm, which is at most
(
2e−β(1−2α)

)dLd
, using (7.7).

Choosing α = 1/3, and q large (so that β is large) and L sufficiently large, yields:

Q(S, Sc \ S0) ≤ π(S)
(
2e−β(1−2α)

)dLd ≤ e−cβL
d−1

.

This implies the desired bound on conductance,

Φ(P SW) ≤ e−cβL
d−1

,

which together with (2.9) concludes the proof of the lower bound (1.9) on the mixing time
of the SW algorithm. �

7.3 Proof of the HB bound in Theorem 1.2

Let σ ∈ [q]V and let C be a component of (V,E(σ)). We say that C has color k, if σx = k
for all k ∈ V (C), and denote the set of components of color k by Ck(σ). For k = 1, . . . , q
and 0 < α < 1/2, we then define

Ω̂
(α)
k =

{
σ ∈ [q]V : ∃ C ∈ Ck(σ) s.t. |V (C)| ≥ (1− α)|V |

}
.

Note that the sets Ω̂
(α)
k are mutually disjoint, so by symmetry and the bound (7.4), we have

µ
(
Ω̂

(α)
k

)
≥ 1

q + 1
− 1

q
e−cβL . (7.13)

Finally, let

Ω̂
(α)
dis =

{
σ ∈ [q]V : max

C∈C(σ)
|V (C)| ≤ αLd

}
.

We complete our proof by estimating ΦS (see (2.7)) for S = Ω̂
(α)
1 . First notice that for q

(and hence also β) sufficiently large µ(S)µ(Sc) ≥ 1/4q so that

ΦS ≤ 4qQ(S, Sc).

Since the heat bath algorithm can only change one vertex at a time, it does not make
transitions between the different sets Ω̂

(α)
k . For α small enough, it cannot make transitions
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between Ω̂
(α)
1 and Ω

(α)
dis either. Indeed, changing the color of a single vertex can not break

a component C ∈ C(σ) into more than 2d + 1 new components: in the worst case, C gets
broken into a single component of size one and 2d components of size ((1− α)Ld − 1)/(2d).
For α sufficiently small (say α = 1/(4d)), the heat bath algorithm therefore cannot make

transitions between Ω̂
(α)
1 and Ω

(α)
dis . Defining S0 as the set of configurations which are neither

in Ω
(α)
dis nor in one of the sets Ω̂

(α)
k , we thus have

Q(S, Sc) = Q(S, S0) = Q(S0, S) ≤ µ(S0) ≤ e−cβL
d−1

,

where we have used the bound (7.3) in the last step. Recalling that β ≥ β0 = 1
d

log q +

O(q−1/d), we see that for L sufficiently large, we have ΦS ≤ 4qQ(S, Sc) ≤ e−cβL
d−1/2, as

required. �
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A Technical Estimates using Truncation

Throughout this section, we will assume that

κ ≥ max
{
C1, C2 log d,

1

2d
log q − 1

2

}
, (A.1)

where C1, C2 are universal constants to be determined in the course of the proof below. In
fact, we will prove statements (i) and (ii) of Lemma 6.3 for all β such that (A.1) holds.

Also, for the purpose of this appendix, we will use the symbol |Λ| for the cardinality of
the set V ∩Λ, so that expressions of the form |V ∩Ext Γ∩Λ| can be simplified to |Λ∩Ext Γ|.

A.1 Truncated Contour Models

We need some preparation. We start by bounding the factor qe−κ‖γ‖ appearing in the weight
(6.22) of a contour with external label dis. To this end, we observe that the smallest contour
with disordered external label has size ‖γ‖ ≥ 4d− 2. Combined with the assumption (A.1)
and the assumption d ≥ 2, this gives

qe−κ‖γ‖ ≤ e2dκ+de−κ‖γ‖ ≤ exp
((2dκ+ d

4d− 2
− κ
)
‖γ‖
)

≤ exp
((4κ+ 2

6
− κ
)
‖γ‖
)
≤ e−

κ
4
‖γ‖

(A.2)

provided C1 ≥ 8.
As usual in Pirogov-Sinai theory, we next introduce a truncated model. It is given in

terms of the truncated activities

K ′`(γ) = min{K`(γ), e−(κ/4−4−cβ)‖γ‖} (A.3)

and the corresponding partition functions

Z ′`(Λ) = e−e`|Λ|
∑

Γ

∏
γ∈Γ

K ′`(γ), (A.4)

where ` ∈ {ord, dis}, the sum in (A.4) runs over sets Γ of pairwise compatible contours in Λ
which all have external label `, and c is a suitable constant (we will choose c = 1/20).
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Recall that there are no more than (Cd)k contours of size k which intersect a given edge
e. As a consequence, there exists a universal constant C2 <∞ such that the following holds
whenever κ obeys the bound (A.1) and ` ∈ {ord, dis}. If x ∈ V , then∑

γ:Int γ3x

K ′`(γ)e(cβ+1)‖γ‖ ≤ 1, (A.5)

and if γ0 is a contour or an interface, then∑
γ:dist(γ,γ0)<1/2

K ′`(γ)e(cβ+1)‖γ‖ ≤ ‖γ0‖. (A.6)

The above bounds imply absolute convergence of the cluster expansions for abstract
polymer systems, which in turn gives the existence of the limits

f` = lim
L→∞

f
(L)
` with f

(L)
` = − 1

Ld
logZ ′`(VL,d) , (A.7)

where ` ∈ {ord, dis} and VL,d denotes the d-dimensional torus of sidelength L, see, e.g.,
[13, 7] for a review of cluster expansions for abstract polymer systems. These methods also

imply that, for ` ∈ {ord, dis}, and Λ ⊂ V of the form (6.12), we have |f` − f (L)
` | ≤ εL and∣∣∣logZ ′`(Λ) + f`|Λ|

∣∣∣ ≤ ‖∂Λ‖+ εL|Λ| (A.8)

where εL = 2e−cβL. We will assume that C1 in (A.1) has been chosen in such a way that
LεL ≤ 1.

A.2 Proof of Lemma 6.3 (i) and (ii)

We first note that Z`(Λ) ≥ Z ′`(Λ), so in view of (A.8), we have

Z`(Λ) ≥ e−(f`+εL)|Λ|e−‖∂Λ‖. (A.9)

Furthermore, for κ large enough, K ′`(γ) ≤ e−cβ‖γ‖, implying that K`(γ) ≤ e−cβ‖γ‖ whenever
K`(γ) = K ′`(γ). To prove Lemma 6.3 (i) and (ii), it is therefore enough to establish the
following lemma:

Lemma A.1 Under the condition (A.1), we have that
(i) K`(γ) = K ′`(γ) whenever γ is a contour with external label ` and a` diamγ ≤ cβ.
(ii) For all Λ of the form (6.12),

Z`(Λ) ≤ e(εL−f)|Λ|e2‖∂Λ‖max
Γext

e−
a`
2
|Λ∩Ext Γext|

∏
γ∈Γext

e−
c
2
β‖γ‖

(A.10)

where the maximum goes over sets of mutually external contours in Λ which all have external
label `.
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Proof. We prove the lemma by induction on the level of Λ and γ. Here the level of a set
Λ is defined to be zero if there are no contours γ such that γ is a contour in Λ. The level
of a set Λ is defined to be k if the highest level of a contour γ in Λ is k − 1, with the level
of a contour inductively defined to be 1 plus the level of its interior. Note that with this
definition, the levels of two contours γ, γ′ with γ < γ′ differ by at least two.

Assume that Λ has level 0. Then Z`(Λ) = e−e`|Λ| ≤ e−f`|Λ| = e−f |Λ|e−a`|Λ|, which proves
(A.10) for sets Λ of level 0.

Next assume that the bound (A.10) in (ii) has been proven for all sets Λ of level k or
less. If γ has level k + 1 or less, then

Kdis(γ) ≤ e−
1
4
κ‖γ‖Zord(Int γ)

Zdis(Int γ)

≤ e(a`+2εL)|Int γ|e−(κ/4−3)‖γ‖ ≤ e−(κ/4−3− 1
2

(a`+2εL)diamγ)‖γ‖

where we used (A.2) in the first inequality, the inductive assumption (A.10) and the bound
(A.9) in the second, and the bound (5.5) in the last. Bounding εLdiamγ by LεL ≤ 1
and using the assumption a` diamγ ≤ cβ, this gives Kdis(γ) ≤ e−(κ/4−4−cβ)‖γ‖ and hence
Kdis(γ) = K ′dis(γ). The bound for contours with ordered external label is exactly the same.

Finally, assume that Λ has level k + 2, that (i) has been proven for all contours of level
at most k + 1, and that (ii) has been proven for all sets of level at most k. Define a contour
γ with external label ` to be small if a` diamγ ≤ cβ, and large otherwise. Consider the
representation (6.13) for Zdis(Λ), and fix, for a moment, the set Γlarge of all large external
contours contributing to the right hand side. Summing over the remaining contours, we
get a factor of Zord(Int γ) for the interior of each contour γ ∈ Γlarge, as well as a factor

Z
(small)
dis (Ext Γlarge) for the exterior of Γlarge, where Z

(small)
dis (Λ′) is obtained from Zdis(Λ

′) by
dropping all configurations with large external contours. Thus

Zdis(Λ) =
∑
Γlarge

Z
(small)
dis (Ext Γlarge)

∏
γ∈Γlarge

qe−κ‖γ‖Zord(Int γ), (A.11)

where the sum goes over sets of mutually external, large contours with disordered external
label.

Since γ is small whenever γ < γ′ and γ′ is a contour with the same external label as γ,
the representation (6.21) for Z

(small)
dis (Ext Γlarge) contains only small contours, implying that

for all these contours Kdis(γ) = K ′dis(γ). As a consequence,

Z
(small)
dis (Ext Γlarge) ≤ Z ′dis(Ext Γlarge) ,

which allows us to use the estimate (A.8) to estimate the factor Z
(small)
dis (Ext Γlarge) in (A.11).

Using the inductive assumption (ii) to bound the factors Zord(Int γ) and the bound (A.2) to
estimate the factors qe−κ‖γ‖, this gives

Zdis(Λ) ≤
∑
Γlarge

e(εL−fdis)|Λ∩Ext Γlarge|e‖∂Ext Γlarge‖
∏

γ∈Γlarge

e−(κ/4−2)‖γ‖e(εL−f)|Int γ|

= e(εL−f)|Λ|+‖∂Λ‖
∑
Γlarge

e−adis|Λ∩Ext Γlarge|
∏

γ∈Γlarge

e−(κ/4−3)‖γ‖.
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In order to prove statement (ii), we will have to show that∑
Γlarge

e−
1
2
adis|Λ∩Ext Γlarge|

∏
γ∈Γlarge

e−(κ/4−3−cβ/2)‖γ‖ ≤ e‖∂Λ‖ (A.12)

To this end, we define

K̃(γ) =

{
e−(κ/4−4−cβ/2)‖γ‖ if γ is a large contour with external label dis

0 otherwise,

and
Z̃(Λ′) =

∑
Γ

∏
γ∈Γ

K̃(γ)

where the sum runs over sets Γ of pairwise compatible contours in Λ′ which all have external
label dis. We also define

f̃ = − 1

Ld
log Z̃(VL,d).

Note that, as before, one can use the forest structure of sets of pairwise compatible contours
to rewrite Z̃(Λ′) as a sum over sets of mutually external contours in Λ′:

Z̃(Λ′) =
∑
Γext

∏
γ∈Γext

K̃(γ)Z̃(Int γ).

For C1 and C2 sufficiently large, the partition function Z̃(Λ′) can again be analyzed by
convergent Mayer expansion, leading to the bound∣∣∣log Z̃(Λ′) + f̃ |Λ′|

∣∣∣ ≤ ‖∂Λ′‖ (A.13)

(the term proportional to εL is absent since we defined f̃ without taking the limit L→∞).
Furthermore, since all contours γ contributing to f̃ are large, which by (5.6) implies that
‖γ‖ ≥ k0 = cβ/adis, we have that

−f̃ = |f̃ | ≤ e−cβk0 ≤ adis

(cβ)2
≤ adis

2
.

As a consequence, the left hand side of (A.12) can be bounded by∑
Γext

ef̃ |Λ∩Ext Γext|
∏
γ∈Γext

e−‖γ‖K̃(γ) ≤
∑
Γext

ef̃ |Λ∩Ext Γext|
∏
γ∈Γext

K̃(γ)ef̃ |Int γ|Z̃(Int γ)

= ef̃ |Λ|
∑
Γext

∏
γ∈Γext

K̃(γ)Z̃(Int γ) = ef̃ |Λ|Z̃(Λ) ≤ e‖∂Λ‖,

proving (A.12). Here the sums run over sets of mutually external contours, all of which have
external label dis, the two inequalities follow from the bound (A.13).

This concludes the proof of (ii) for sets Λ of level k+ 2 and ` = dis. The proof of (ii) for
` = ord is identical.
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A.3 Proof of Lemma 6.3 (iii)

We start with the observation that the weights K`(γ), and hence the weights K ′`(γ) are
continuous functions of β. Since the free energies f` are given in terms of an absolutely
convergent power series in the weights K ′`(γ), they are continuous functions of β as well.
Taking into account this continuity, the following lemma immediately implies Lemma 6.3
(iii).

Lemma A.2 Assume that (A.1) holds.
(i) If aord = 0, then M(β) > 0.
(ii) If aord > 0, then M(β) = 0.

Proof. At this point, the proof of Lemma A.2 is pretty standard. We therefore only sketch
the main steps.

First, we note that for Λ = ΛL = {1, . . . , L}d, the representations (2.1) and (2.2) can
be generalized to the model with 1-boundary conditions defined in (1.4). Indeed, let G+

be the induced graph on Λ+ = {0, 1, . . . , L + 1} ⊂ Zd. The Edwards-Sokal measure πΛ,1

corresponding to µΛ,1 can then be obtained from the measure πG+ by conditioning on σx = 1
for all x ∈ Λ+ \ Λ and xy ∈ A whenever {x, y} ⊂ Λ+ \ Λ. Next, we observe that in the
conditional measure πG+(· | A), a spin at a vertex x ∈ Λ has probability 1/q of taking the
value 1 unless x lies in the same component of (Λ+, A) as Λ+ \ Λ, in other words, unless
x ∈ Ext (A). Keeping these two observations in mind, the derivation of the representation
(6.20) can easily be adapted to obtain a contour representation for the magnetization. Setting
Λ = (−1

4
, L+ 5

4
)d ⊂ Rd, this gives

MΛ(β) =
(

1− 1

q

) 1

Zord(Λ)
e−eord|Λ+|

∑
Γ

|Λ ∩ Ext Γ|
|Λ|

∏
γ∈Γ

Kord(γ),

where the sum goes over sets of pairwise compatible contours in Λ with external label ord.
Note that we have chosen Λ in such a way that all edges in Λ+ \ Λ lie in Ext γ whenever γ
is a contour in Λ, corresponding to the above conditioning in πG+ .

If aord = 0, the weights Kord(γ) are bounded by e−cβ‖γ‖ for all γ. As a consequence, we
may use a standard Peierls argument to show that the probability that a given point x ∈ Λ
lies not in Ext Γ is small uniformly in L and x ∈ ΛL, implying that M(β) > 0, which proves
(i).

Assume finally that aord > 0 (which implies in particular that adis = 0). We will show
that with probability tending to one, |Λ∩Ext Γ| ≤ Ld−ε. Since the ratio |Λ∩Ext Γ|/|Λ| in
the definition of the magnetization is bounded uniformly in L, this will show that MΛ(β)→ 0
as L→∞.

Recall the definition of large contours from the last proof, and let Γlarge be the set of
external contours in Γ which are large. Then |Λ∩Ext Γ| ≤ |Λ∩Ext Γlarge|, implying that it
will be enough to show that the the probability that |Λ∩Ext Γlarge| ≥ Ld−1/2 goes to zero as
L→∞. To bound this probability, we will prove an upper bound on the sum over contours
with |Λ ∩ Ext Γlarge| ≥ Ld−1/2 and a lower bound on Zord(Λ).
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To obtain the desired upper bound, we proceed as in the proof of Lemma A.1 (ii), leading
to the estimate

e−eord|Λ+|
∑

Γ:

|Λ∩Ext Γlarge|>L
d−1/2

∏
γ∈Γ

Kord(γ) ≤

≤ e−f |Λ+|e2‖∂Λ‖ max
Γext:

|Λ∩Ext Γext|>Ld−1/2

e−
a`
2
|Λ∩Ext Γext|

∏
γ∈Γext

e−
c
2
β‖γ‖

≤ e−f |Λ+|e2‖∂Λ‖e−
aord

2
Ld−1/2

(A.14)

where the maximum in the second to last line goes over sets of mutually external contours
in Λ which all have external label ord.

To bound Zord(Λ) from below we restrict the sum in (6.16) to a single term, the term
Γext = {γ0}, where γ0 is the contour γ0 = ∂[1/4, L+ 3/4]d. This gives

Zord(Λ) ≥ e−eord|Λ+\Λ|e−κ‖γ0‖Zdis(Int γ0) ≥ e−fL
d

e−2d(κ+1+O(e−β))Ld−1

,

where we used the bound (A.9) and the fact that adis = 0 in the second step. After extracting
the leading contribution e−fL

d
, the right hand side falls at most like an exponential in Ld−1,

while the corresponding decay in (A.14) is exponential in Ld−1/2. This proves that the ratio
of (A.14) and Zord(Λ) goes to zero as L→∞, as desired.
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