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Abstract— The most significant problem in generating virtual 
views from a limited number of video camera views is handling 
areas that have become dis-occluded by shifting the virtual 
view away from the camera view. We propose using temporal 
information to address this problem, based on the notion that 
dis-occluded areas may have been seen by some camera in 
some previous frames. We formulate the problem as one of 
estimating the underlying state of the object in a stochastic 
dynamical system, given a sequence of observations. We apply 
the formulation to improving the visual quality of virtual views 
generated from a single “color plus depth” camera, and show 
that our algorithm achieves better results than depth image 
based rendering using standard inpainting. 

Keywords-3D Video, Non-rigid Tracking, Virtual View, 
Temporal Correlation 

I.  INTRODUCTION 
Reconstructing virtual (or novel) views of a scene or 

object from a limited number of camera views is a key 
problem in immersive multimedia applications such as 3D 
video conferencing and free viewpoint video [1], in which 
seamless viewpoint changes are necessary based on viewers’ 
movements. 

Image based rendering (IBR) is a common paradigm for 
reconstructing virtual views. One of the basic ideas in IBR is 
that a virtual view between two (or more) captured views can 
be generated by estimating the disparity between the 
captured views, linearly interpolating the disparity, and 
performing disparity compensation [2]. 

A form of IBR is depth image based rendering (DIBR). 
In essence, DIBR generates a virtual view by converting a 
depth map into a disparity appropriate for the virtual view, 
and then performing disparity compensation. The depth map 
is obtained either by estimating depth directly from the color 
camera views (e.g., using stereo matching), or is supplied 
externally (e.g., from a depth camera, using time-of-flight or 
structured light) [3][4]. 

Regardless of the method used for reconstructing virtual 
views from captured camera views, shifting the virtual 
viewpoint away from the viewpoint of any camera is likely 
to cause areas of the scene that used to be occluded (unseen 
by any camera) to become visible in the new viewpoint. 
Because these dis-occluded areas are unseen by any camera, 
it is difficult to reconstruct them in the virtual view using 
IBR or DIBR. Special techniques must be developed. 

A common solution to the dis-occlusion problem is to 
simply capture the scene with more cameras. However, this 

may be costly and impractical. For example, for immersive 
conferencing, it is infeasible to blanket each participant with 
a dense array of cameras, considering the huge initial and 
maintenance cost. 

Another solution, if the virtual viewpoint is not too far 
from the viewpoint of the camera, is to reconstruct the small 
holes caused by the dis-occlusion with inpainting, such as 
extrapolating into those areas from neighboring areas [5]. 
Such inpainting is widely used when the holes are small. 
However, when the virtual viewpoint varies widely, as 
would be typical for immersive multimedia applications such 
as free viewpoint video, the dis-occluded areas become holes 
too large for inpainting. 

Another solution, which can be used when the dis-
occlusions are large, is to use model-based reconstruction. 
For example, a model of the human head can be fitted to the 
camera views, and regions of the fitted model unseen by any 
camera can then be used to fill in dis-occlusion holes in the 
virtual views [6][7]. Of course model-based solutions work 
well only for parts of the scene that are well-modeled, as 
might be the case with a human head. Objects that are not yet 
well-modeled, including the clothed human body, cannot be 
handled well by this method. Hybrids are also possible, 
which partially compensate for this [8]. 

In this paper, we propose using historical information 
previously captured by the cameras to handle dis-occlusions. 
In cases of a moving scene, such as a scene of a human body 
moving in a 3D video conference, it is possible that dis-
occluded areas may have been seen by some camera in some 
previous frame.  For example, if the human turns his body in 
front of a single frontal camera, the side of his body becomes 
visible to the camera.  That information can later be used to 
generate a virtual view of the side of his body at time t even 
if that area is not visible to the camera at time t. 

Because dis-occluded areas are generally part of a non-
rigid moving object (such as the human body), particular 
care must be taken when using historical information to fill a 
hole caused by dis-occlusion. Generally, data from the 
previous frame(s) must be warped to match the current frame 
before using the information.  We choose to perform the 
warping on the underlying 3D object rather than in 2D, for 
maximum accuracy. 

Warping a 3D object so that it registers with another 3D 
object is a well-studied problem. (For an overview, see [9].) 
A popular family of algorithms for registering 3D objects is 
based on the iterative closest point (ICP) matching method 
for rigid motion (or correspondence) [10][11]and its 
extension to non-rigid motion [12].  For non-rigid motion, 
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these algorithms find a collection of locally rigid or affine 
transformations defined between corresponding or matching 
points or patches, e.g., [12][13][14].  This collection of 
transformations is sufficient to warp one 3D object onto 
another, in the regions where there are matching points. 

Unfortunately, for our application, there may be large 
regions of one object with no matching points in the other, 
and moreover, the unmatched regions must be appropriately 
warped along with the matched regions.   For example, 
suppose the subject is captured in 3D by a single depth 
camera from the front, but the virtual view is from the side, 
at the current time. Among the historically captured data, the 
front surface of the subject’s body might have a good match 
to the data currently captured by the camera, but the back 
surface would not.  However, in order to use the historical 
information to help generate the virtual view, it is important 
to warp the back surface along with the front so that it is 
consistent enough to generate the appropriate virtual view. 

 Therefore, in contrast to previous approaches, we 
develop an approach that defines the warping transformation 
not only near the local surfaces for which there is a match, 
but across the whole volume or domain of the object, so that 
the whole object can be warped together. Specifically, we 
define a class of warpings that are piecewise constant 
transformations over the cells of a hierarchical partition of 
the entire scene volume, where the transformation within 
each cell is rigid. We define a prior probability distribution 
over this class (shallow hierarchies being both more likely 
and more smooth), and we estimate the most likely warping 
consistent with the camera data. 

Overall, we do not warp individual previous frames to 
the current frame, but rather build and maintain a single 
coherent non-parametric model of the object over time. We 
warp this model, every frame, to match the data in the new 
frame, before integrating it with the data in the new frame. 
We regard this problem as one of estimating the underlying 
state of the object in a stochastic dynamical system, given a 
sequence of observations. 

We apply our approach to improving the visual quality of 
virtual views generated from a single “color plus depth” 
camera, and show that our algorithm is not only able to fill 
dis-occluded areas, but is also able to smooth sensor noise. 
Simulation results show that the algorithm achieves better 
results than depth image based rendering methods using 
standard inpainting. 

The rest of the paper is organized as follows. Section 2 
discusses our camera assumptions. Section 3 presents the 
algorithm to improve 3DV quality with temporal information 
integration. Section 4 includes simulation results and 
analysis while Section 5 concludes this paper. 

II. SENSOR DENSITY AND DEPTH CAMERAS 
Reconstructing an arbitrary view of a scene generally 

requires many camera views. Even in the absence of 
occlusions, the minimum sampling rate of the light field in 
terms of camera views is proportional to the bandwidth of 
the scene, the focal length of the cameras, and the range of 
disparities , where  and  are 
the minimum and maximum depths in the scene, assuming 

Lambertian surfaces [15]. If  and 
 are per-pixel depth uncertainties (e.g., as can be 

determined by a depth camera), the camera view sampling 
can be greatly reduced [16]. In the limit of perfect 
knowledge of depth, a single camera view can suffice to 
reproduce the scene from any direction, in the absence of 
occlusions. Indeed, single “video plus depth” (or more 
precisely, “color plus depth”) cameras are used in this way to 
capture the texture and geometry of objects in order to render 
them from arbitrary points of view using DIBR. An example 
of the signal captured from a color plus depth camera is 
shown in Fig. 1. In reality there is occlusion, surfaces are not 
Lambertian, and depth measurements have noise, so multiple 
cameras may need to be used [17]. In this paper, we use a 
single color plus depth camera, the Microsoft Kinect, whose 
depth errors can be modeled as independent Gaussian noise 
with variance proportional to the fourth power of the 
distance from the camera [18]. 

   
Figure 1.  Example of captured color plus depth. 

(Left: color video frame; Right: depth map) 

III. PROPOSED METHOD 
In this section, we first describe the mathematical 

framework for our approach, and then introduce the 
proposed algorithm in detail. 

A. Mathematical Framework 
We formulate the problem of reconstructing a virtual view 
from the sequence of current and past “color plus depth” 
images as the problem of estimating the underlying state of 
an object from a sequence of observations in a stochastic 
dynamical system. 

In the stochastic dynamical system, let the observation 
vector  be a concatenation of the color and depth images at 
time  (from one or more frame-synchronized cameras), and 
let the state vector  be any representation of the colored 
geometry of the object (or scene) at time , from which it is 
possible to render virtual views. 

Let the output distribution  be the probability 
that observation vector  is generated from underlying 
object . The output distribution  is determined by 
rendering the object  into the appropriate camera view(s) 
and adding random sensor error. The random sensor error is 
an independent zero-mean Gaussian noise with variance 
proportional to the fourth power of the depth. 

Let the state transition matrix  be the 
probability that the object is in state  at time  given that it 
was in state  at time . The conditional probability 

 is determined by warping  to  with a 
random warping . The random warping  is modeled as 
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a random tree with random binary splits at each interior node 
and random rigid transformations on each branch (described 
in more detail later). 

The problem is, for each time , first to find the state  
maximizing the posterior distribution of  given all previous 
observations  and the initial state , 

 

(i.e., the MAP estimate of ), and then to render  into 
the desired virtual view. 

The MAP estimate (1) can be computed by Bayes’ rule, 
 

where: 

   
  

  
                (2)  

Here we assume  depends on  only and use  
rather than  for notational simplicity. Equation (2) is the 
Forward Algorithm used for inference in Hidden Markov 
Models [19]. It is also the combined predict/update formula 
for Kalman filtering when  is a first-order Gaussian auto 
regressive process and  is a linear function of  with 
additive Gaussian noise. 

Since the number of possible values for a state  is 
very large (in fact, may be infinite), and (2) is hard to 
compute, we take steps to approximate it. First, we replace 
the summation/integration in (2) by maximization: 

(3)  

which is the Viterbi Algorithm [19]. Although (3) has 
lower complexity than (2), it still requires storage and access 
to all values of . However, if we restrict attention 
to the particular   that maximized the previous step, then 
we obtain the Greedy Algorithm, 

               (4)  
where 

  
  

(5)  

Thus, having fixed the maximizing state  at time 
, the problem of finding the maximizing state  at time 

 is simplified to finding the warping  that balances both 
the desire to match the data (i.e., to maximize 

) and the desire to be smooth (i.e., to 
maximize ). 

B. Proposed Algorithm: Overview 
Based on the above framework, we design the algorithm 

as illustrated in Fig. 2. At each time step , first we warp our 
estimate  of the object at time  to match the current 
measurement data  and then we integrate  and the 
warped estimate  to obtain the estimate  of the 
object at time . Finally we render the estimate  of the 

current object into the desired virtual view, before feeding it 
back as the estimate for the next time step. 

 
Figure 2.   Algorithm overview. 

Though various representations could be used (meshes, 
depth maps, signed distance functions on a volume, etc.), in 
this paper we use a colored point cloud representation for 
both  and . That is, each is represented as an 
unstructured set of colored points , where each colored 
point  has both position in world 
coordinates and color information.  (This could also be 
extended to contain other contextual information such as 
gradients, normals, and patches.) The number of points in  
is the number of pixels in the captured depth (or color) 
image, while the number of points in  is the number of 
non-empty voxels in a discretization of a relevant 3D volume 
of the scene. (We maintain at most one point per voxel.) In 
addition, we maintain for each point  in  a weight 

 representing a confidence. 

C. Proposed Algorithm: Warping Estimation 
Given the current “depth plus color” measurements  

and the estimate  of the object state at time , we 
wish to find the warping  that maximizes 

 as in (5), thus making the matching 
error as small as possible while keeping the warping as 
simple as possible. To be precise, the warping  
is a mapping that takes any 3D position at time  and 
maps it to some 3D position at time .  denotes the 
point cloud obtained by applying  to the position of each 
point in the point cloud of . Finding the optimum  is 
equivalent to minimizing   . 
The first term denotes the sum of the squared distances 
between each point in  and the closest point in , 
weighted by the inverse of the variance of the sensor error 
(where distance is measured both in Euclidean and color 
space). To be precise, the first term is 

                   (6) 
where for  and , 

(7)

The second term, , can be considered the 
number of bits  needed to encode . Thus finding the 
optimal warping is analogous to a Distortion-Rate 
optimization. 

We assume a class of warpings each representable by a 
binary hierarchical partition of  with splits determined by 
planes in  and rigid transformations at the leaf cells. Thus 
a warping is analogous to a regression tree. Points in  are 
dropped down the tree, falling to the left or right of planes at 
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each interior node, and rigid transformations at the leaves are 
applied to the positions of the points to estimate . A 
hierarchical warping tree is exemplified in Fig. 3. 

 

Figure 3.  Example of hierarchical warping tree. 

In the tree,  is the region represented by node . 
 is the local rigid transformation applied at node , 

represented by rotation matrix  and translation vector . 
 is the composition of local transformations along the path 

from the root to node .  If node  is an interior node with 
children  and , then  is the plane that splits  into 
sub-regions and  corresponding to  and . 

This class of warpings is a natural fit to hierarchical, 
articulated motion.  One interpretation of Fig. 3 is: 
respectively, , , and  are the volumes occupied by 
the human body, arm, and foream;  and  split arm from 
body and forearm from arm;  and  are local 
coordinate transforms from arm to body and from forearm to 
arm; and  is the world coordinate transform for the 
forearm. 

To optimize the warping, we use as a surrogate for 
 the sum of the squared distances 

between each point in  and its closest point in  
(note the order reversal compared to (6)) weighted by the 
inverse of the variance of the sensor error and by the 
confidence  of the points  in , namely 

.                   (8) 

The confidence  of a point  is set to zero or 
close to zero if it likely that  will not be visible in , 
i.e., if it will be occluded or out of frame. This can be 
predicted by rendering  in the previous step. 

Now the contribution to  of each leaf  in a tree is 

       (9) 

so the warping can be optimized by growing the tree 
from the root as follows: Set node  to the root and apply the 
following recursive procedure to : 

1) Perform a robust iterative closest point (ICP) 
algorithm to match the points  to  by 
finding  to minimize , 

2) Find a candidate split  to split  into child nodes 
 and  . (Return if no adequate split is found.) 

3) Optimize  and  as in step (1), 
4) Comparing the decrease in distortion 

 to the increase in 
rate  needed to describe the split, 

5) Return without splitting (making node  a leaf) if 
; else split the node using the candidate 

split  and recursively perform the procedure on  
& . 

In Step (1), an extension of the registration algorithm in 
[10][11] is used to estimate the transformation between two 
point clouds, while a classification algorithm is developed 
for splitting in Step (2). These algorithms are briefly 
described in the following sub-sections 3.3.1 and 3.3.2. 

1) Robust Iterative Closest Point Matching 
With minimizing (9) as the objective, set , set 

 (or  if  is the root), and set 
. Then 
1) , find  

Call  a match if . 
2) Update  based on the histogram of 

. 
3) If  is not a match, set  temporarily in 

(9). Update  to minimize  in (9) as in 
the usual ICP algorithm. 

4) If  or  then stop with 
; else set  and go to Step 1). 

2) Splitting based on Classification 
For node , after finding the transformation , label 

each point  as  either matched (if 
), unmatched  (if 

), or indeter-minate  (if ).  
Set . Let and  be the sets of matched and 
unmatched points. Repeat until exiting: 

1) If there are too few points in  or , or if the 
points in  are distributed like noise around , 
then exit with the split  if one has been found, else 
exit with no split. 

2) Compute the Fisher linear discriminant  to 
separate  from . Among the points that  
classifies as “matched” let  and  be the 
sets of matched and unmatched points. 

3) Set  and go to Step 1). 

D. Proposed Algorithm: Integration 
The estimate  is obtained by integrating  into 

. This is important because the integration 1) brings 
information on parts of the object or scene not previously 
seen, 2) helps average out the sensor noise, and 3) corrects 
drift. 

Since we use point clouds to represent both  and 
, integration is simple: take the union. However, 

this would allow the size of the representation to grow 
indefinitely. Hence we limit the number of points in  by 
allowing at most one point per voxel. If two or more points 
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end up in the same voxel, then we take their weighted 
average (in both location and color), giving unit weight to 
points in  and weights  to points in , where  is 
a forgetting factor.  can be applied uniformly to points in 

 whether averaged with other data or not, and 
points that fall below a weight threshold can be removed to 
clean up ancient history. 

IV. EXPERIMENTS AND RESULTS 
In the experiments, we set up a single Kinect camera 

capturing both the color video and depth from a fixed 
viewpoint. Two sequences of human motion, BigMotSit and 
RotateBody, were captured and five select color frames are 
shown in Fig. 4. The frame rate of the captured sequences is 
30 fps while the resolution is 640 480. MeshLab [20] is 
used to display the colored point clouds. 

Fig. 5 and Fig. 6 compares cropped point clouds of the 
captured data  (in the first row) and estimated states  (in 
the second row) for selected frames of each sequence, from 
various virtual viewpoints, which are significantly different 
from the capturing viewpoints. In the first row, large areas of 
dis-occlusion can be observed, both as white areas on the 
background and as transparent areas on the body, through 
which the background (white or not) can be seen.  In the 
second row, many of the transparent areas on the body have 
been filled in, using historical information warped to the 
current frame.  (The white areas in the background could 
also have been filled in by our technique had the background 
been included in the volume of interest, and had the areas 
been observed by the camera in some previous frame.) 

Fig. 7 compares the proposed algorithm with VSRS 
(Virtual View Rendering Software) provided by MPEG [21], 
for two virtual viewpoints with sequence BigMotSit. VSRS 
generates a virtual view for each frame by transforming the 
captured color plus depth data  to the virtual view and 
filling any detected dis-occlusions using inpainting.  In 
contrast, the proposed algorithm transforms the integrated 
historical information  to the virtual view, filling dis-
occlusions naturally.  VSRS either fails to detect the dis-
occlusions or fills them with objectionable artifacts, since the 
areas are so large. 

From the experimental results, it can be observed that the 
proposed tracking algorithm is able to accurately track the 
non-rigid motion of objects. With the integration of temporal 
information, the proposed method successfully recovers the 
dis-occluded areas not captured at the current time and thus 
improves the 3D video quality. 

Furthermore, the tracking scheme can also be applied to 
3D video compression, where a more accurate prediction of 
current frame will be generated based on the hierarchical 
warping model and historical data. 

V. CONCLUSION 
Filling dis-occlusions is one of the most important 

problems in virtual view generation of 3D video. Since dis-
occluded areas might be captured in previous frames, in this 
paper, we proposed a novel temporal information integration 
scheme to use historical frames to handle dis-occlusions. We 

formulate the problem as one of estimating the underlying 
states of a dynamic stochastic process given a sequence of 
observations. Based on this formulation, a hierarchical 
warping model is proposed to describe the movement 
between states, and states are estimated by integrating 
information from the previous state, the warping, and the 
current observation. Experimental results show that the 
proposed method can accurately track non-rigid motion and 
can successfully handle dis-occlusions captured in previous 
frames but not captured at the current time. Further 
improvements include dealing with video-depth de-
synchronization during the matching and merging process as 
well as developing a more accurate matching algorithm. 
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Figure 4.  Selected frames of captured data from capture viewpoint (from left to right: BitMotSit frame 0, 4, 8; 2nd row: RotateBody frame 0, 20, 40) 

 

 
Figure 5.  Comparison of point clouds from virtual viewpoint: (1st row: captured data ( ), 2nd row: captured data merged with warped historical data ( ); 

Frame numbers from left to right: 4, 14, 24, 34, 44, 54) 

 

 

Figure 6.  Comparison of point clouds from virtual viewpoint: (1st row: , 2nd row: ; Frame number from left to right: 2, 22, 42, 62, 82, 102) 

       
                     (a)                                     (b)                                      (c)                                     (d)                                    (e)                                    (f) 

Figure 7.  Comparison of rendering results of frame 14 in BitMotSit based on VSRS (a,c,e) and proposed method (b,d,f)
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