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Abstract—Data compression techniques such as null suppression 

and dictionary compression are commonly used in today’s 

database systems. In order to effectively leverage compression, it 

is necessary to have the ability to efficiently and accurately 

estimate the size of an index if it were to be compressed. Such an 

analysis is critical if automated physical design tools are to be 

extended to handle compression. Several database systems today 

provide estimators for this problem based on random sampling. 

While this approach is efficient, there is no previous work that 

analyses its accuracy. In this paper, we analyse the problem of 

estimating the compressed size of an index from the point of view 

of worst-case guarantees. We show that the simple estimator 

implemented by several database systems has several “good” 

cases even though the estimator itself is agnostic to the internals 

of the specific compression algorithm.  

I. INTRODUCTION 

Data compression is commonly used in modern database 

systems. Compression can be utilized in database systems for 

different reasons including: 1) Reducing storage/archival costs, 

which is particularly important for large data warehouses 2) 

Improving query workload performance by reducing the I/O 

costs 3) Reducing manageability costs by reducing the time 

taken and storage costs for backup, recovery and log shipping. 

While data compression does yield significant benefits in 

the form of reduced storage costs and reduced I/O there is a 

substantial CPU cost to be paid in decompressing the data. 

Thus the decision as to when to use compression needs to be 

taken judiciously. 

Given that compression increases the space of physical 

design options, there is a natural motivation to extend 

automated physical design tools (see [9] for an overview) to 

handle compression. Such tools take as input a query 

workload and a storage bound to produce a set of indexes that 

can fit the storage bound while minimizing the cost of the 

workload. In order to meet the storage bound as well as reason 

about the I/O costs of query execution, it is necessary to 

perform a quantitative analysis of the effects of compression: 

1) Given an index, how much space will be saved by 

compressing it? 

2) Given a workload, how is its performance impacted 

by compressing a set of indexes? 

One of the key challenges in answering the above questions 

is to estimate the size of an index if it were to be compressed. 

Since the space of physical design options is large, it is 

important to be able to perform this estimation accurately and 

efficiently. The naïve method of actually building and 

compressing the index in order to estimate its size, while 

highly accurate is prohibitively inefficient.  

Thus, we need to be able to accurately estimate the 

compressed size of an index without incurring the cost of 

actually compressing it. This problem is challenging because 

the size of the compressed index can depend significantly on 

the data distribution as well as the compression technique 

used. This is in contrast with the estimation of the size of an 

uncompressed index in physical database design tools which 

can be derived in a straightforward manner from the schema 

(which defines the size of the corresponding column) and the 

number of rows in the table.  

Besides physical database design, such analysis can also be 

leveraged for other applications such as capacity planning, for 

example to estimate the amount of storage space required for 

data archival. We also note that even though compression can 

be invoked on both tables and indexes, in this paper we 

primarily focus on indexes (clustered and non-clustered). Our 

results can be extended in a straightforward manner for the 

case of tables. 

Random sampling is a well-known approach to yield 

efficient estimates for various database statistics [4]. Some 

database systems today (e.g., [10][12]) leverage sampling for 

estimating the compressed size of an index. The key idea is to 

draw a random sample and simply return the compression 

ratio obtained for the sample as an estimate of the true 

compression ratio. The advantages of this approach include 

the simplicity of the algorithm and the fact that it is agnostic 

to the internals of the underlying compression technique. 

While this estimator is indeed efficient, there is no previous 

work (either analytical or empirical) that studies its accuracy.  

In this paper, we focus on the problem of estimating the 

compression fraction, defined as the ratio of the size of the 

compressed index to the size of the uncompressed index. We 

conduct our analysis for two commonly used compression 

techniques - null suppression and dictionary compression (we 

review these techniques in Section II). We examine the worst-

case guarantees (Section III) that can be provided by 

estimators that leverage sampling (we call the estimator 

SampleCF) for the above compression techniques. 

One of the main contributions of this paper is to show that 

there are many “good” cases for SampleCF, even though the 

estimator is agnostic to the internals of the compression 

algorithm. We first show that for null suppression, SampleCF 



is an unbiased estimator with low variance. For the case of 

dictionary compression, we find that the problem of 

estimating the compressed fraction is closely related to the 

problem of estimating the number of distinct values using 

sampling which is known to be hard [1]. Despite this 

connection, we show that many “good” cases exist for 

SampleCF. We summarize our results in Section IV. 

II. PRELIMINARIES 

A. An Overview of Compression Techniques 

Compression techniques have been well studied in the 

context of database systems (see [7][8] for an overview). 

While a variety of techniques have been explored by the 

research community, in this paper we focus on two 

compression techniques that are commonly used in databases 

today which we briefly review below.  
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Fig 1. Compression Techniques 

a: Null Suppression    b: Dictionary Compression 

 

Null Suppression (NS):  This technique is used to suppress 

either zeros or blanks in each tuple.  The key idea is to 

represent a sequence of zeros and blanks by a special 

character, followed by a number that indicates the length of 

the sequence. For example, consider a single column index 

whose data type is declared as CHAR(20). Consider the value 

„abc‟. If this is stored in an uncompressed fashion, this would 

use all 20 bytes, while null suppression would only store the 

value „abc‟ along with its length, in this instance 3 bytes (see 

Figure 1.a). In the case of multi-column indexes, each column 

is compressed independently.  

 

Dictionary Compression: This technique takes as input a set 

of tuples and replaces the actual values with smaller pointers. 

The mapping between the distinct values and the pointers is 

maintained in a dictionary. Consider the set of tuples with the 

data value „abcdefghij‟ in Figure 1.b. Dictionary compression 

stores the data value once and replaces each of the actual 

occurrences with a pointer. In practice, in order to minimize 

the overhead of looking up the dictionary, commercial 

systems typically apply this technique at a page level and the 

dictionary is maintained inline in every page. This ensures that 

the dictionary lookup does not need additional I/Os. In the 

case of multi-column indexes, each column is compressed 

independently. 

 

B. Compression Fraction 

We evaluate the effectiveness of a compression technique 

(see [8]) by using a metric compression fraction (CF) which is 

defined as follows. 

 

     

 

The CF as defined is a value between 0 and 1 (if we ignore 

degenerate cases where compression can actually increase the 

size of the original index). A lower compression fraction 

corresponds to a higher reduction in the size.  

C. Estimating Compression Fraction Using Sampling 

While the CF for an index can be computed accurately by 

actually compressing the index, this is prohibitively inefficient 

(especially for large data sets). Ideally, we need to be able to 

estimate the CF both accurately and efficiently, specifically 

without incurring the cost of actually compressing the entire 

index.  

Some database systems today (e.g., [12][10]) leverage 

random sampling in order to provide a quick estimate of the 

CF. The idea (see Figure 2) essentially is to randomly sample 

a set of tuples from the table, build an index on the sample, 

compress it and return the compression fraction obtained in 

the sample as an estimate of the compression fraction of the 

entire index. The main advantages of this approach are as 

follows: 1) the algorithm is simple to implement 2) it is 

agnostic to the actual compression technique used and thus 

requires no modification when we incorporate a new 

compression technique. We note that if the (uncompressed) 

index already exists, we can obtain the random sample more 

efficiently from the index instead of the base table. 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 2. Estimating CF using Sampling 

 

While sampling is efficient, there is no previous work to 

our knowledge that studies its accuracy for estimating the 

compression fraction. As noted in Section I, analyzing the 

accuracy is the goal of this paper. We evaluate an estimator 

for the compression fraction (CF’) by using the ratio error 

which is defined as follows. 

 

 

In this paper, we assume that the algorithm outlined in 

Figure 2 uses uniform random sampling over all tuples with 

Algorithm  SampleCF (T, f, S, C) 

// Table T 

// Sampling fraction  f 

// Sequence of Columns in the index S 

// Compression Algorithm C 

 

1. T‟ = uniform random sample of   rows from T 

2. Build index I‟(S) on T‟ 

3. Compress index I‟ using C 

4. Return CF for index I‟ 



replacement. We do note that in contrast, commercial systems 

typically leverage block-level sampling (in which all the rows 

from a randomly sampled page are included in the sample). 

Our analysis for uniform tuple sampling is still a useful 

starting point to understand the guarantees. Extending the 

analysis to account for page sampling is part of future work. 

III. ANALYSIS OF SAMPLECF ESTIMATOR 

In this section, we analyze the accuracy of the sampling 

based estimator SampleCF introduced in Section II. For the 

purpose of analysis in the rest of the paper, we assume a table 

T that has a single column A which is a character field of k 

bytes (i.e. char(k)). In the rest of the paper, we use the terms 

“CF of table T” and “CF of column A” both to refer to the CF 

of an index on A. We note that our analysis extends for the 

case of multi-column indexes in a straightforward manner.  

We assume that the size of any individual tuple k cannot 

exceed the page size used by the database system. Let the 

number of rows in the table be n and the number of distinct 

values be d. We define the null-suppressed length (in bytes) of 

a tuple as its actual length, denoted . We assume a uniform 

random sample with replacement of size r rows from the table. 

The number of distinct values of A in the sample is denoted d’. 

This notation is summarized in Table 1 below. 

TABLE I 

NOTATION USED IN ANALYTICAL MODEL 

n Number of rows in the table 

   d Number of distinct values in the table 

   D Set of distinct values in the table  

   k Size of each tuple  

   Null suppressed length of each tuple  

   r Number of rows in the sample 

  d’ Number of distinct values in the sample 

 
 

We study the expected value of the estimate, its variance 

and the worst-case guarantees. As noted in Section II, to our 

knowledge, no prior work has characterized the accuracy of 

estimating the compression fraction. We organize the 

discussion in this section by the compression method. 

A. Null Suppression 

We first study Null Suppression. The original size of the 

table is , since each tuple in its uncompressed form uses 

k bytes (recall that the table has a single column field of type 

char(k)). When we use null suppression, we get rid of any 

unnecessary blanks and only store the actual length of the 

tuple ( ) but we also need to keep track of the length which 

requires  bytes. Thus, the compression fraction for null 

suppression is given by the following expression. 

 

                               

 

In this expression, the only unknown is . Thus, the 

problem of estimating the compression fraction for Null 

Suppression reduces to the problem of estimating this sum. 

The usage of random sampling for estimating a sum 

aggregation has been studied in prior work [2]. Specifically, 

drawing a random sample, computing the sum over the sample 

and scaling it up is known to be unbiased. The estimate 

returned by SampleCF is: 

                       

 

We can observe that in computing CF‟NS, we have 

performed the same scaling. Thus CF‟NS is an unbiased 

estimate of CF. Sampling based estimation of sum is however 

known to suffer from potentially large variance [2]. However, 

in our setting, the length of the tuples is bounded by k. This 

translates to corresponding bounds on the variance of CF‟NS. 

We formalize this intuition in the following result. 

 

Theorem 1: Consider a table T with a single column of type 

char(k), and  rows. The estimate CF‟NS is unbiased, that 

is  and its standard deviation can be bounded 

as:  where f = r/n is the sampling fraction.    

 

We illustrate the implication of this result using an example.  

 

Example 1. Suppose that table T has n = 100 million rows. 

Suppose that we draw a sample of size r = 1 million (which 

corresponds to a 1% sample). Then, Theorem 1 implies that 

the standard deviation of  is at most . ⁭ 

B. Dictionary Compression 

   When we use dictionary compression (see Figure 1.b), for a 

set of identical values in a page, we store the original value in 

the dictionary and store a pointer to this value instead (which 

in general requires  bytes). Let p denote the size of 

the pointer in bytes. As mentioned in Section II-A, the 

dictionary is typically in-lined in each page. For each distinct 

value i, let Pg(i) denote the number of pages that this value 

occurs in when compressed. We note that each distinct value 

is stored once in each of the Pg(i) pages. The following 

expression denotes the compression fraction of Dictionary 

Compression (note that the summation is over the distinct 

values in T): 

 

                      

 

In order to simplify the analysis and isolate the effects of 

each of the above factors (pointers per occurrence and paging), 

we consider a simplified model of dictionary compression in 

which the paging effects are ignored. Here, dictionary 

compression stores a “global” dictionary in which each 

distinct value is stored once and each row has a pointer to the 

dictionary. Under the simplified model, the compression 

fraction of Dictionary Compression is: 

 



                              

We note that for the above expression the only unknown is the 

number of distinct values (d). There is no known unbiased 

distinct value estimator that works off a random sample. In 

fact, prior work (e.g., [1]) has shown that any estimator that 

uses uniform random sampling for distinct value estimation 

must yield a significant ratio error in the worst case. In spite 

of this fact, we now show that the estimator SampleCF yields 

an estimate that has bounded error in several cases. Recall that 

the estimate yielded by SampleCF is captured by the 

following expression. 

 

 

We separate the analysis into two cases – where the number 

of distinct values is “small” and “large”. When the number of 

distinct values is “small”, the  factor in the expression 

for  can dominate the other term which involves d and as 

a result we can still obtain an accurate estimate. This intuition 

is formalized in the following result. 

 

Theorem 2: Fix constants and a function 

(where N stands for the set of natural numbers) such that  

is  . For any n that is sufficiently large  for any table T 

with n rows,  distinct values, and column length 

 the following holds. If we run SampleCF 

with , then the expected ratio error of  is at most 

.  

 

Now we consider the case where the number of distinct values 

is large. We demonstrate that SampleCF yields a bounded 

ratio error estimate when the number of distinct values is 

“large”.     Intuitively, if the number of distinct values in T is 

“large”, we can show that the fraction of distinct values in the 

sample will also be significant. This implies that both d’ and r 

are also proportional to n, which further implies that we can 

obtain a bound on the ratio error. 

 

Theorem 3: Fix constants  For any n that is sufficiently 

large  for any table T with n rows and  distinct 

values, the following holds. If we run SampleCF with , 

then the expected ratio error of  is at most 

. 

 

Thus, despite the fact that estimating the compression 

fraction for dictionary compression is related to the problem 

of distinct value estimation, we are able to show (for a 

simplified model of dictionary compression) that many cases 

exist where we can bound the ratio error. Our experimental 

results (omitted due to lack of space) also confirm that the 

SampleCF algorithm can be an effective estimator in practice 

for the case of both null suppression and dictionary 

compression. 

IV. CONCLUSIONS 

In this paper, we identified the problem of estimating the 

compression fraction using uniform random sampling, which 

is a measure of how much a given index gets compressed. We 

analyzed the estimation accuracy for two popular compression 

techniques. Our results are summarized in Table 2. 

TABLE II 

SUMMARY OF RESULTS 

Compression 

Technique 

Estimator Bias Small d 

(o(n)) 

Large d 

(O(n)) 

Null 

Suppression 

SampleCF No  Variance at 

most  

Variance at 

most  

Dictionary 

Compression 

SampleCF Yes Expected 

ratio error 

close to 1 

Expected 

ratio error at 

most constant 
 

We found that a simple estimator SampleCF that draws a 

uniform random sample and returns the compression fraction 

on the sample as its estimate has low error for many cases.  It 

is interesting future work to extend our analysis to model 

paging effects in dictionary compression as well as consider 

block-level sampling. 
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