
Estimating the Compression Fraction of an Index

using Sampling
Stratos Idreos

#1
, Raghav Kaushik

*2
, Vivek Narasayya

*3
, Ravishankar Ramamurthy

*4

#
CWI Amsterdam

idreos@cwi.nl

*
Microsoft Corp, USA

{ skaushi, viveknar, ravirama} @microsoft.com

Abstract—Data compression techniques such as null suppression

and dictionary compression are commonly used in today’s

database systems. In order to effectively leverage compression, it

is necessary to have the ability to efficiently and accurately

estimate the size of an index if it were to be compressed. Such an

analysis is critical if automated physical design tools are to be

extended to handle compression. Several database systems today

provide estimators for this problem based on random sampling.

While this approach is efficient, there is no previous work that

analyses its accuracy. In this paper, we analyse the problem of

estimating the compressed size of an index from the point of view

of worst-case guarantees. We show that the simple estimator

implemented by several database systems has several “good”

cases even though the estimator itself is agnostic to the internals

of the specific compression algorithm.

I. INTRODUCTION

Data compression is commonly used in modern database

systems. Compression can be utilized in database systems for

different reasons including: 1) Reducing storage/archival costs,

which is particularly important for large data warehouses 2)

Improving query workload performance by reducing the I/O

costs 3) Reducing manageability costs by reducing the time

taken and storage costs for backup, recovery and log shipping.

While data compression does yield significant benefits in

the form of reduced storage costs and reduced I/O there is a

substantial CPU cost to be paid in decompressing the data.

Thus the decision as to when to use compression needs to be

taken judiciously.

Given that compression increases the space of physical

design options, there is a natural motivation to extend

automated physical design tools (see [9] for an overview) to

handle compression. Such tools take as input a query

workload and a storage bound to produce a set of indexes that

can fit the storage bound while minimizing the cost of the

workload. In order to meet the storage bound as well as reason

about the I/O costs of query execution, it is necessary to

perform a quantitative analysis of the effects of compression:

1) Given an index, how much space will be saved by

compressing it?

2) Given a workload, how is its performance impacted

by compressing a set of indexes?

One of the key challenges in answering the above questions

is to estimate the size of an index if it were to be compressed.

Since the space of physical design options is large, it is

important to be able to perform this estimation accurately and

efficiently. The naïve method of actually building and

compressing the index in order to estimate its size, while

highly accurate is prohibitively inefficient.

Thus, we need to be able to accurately estimate the

compressed size of an index without incurring the cost of

actually compressing it. This problem is challenging because

the size of the compressed index can depend significantly on

the data distribution as well as the compression technique

used. This is in contrast with the estimation of the size of an

uncompressed index in physical database design tools which

can be derived in a straightforward manner from the schema

(which defines the size of the corresponding column) and the

number of rows in the table.

Besides physical database design, such analysis can also be

leveraged for other applications such as capacity planning, for

example to estimate the amount of storage space required for

data archival. We also note that even though compression can

be invoked on both tables and indexes, in this paper we

primarily focus on indexes (clustered and non-clustered). Our

results can be extended in a straightforward manner for the

case of tables.

Random sampling is a well-known approach to yield

efficient estimates for various database statistics [4]. Some

database systems today (e.g., [10][12]) leverage sampling for

estimating the compressed size of an index. The key idea is to

draw a random sample and simply return the compression

ratio obtained for the sample as an estimate of the true

compression ratio. The advantages of this approach include

the simplicity of the algorithm and the fact that it is agnostic

to the internals of the underlying compression technique.

While this estimator is indeed efficient, there is no previous

work (either analytical or empirical) that studies its accuracy.

In this paper, we focus on the problem of estimating the

compression fraction, defined as the ratio of the size of the

compressed index to the size of the uncompressed index. We

conduct our analysis for two commonly used compression

techniques - null suppression and dictionary compression (we

review these techniques in Section II). We examine the worst-

case guarantees (Section III) that can be provided by

estimators that leverage sampling (we call the estimator

SampleCF) for the above compression techniques.

One of the main contributions of this paper is to show that

there are many “good” cases for SampleCF, even though the

estimator is agnostic to the internals of the compression

algorithm. We first show that for null suppression, SampleCF

is an unbiased estimator with low variance. For the case of

dictionary compression, we find that the problem of

estimating the compressed fraction is closely related to the

problem of estimating the number of distinct values using

sampling which is known to be hard [1]. Despite this

connection, we show that many “good” cases exist for

SampleCF. We summarize our results in Section IV.

II. PRELIMINARIES

A. An Overview of Compression Techniques

Compression techniques have been well studied in the

context of database systems (see [7][8] for an overview).

While a variety of techniques have been explored by the

research community, in this paper we focus on two

compression techniques that are commonly used in databases

today which we briefly review below.

00000000000000000abc (3)abc

abcdefghij

abcdefghij

abcdefghij

abcdefghij

X

X

a.

b.

X

Fig 1. Compression Techniques

a: Null Suppression b: Dictionary Compression

Null Suppression (NS): This technique is used to suppress

either zeros or blanks in each tuple. The key idea is to

represent a sequence of zeros and blanks by a special

character, followed by a number that indicates the length of

the sequence. For example, consider a single column index

whose data type is declared as CHAR(20). Consider the value

„abc‟. If this is stored in an uncompressed fashion, this would

use all 20 bytes, while null suppression would only store the

value „abc‟ along with its length, in this instance 3 bytes (see

Figure 1.a). In the case of multi-column indexes, each column

is compressed independently.

Dictionary Compression: This technique takes as input a set

of tuples and replaces the actual values with smaller pointers.

The mapping between the distinct values and the pointers is

maintained in a dictionary. Consider the set of tuples with the

data value „abcdefghij‟ in Figure 1.b. Dictionary compression

stores the data value once and replaces each of the actual

occurrences with a pointer. In practice, in order to minimize

the overhead of looking up the dictionary, commercial

systems typically apply this technique at a page level and the

dictionary is maintained inline in every page. This ensures that

the dictionary lookup does not need additional I/Os. In the

case of multi-column indexes, each column is compressed

independently.

B. Compression Fraction

We evaluate the effectiveness of a compression technique

(see [8]) by using a metric compression fraction (CF) which is

defined as follows.

The CF as defined is a value between 0 and 1 (if we ignore

degenerate cases where compression can actually increase the

size of the original index). A lower compression fraction

corresponds to a higher reduction in the size.

C. Estimating Compression Fraction Using Sampling

While the CF for an index can be computed accurately by

actually compressing the index, this is prohibitively inefficient

(especially for large data sets). Ideally, we need to be able to

estimate the CF both accurately and efficiently, specifically

without incurring the cost of actually compressing the entire

index.

Some database systems today (e.g., [12][10]) leverage

random sampling in order to provide a quick estimate of the

CF. The idea (see Figure 2) essentially is to randomly sample

a set of tuples from the table, build an index on the sample,

compress it and return the compression fraction obtained in

the sample as an estimate of the compression fraction of the

entire index. The main advantages of this approach are as

follows: 1) the algorithm is simple to implement 2) it is

agnostic to the actual compression technique used and thus

requires no modification when we incorporate a new

compression technique. We note that if the (uncompressed)

index already exists, we can obtain the random sample more

efficiently from the index instead of the base table.

Fig 2. Estimating CF using Sampling

While sampling is efficient, there is no previous work to

our knowledge that studies its accuracy for estimating the

compression fraction. As noted in Section I, analyzing the

accuracy is the goal of this paper. We evaluate an estimator

for the compression fraction (CF’) by using the ratio error

which is defined as follows.

In this paper, we assume that the algorithm outlined in

Figure 2 uses uniform random sampling over all tuples with

Algorithm SampleCF (T, f, S, C)

// Table T

// Sampling fraction f

// Sequence of Columns in the index S

// Compression Algorithm C

1. T‟ = uniform random sample of rows from T

2. Build index I‟(S) on T‟

3. Compress index I‟ using C

4. Return CF for index I‟

replacement. We do note that in contrast, commercial systems

typically leverage block-level sampling (in which all the rows

from a randomly sampled page are included in the sample).

Our analysis for uniform tuple sampling is still a useful

starting point to understand the guarantees. Extending the

analysis to account for page sampling is part of future work.

III. ANALYSIS OF SAMPLECF ESTIMATOR

In this section, we analyze the accuracy of the sampling

based estimator SampleCF introduced in Section II. For the

purpose of analysis in the rest of the paper, we assume a table

T that has a single column A which is a character field of k

bytes (i.e. char(k)). In the rest of the paper, we use the terms

“CF of table T” and “CF of column A” both to refer to the CF

of an index on A. We note that our analysis extends for the

case of multi-column indexes in a straightforward manner.

We assume that the size of any individual tuple k cannot

exceed the page size used by the database system. Let the

number of rows in the table be n and the number of distinct

values be d. We define the null-suppressed length (in bytes) of

a tuple as its actual length, denoted . We assume a uniform

random sample with replacement of size r rows from the table.

The number of distinct values of A in the sample is denoted d’.

This notation is summarized in Table 1 below.

TABLE I

NOTATION USED IN ANALYTICAL MODEL

n Number of rows in the table

 d Number of distinct values in the table

 D Set of distinct values in the table

 k Size of each tuple

 Null suppressed length of each tuple

 r Number of rows in the sample

 d’ Number of distinct values in the sample

We study the expected value of the estimate, its variance

and the worst-case guarantees. As noted in Section II, to our

knowledge, no prior work has characterized the accuracy of

estimating the compression fraction. We organize the

discussion in this section by the compression method.

A. Null Suppression

We first study Null Suppression. The original size of the

table is , since each tuple in its uncompressed form uses

k bytes (recall that the table has a single column field of type

char(k)). When we use null suppression, we get rid of any

unnecessary blanks and only store the actual length of the

tuple () but we also need to keep track of the length which

requires bytes. Thus, the compression fraction for null

suppression is given by the following expression.

In this expression, the only unknown is . Thus, the

problem of estimating the compression fraction for Null

Suppression reduces to the problem of estimating this sum.

The usage of random sampling for estimating a sum

aggregation has been studied in prior work [2]. Specifically,

drawing a random sample, computing the sum over the sample

and scaling it up is known to be unbiased. The estimate

returned by SampleCF is:

We can observe that in computing CF‟NS, we have

performed the same scaling. Thus CF‟NS is an unbiased

estimate of CF. Sampling based estimation of sum is however

known to suffer from potentially large variance [2]. However,

in our setting, the length of the tuples is bounded by k. This

translates to corresponding bounds on the variance of CF‟NS.

We formalize this intuition in the following result.

Theorem 1: Consider a table T with a single column of type

char(k), and rows. The estimate CF‟NS is unbiased, that

is and its standard deviation can be bounded

as: where f = r/n is the sampling fraction.

We illustrate the implication of this result using an example.

Example 1. Suppose that table T has n = 100 million rows.

Suppose that we draw a sample of size r = 1 million (which

corresponds to a 1% sample). Then, Theorem 1 implies that

the standard deviation of is at most . ⁭

B. Dictionary Compression

 When we use dictionary compression (see Figure 1.b), for a

set of identical values in a page, we store the original value in

the dictionary and store a pointer to this value instead (which

in general requires bytes). Let p denote the size of

the pointer in bytes. As mentioned in Section II-A, the

dictionary is typically in-lined in each page. For each distinct

value i, let Pg(i) denote the number of pages that this value

occurs in when compressed. We note that each distinct value

is stored once in each of the Pg(i) pages. The following

expression denotes the compression fraction of Dictionary

Compression (note that the summation is over the distinct

values in T):

In order to simplify the analysis and isolate the effects of

each of the above factors (pointers per occurrence and paging),

we consider a simplified model of dictionary compression in

which the paging effects are ignored. Here, dictionary

compression stores a “global” dictionary in which each

distinct value is stored once and each row has a pointer to the

dictionary. Under the simplified model, the compression

fraction of Dictionary Compression is:

We note that for the above expression the only unknown is the

number of distinct values (d). There is no known unbiased

distinct value estimator that works off a random sample. In

fact, prior work (e.g., [1]) has shown that any estimator that

uses uniform random sampling for distinct value estimation

must yield a significant ratio error in the worst case. In spite

of this fact, we now show that the estimator SampleCF yields

an estimate that has bounded error in several cases. Recall that

the estimate yielded by SampleCF is captured by the

following expression.

We separate the analysis into two cases – where the number

of distinct values is “small” and “large”. When the number of

distinct values is “small”, the factor in the expression

for can dominate the other term which involves d and as

a result we can still obtain an accurate estimate. This intuition

is formalized in the following result.

Theorem 2: Fix constants and a function

(where N stands for the set of natural numbers) such that

is . For any n that is sufficiently large for any table T

with n rows, distinct values, and column length

 the following holds. If we run SampleCF

with , then the expected ratio error of is at most

.

Now we consider the case where the number of distinct values

is large. We demonstrate that SampleCF yields a bounded

ratio error estimate when the number of distinct values is

“large”. Intuitively, if the number of distinct values in T is

“large”, we can show that the fraction of distinct values in the

sample will also be significant. This implies that both d’ and r

are also proportional to n, which further implies that we can

obtain a bound on the ratio error.

Theorem 3: Fix constants For any n that is sufficiently

large for any table T with n rows and distinct

values, the following holds. If we run SampleCF with ,

then the expected ratio error of is at most

.

Thus, despite the fact that estimating the compression

fraction for dictionary compression is related to the problem

of distinct value estimation, we are able to show (for a

simplified model of dictionary compression) that many cases

exist where we can bound the ratio error. Our experimental

results (omitted due to lack of space) also confirm that the

SampleCF algorithm can be an effective estimator in practice

for the case of both null suppression and dictionary

compression.

IV. CONCLUSIONS

In this paper, we identified the problem of estimating the

compression fraction using uniform random sampling, which

is a measure of how much a given index gets compressed. We

analyzed the estimation accuracy for two popular compression

techniques. Our results are summarized in Table 2.

TABLE II

SUMMARY OF RESULTS

Compression

Technique

Estimator Bias Small d

(o(n))

Large d

(O(n))

Null

Suppression

SampleCF No Variance at

most

Variance at

most

Dictionary

Compression

SampleCF Yes Expected

ratio error

close to 1

Expected

ratio error at

most constant

We found that a simple estimator SampleCF that draws a

uniform random sample and returns the compression fraction

on the sample as its estimate has low error for many cases. It

is interesting future work to extend our analysis to model

paging effects in dictionary compression as well as consider

block-level sampling.

REFERENCES

[1] M.Charikar, S.Chaudhuri, R.Motwani, V.Narasayya. Towards

Estimation Error Guarantees for Distinct Values. In Proceedings of

PODS 2000.

[2] S.Chauduri et.al. Overcoming Limitations of Sampling for Aggregation
Queries. In Proceedings of ICDE 2001.

[3] G.Graefe, L.Shapiro. Database Compression and Database

Performance. In Symp. On Applied Computing. 1991.

[4] F.Olken, D.Rotem. Random Sampling from Databases. A Survey.

Statistics and Computing. March 1995.Vol 5.

[5] J.S. Vitter. Random Sampling with a Reservoir. ACM Transactions on
Math. Software. 11(1): 37-57 (1985)

[6] M.Poess, D.Potapov. Data Compression in Oracle. In Proceedings of

VLDB 2003.

[7] M.Roth, Scott J. VanHorn. Database Compression. Sigmod Record

22(3). 1993.

[8] D.G.Severance. A Practitioner‟s Guide to database compression-
tutorial. Inf. Sys. 8(1). 1983.

[9] Special Issue on Self-Managing Database Systems. IEEE Data

Engineering Bulletin. Volume 29, Number 3, 2006.

[10] Oracle Advanced Compression. White Paper. http://www.oracle.com/

[11] IBM DB2 Data Compression.

http://www.ibm.com/software/data/db2/compression

[12] SQL Server Data Compression.
https://blogs.msdn.com/sqlserverstorageengine/

http://www.acm.org/turing/sigmod/dblp/db/journals/toms/toms11.html#Vitter85
http://www.acm.org/turing/sigmod/dblp/db/journals/toms/toms11.html#Vitter85

