
Moments of Two-Variable Functions and the
Uniqueness of Graph Limits

Christian Borgs
Jennifer Chayes
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Abstract

For a symmetric bounded measurable function W on [0, 1]2 and a
simple graph F , the homomorphism density

t(F, W ) =
∫

[0,1]V (F )

∏

ij∈E(F )

W (xi, xj) dx .

can be thought of as a “moment” of W . We prove that every such
function is determined by its moments up to a measure preserving
transformation of the variables.

The main motivation for this result comes from the theory of con-
vergent graph sequences. A sequence (Gn) of dense graphs is said to
be convergent if the probability, t(F, Gn), that a random map from
V (F ) into V (Gn) is a homomorphism converges for every simple graph
F . The limiting density can be expressed as t(F,W ) for a symmetric
bounded measurable function W on [0, 1]2. Our results imply in par-
ticular that the limit of a convergent graph sequence is unique up to
measure preserving transformation.
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1 Introduction

Let W be the set of bounded symmetric measurable functions W : [0, 1]2 →
R, and let W0 denote the set of functions in W with values in [0, 1]. For

every W ∈ W and every finite graph F , we define the integral

t(F,W ) =

∫

[0,1]n

∏

ij∈E(F )

W (xi, xj)
∏

i∈V (F )

dxi . (1)
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Our interest in these integrals stems from graph theory (see next paragraph),

but such integrals appear in physics, statistics, and other areas. In many re-

spects, these integrals can be thought of as 2-variable analogues of moments

of 1-variable functions, so instead of moment sequences, such 2-variable func-

tions have a ”moment graph parameter” (function defined on graphs). Just

like moments of a 1-variable function determine the function up to measure

preserving transformations, these “moments” determine the 2-variable func-

tion up to measure preserving transformations. The exact formulation and

proof of this fact is the main goal of this paper.

Our main motivation for this study comes from the theory of convergent

graph sequences. Let F and G be two simple graphs (graphs without loops

and multiple edges). Let us map the nodes of F randomly into V (G), and

let t(F, G) denote the probability that this map preserves adjacency. For

example, t(K2, G) denotes the edge density of G. In general, we call t(F, G)

the homomorphism density or simply the density of F in G.

We call a sequence of simple graphs (Gn) convergent, if t(F,Gn) has a

limit for every simple graph F . The notion of convergent graph sequences

was introduced by Borgs, Chayes, Lovász, Sós and Vesztergombi [2], see also

[3], and further studied in [4] and [5]. Lovász and Szegedy [12] proved that

every convergent graph sequence has a “limit object” in the form of a function

W ∈ W0 in the sense that

t(F, Gn) −→ t(F,W ) as n →∞ (2)

for every simple graph F . In this case we say that Gn converges to W . It

was also shown in [12] that for every function W ∈ W0 there is a convergent

sequence (Gn) of simple graphs converging to W . To complete the picture,

the results in this paper imply that the limit object is unique up to measure

preserving transformations.
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2 Results

For the precise statement of our results, we need some definitions. Instead of

the interval [0, 1], we consider two-variable functions on an arbitrary prob-

ability space; while this does not add real generality it leads to a cleaner

picture. We need a few definitions.

We start by recalling some basic notions from probability theory. Let

(Ω,A, π) be a probability space (where Ω is the underlying set, A is a σ-

algebra on Ω, and π is a probability measure on A). As usual, (Ω,A, π) is

called complete if A contains all sets of external measure 0, and the comple-

tion of (Ω,A, π) is obtained by replacing A with the σ-algebra generated by

A and all subsets N ⊂ Ω of external measure 0.

Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces, and let φ be a measure

preserving map from Ω to Ω′. The map φ is called an isomorphism if it is a

bijection between Ω and Ω′ and both φ and φ−1 are measure preserving, and

it is called an isomorphism mod 0 if there are null sets N ∈ A and N ′ ∈ A′

such that the restriction of φ to Ω \ N is an isomorphism between Ω \ N

and Ω′ \ N ′ (equipped with the suitable restrictions of (A, π) and (A′, π′),

respectively). In the last case (Ω,A, π) and (Ω′,A′, π′) are called isomorphic

mod 0.

It turns out that several of our results require a little bit more structure

than that of an arbitrary probability space. In particular, we will consider

Lebesgue (or standard) spaces, i.e., complete probability spaces that are

isomorphic mod 0 to the disjoint union of a closed interval (equipped with

the standard Lebesgue sets and Lebesgue measure) and a countable set of

atoms.1

2.1 Graphons and Graph Densities

We are now ready to introduce the main objects studied in this paper.

1See [14], Section 2.2 for an axiomatic definition of Lebesgue spaces, and Section 2.4
for the proof that a probability space is Lebesgue if and only if it is isomorphic mod 0 to
the disjoint union of a closed interval and a countable set of atoms. See also [6].
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Starting from an arbitrary probability space (Ω,A, π), let W : Ω ×
Ω → R be a bounded, symmetric function measurable with respect to the

completion of (Ω×Ω,A×A, π×π). We call the quadruple H = (Ω,A, π, W )

a graphon, and refer to W as a graphon on the probability space (Ω,A, π).

(As discussed above, such functions can be thought of as limits of convergent

graph sequences, which explains the name).

From our point of view, graphons obtained by changing W on a set of

measure 0, or changing the σ-algebra A so that W remains measurable, do

not differ essentially from the original. However, for technical reasons we have

to distinguish them. We say that a graphon is strong, if W is measurable

with respect to A×A (not just the completion of it). We can always change

W on a set of measure 0 to make the graphon strong (Theorem 3.2(i)).

We say that H is complete, if the underlying probability space is complete,

and we say that it is Lebesguian, if the underlying probability space is a

Lebesgue space. The completion, H, of H is obtained by completing the

underlying probability space, i.e., by replacing A by its completion A.

Let H = (Ω,A, π,W ) be a graphon, and let F be a finite graph with

V (F ) = {1, . . . , k}. The definition (1) then can be extended as

t(F, H) =

∫

Ωk

∏

ij∈E(F )

W (xi, xj)
k∏

i=1

dπ(xi). (3)

Let H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′) be two graphons. The goal

of this paper is to determine necessary and sufficient conditions under which

t(F,H) = t(F, H ′) (4)

for all graphs F .

To this end, we will introduce two different notions of isomorphism.

Both will be expressed in terms of the following operation: given a graphon

H ′ = (Ω′,A′, π′,W ′) and a measure preserving map φ from a probability

space (Ω,A,W ) into (Ω′,A′, π′), let (W ′)φ be “pull-back” of W ′, defined by

(W ′)φ(x, y) = W (φ(x), φ(y)). If H = (Ω,A, π,W ) and G = (Γ,B, ρ, U) are
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two graphons and φ : Ω → Γ is measure preserving from the completion

A into B such that W = Uφ almost everywhere, then we call φ a weak iso-

morphism from H to G. Note that a weak isomorphism is not necessarily

invertible.

We say that H and H ′ are isomorphic mod 0 (in notation H ′ ∼= H ′), if

there exists a map φ : Ω → Ω′ such that φ is an isomorphism mod 0 and

(W ′)φ = W almost everywhere in Ω × Ω. For simplicity, we often drop the

qualifier mod 0.

We call H and H ′ weakly isomorphic if there is a third graphon G and

weak isomorphisms from H and H ′ into G. It will follow from Theorems 3.2

and 2.1 that we could require here that G is a strong Lebesguian graphon.

The isomorphism relation ∼= is clearly an equivalence relation, and it will

follow from Theorem 2.1 (ii) below that weak isomorphism is an equivalence

relation as well. Every graphon is weakly isomorphic with its completion,

and every pair of isomorphic graphons is weakly isomorphic. It is clear that

if two graphons H and H ′ are weakly isomorphic then (4) holds for every

graph H. Theorem 2.1 (ii) below will show that the converse also holds.

To state our results, we need one more notion, the notion of twins. Let

H = (Ω,A, π, W ) be a graphon. Two points x1, x2 ∈ Ω are called twins if

W (x1, y) = W (x2, y) for almost all y ∈ Ω. Note that relation of being twins

is an equivalence relation. We call the graphon H almost twin-free if all there

exists a set N of measure zero such that no two point in Ω \N are twins.

2.2 Main results

With these definitions, we can state our main result:

Theorem 2.1 (i) If H and H ′ are almost twin-free Lebesguian graphons,

then (4) holds for every simple graph F if and only if H ∼= H ′.

(ii) If H and H ′ are general graphons, then (4) holds for every simple

graph F if and only if H and H ′ are weakly isomorphic.
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A natural idea of the proof of Theorem 2.1 is the following: can we bring

a graphon (Ω,A, π, W ) to a “canonical form”, so that isomorphic or weakly

isomorphic graphons would have identical canonical forms? In the case of

functions in a single variable, this is possible, through “monotonization”: for

every bounded real function on [0, 1] there is an unique monotone increasing

left-continuous function on [0, 1] that has the same moments.

In Section 4 we’ll construct not quite a canonical form, but a “canonical

ensemble”, a probability distribution (Hα) of graphons on the same σ-algebra

such that H ∼= Hα for almost all α, and two graphons are isomorphic if and

only if their ensembles can be coupled so that corresponding graphons are

identical (up to sets of measure 0).

An important element of the proof is a curious measure-theoretic fact.

Consider a 2-variable function for which all 1-variable functions obtained by

fixing one of the variables are measurable. This of course does not in general

imply that the 2-variable function is measurable, but it does imply it in some

circumstances (see e.g. Corollary 4.2).

As we will see, the second statement of Theorem 2.1 can easily be deduced

from the first. In fact, we’ll show that every graphon is weakly isomorphic

to a twin-free Lebesguian graphon. (See Theorem 3.2 for more details of this

isomorphism.)

We can also transform a Lebesguian graphon into a graphon whose un-

derlying probability space is the unit interval with the Lebesgue measure, by

“resolving” the atoms into intervals of the appropriate length. This form is

the most elementary and therefore useful in applications; however, it is not

so convenient for the purposes of this paper because we loose twin-freeness.

It is easy to see that if H and H ′ are weakly isomorphic, then (4) holds not

only for simple graphs F but also for graphs with multiple edges (which we’ll

call multigraphs if we want to emphasize that multiple edges are allowed; but

we don’t allow loops). Thus (4) for simple graphs implies this equation for

multigraphs. (This fact will be an important step in the proof, see Section

5.2.)
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We can formulate our results in a probabilistic way. Recall that a coupling

between two probability spaces (Ω,A, π) and (Ω′,A′, π′) is a probability dis-

tribution on A×A′ whose marginals are π and π′, respectively. A coupling

between two graphons means a coupling between their underlying proba-

bility spaces. Let H = (Ω,A, π, W ) be a graphon, and let X1, . . . , Xn be

independent random samples from π. Then we have

t(F, H) = E
( ∏

ij∈E(F )

W (Xi, Xj)
)
.

Let H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′) two graphons, and sup-

pose that there exists a coupling γ between them such that W (X1, Y1) =

W ′(X2, Y2) holds with probability 1 for two independent samples (X1, X2)

and (Y1, Y2) from γ. In this case clearly (4) holds for every graph F . As we

will see, Theorem 2.1 implies that in the Lebesguian case the converse also

holds.

We sum up the results for the most important special case of functions in

W , i.e., bounded, symmetric functions W : [0, 1]2 → R which are measurable

with respect to the Lebesgue sets on [0, 1]2 (the Corollary would remain valid

for arbitrary Lebesguian graphons, but this would not be essentially more

general).

Corollary 2.2 For two functions W,W ′ ∈ W the following are equivalent.

(a) For every simple graph F , t(F, W ′) = t(F,W ).

(b) For every multigraph F , t(F, W ′) = t(F,W ).

(c) There exists a function U ∈ W and two measure preserving maps

ϕ, ψ : [0, 1] → [0, 1] such that W = Uϕ and W ′ = Uψ almost everywhere.

(d) There exist two measure preserving maps ϕ, ψ : [0, 1] → [0, 1] such

that (W ′)ϕ = Wψ almost everywhere.

(e) There exists a probability measure γ on [0, 1] × [0, 1] such that each

marginal of γ is the Lebesgue measure, and if (X,X ′) and (Y, Y ′) are two

independent samples from γ, then W (X,Y ) = W ′(X ′, Y ′)) with probability

1.
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2.3 Examples

The property of being twin-free is crucial for Theorem 2.1 (i).

Example 1 Let φk : [0, 1] → [0, 1] be the map φk(x) = kx (mod 1). For

any function W ∈ W , the functions W φ2 and W φ3 define graphons that are

weakly isomorphic but in general not isomorphic. Indeed, for a “generic” W

(say W = xy), every point has two twins in W φ2 and three twins in W φ3 .

The pair of maps in Corollary 2.2 (c) go from W , while in (d), they go into

(W φ3)φ2 = (W φ2)φ3 = W φ6 .

Our next example shows that the Lebesgue property is also needed.

Example 2 Let Ω be a subset of [0, 1] with inner Lebesgue measure 0 and

outer Lebesgue measure 1, and let Ω′ be its complement. Let A and A′

consist of the traces of Lebesgue measurable sets on Ω and Ω′, respectively.

Let W and W ′ be the restrictions of the function xy to Ω × Ω and Ω′ × Ω′,

respectively. The identical embeddings ϕ : Ω → [0, 1] and ϕ′ : Ω′ → [0, 1] are

measure preserving, and hence H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′)

are weakly isomorphic. But for every x ∈ Ω, we have

2

∫

Ω

W (x, y) dπ(y) = x /∈ Ω′,

which shows that there is no way to “match up” the points in Ω and Ω′ to

get an isomorphism mod 0. The same example shows that conclusions (d),

(e) in Corollary 2.2 could not be extended to the non-Lebesgue case either.

3 Isomorphism

The main goal of this section is to describe how a general graphon can be

transformed into a twin-free Lebesguian graphon. To this end, we have to re-

call some basic notions from measure theory (mostly because their usage does

not seem standard), and then discuss different “isomorphism-like” mappings

between graphons.
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3.1 Preliminaries

For a set S of subsets of a set Ω, we denote by σ(S) the σ-algebra generated

by S. We call a σ-algebra A countably generated if there is countable set

S ⊆ A such that σ(S) = A. This is equivalent to the existence of a sequence

A1 ⊆ A2 ⊆ . . . of finite σ-algebras whose union generates A.

We say that a set S ⊆ A is a basis for the probability space (Ω,A, π),

if σ(S) is dense in A, i.e., for every X ∈ A there is a Y ∈ σ(S) such that

π(X4Y ) = 0.

Given sets A ⊂ Ω and two points x, y ∈ Ω, we say that A separates x and

y if |{x, y} ∩ A| = 1. We say that a set S of subsets of Ω separates x and y

if there exists a set A ∈ S that separates x and y. This leads to a partition

P [S] of Ω by placing two points in the same class if and only if they are not

separated by S. We say that S is separating if it separates any two points

in Ω. We’ll say that a graphon is separating if its underlying σ-algebra is

separating.

A probability space (Ω′,A′, π′) is called a full subspace of (Ω,A, π) if Ω′

is a (not necessarily measurable) subset of Ω of external measure 1, A′ =

{A ∩ Ω′ | A ∈ A}, and π′(A ∩ Ω′)) = π(A) for all A ∈ A.

Consider two probability spaces (Ω,A, π) and (Ω′,A′, π′) and a measure

preserving map φ : Ω → Ω′. The map φ is called an embedding of the

first space into the second if φ is an isomorphism between (Ω,A, π) and

a full subspace of (Ω′,A′, π′). We call φ an embedding of a graphon H =

(Ω,A, π, W ) into a graphon H ′ = (Ω′,A′, π′,W ′) if φ is an embedding of

(Ω,A, π) into (Ω′,A′, π′) and (W ′)φ = W almost everywhere.

Let (Ω,A, π) be a probability space and f : Ω → R, a bounded A-

measurable function. Let A0 ⊆ A be a sub-σ-algebra. The conditional

expectation E(f | A0) is the set of all A0-measurable function f ′ such that∫
A0

f dπ =
∫

A0
f ′ dπ for all A0 ∈ A0. It is well known that such functions

exist and any two such functions differ only on a set of π-measure 0. We’ll

write (somewhat sloppily) f ′ = E(f | A0) instead of f ′ ∈ E(f | A0). We say

that f is almost A0-measurable, if there is an A0-measurable function f ′ such
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that f = f ′ π-almost everywhere. Clearly we must have f ′ ∈ E(f | A0), and

it does not matter which representative of E(f | A0) we choose, so (again

somewhat sloppily) we can say that f is almost A0-measurable if and only if

f = E(f | A0) almost everywhere.

3.2 Push-Forward and Quotients

Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces and let φ : Ω → Ω′ be a

measure preserving map. We have described how to “pull back” a graphon on

(Ω′,A′, π′) to a (weakly isomorphic) graphon on (Ω,A, π). It is also possible

to “push-forward” a graphon H = (Ω,A, π, W ) to a graphon (Ω′,A′, π′,Wφ).

This is defined by the requirement that

∫

A′1×A′2

Wφ(x
′, y′)dπ′(x′)dπ′(y′) =

∫

φ−1(A′1)×φ−1(A′2)

W (x, y) dπ(x) dπ(y) (5)

for all A′
1, A

′
2 ∈ A′. The next lemma states that the “push-forward” Wφ is

well defined, and that (Wφ)
φ is a certain conditional expectation of W .

Lemma 3.1 Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces, let φ : Ω →
Ω′ be a measure preserving map, and let W be a graphon on (Ω,A, π).

(i) There exists a bounded, symmetric function Wφ : Ω′ × Ω′ → R that is

A′ ×A′ measurable and satisfies (6). It is unique up to changes on a set of

measure zero in Ω′ × Ω′.

(ii) Let Aφ = φ−1(A′). Then (Wφ)
φ = E(W | Aφ×Aφ) almost everywhere.

(iii) If φ is an embedding of (Ω,A, π) into (Ω′,A′, π′), then (Wφ)φ = W

almost everywhere.

Proof. (i) By linearity, it is easy to see that we can restrict ourselves to

the case where W takes values in [0, 1]. Define a measure µ on A′ ×A′ by

µ(A′
1 × A′

2) =

∫

φ−1(A′1)×φ−1(A′2)

W (x, y) dπ(x) dπ(y)
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for A′
1, A

′
2 ∈ A. With this definition, we have that

0 ≤ µ(A′
1 × A′

2) ≤ π(φ−1(A′
1))π(φ−1(A′

2)) = (π′ × π′)(A′
1 × A′

2),

implying in particular that µ is absolutely continuous with respect to π′×π′.

Hence the Radon-Nikodym derivative,

Wφ =
dµ

d(π′ × π′)
, (6)

is well defined. Using the above bound once more, together with the fact

that µ(A1 × A2) = µ(A2 × A1), we furthermore have that

0 ≤ Wφ(x, y) ≤ 1 and Wφ(x, y) = Wφ(y, x) (7)

almost everywhere. Changing Wφ on a set of measure zero, we may assume

that these relations hold everywhere. To define Wφ for a general bounded

function W , we use linearity.

(ii) Let A1, A2 ∈ Aφ, i.e., let A1 = φ−1(A′
1) and A2 = φ−1(A′

2) for some

A′
1, A

′
2 ∈ A′. By the definition of Wφ, the fact that φ is measure preserving,

and the definition of (Wφ)
φ, we have that

∫

A1×A2

W (x, y) dπ(x) dπ(y) =

∫

A′1×A′2

Wφ(x′, y′) dπ′(x′) dπ′(y′)

=

∫

A1×A2

Wφ(φ(x), φ(y)) dπ(x) dπ(y)

=

∫

A1×A2

(Wφ)
φ(x, y) dπ(x) dπ(y).

This implies that (Wφ)φ = E(W | Aφ ×Aφ) almost everywhere.

(iii) Since φ is an isomorphism between (Ω,A, π) and a subspace of

(Ω′,A′, π′), we know that given any A ∈ A, we can find an A′ ∈ A′ such

that φ(A) = A′ ∩ φ(Ω). But then φ−1(A′) = φ−1(φ(A)) = A, proving that

A ∈ Aφ. Thus Aφ = A, which implies that (Wφ)
φ = W almost everywhere.

¤
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We can use the “push-forward” construction to define quotients of

graphons. Let H = (Ω,A, π, W ) be a graphon, let P be an arbitrary partition

of Ω into disjoint sets, and for x ∈ Ω, let [x] denote the class in P that con-

tains the point x. We then define a graphon H/P = (Ω/P ,A/P , π/P , W/P)

and a measure preserving map φ : Ω → Ω/P as follows: the points in Ω/P
are the classes of the partition P , φ is the map φ : x 7→ [x], A/P is the

σ-algebra consisting of the sets A′ ⊂ Ω/P such that φ−1(A′) ∈ A, and

(π/P)(A′) := π(φ−1(A′)). Then φ is measure preserving, and the function

W/P = Wφ is defined by (5).

3.3 Reductions

Now we are able to state the theorem that allows us to reduce every graphon

to a twin-free Lebesguian graphon.

Theorem 3.2 (i) Let H = (Ω,A, π, W ) be a graphon. Then one can change

the value of W on a set of π × π-measure 0 to get a strong graphon.

(ii) Let H = (Ω,A, π,W ) be a graphon. Then there exists a countably

generated σ-algebra A0 ⊂ A such that W is (A0 ×A0)-measurable.

(iii) Let H = (Ω,A, π,W ) be a graphon. Then the graphon H/P [A] is

separating. If H is countably generated, then so is H/P [A].

(iv) Let H = (Ω,A, π, W ) be a separating graphon on a probability space

with a countable basis. Then the completion of H can be embedded into a

Lebesguian graphon.

(v) Let H = (Ω,A, π, W ) be a graphon, and let P be the partition into

the twin-classes of H. Then H/P is almost twin-free. If H is Lebesguian,

then H/P is Lebesguian as well. Furthermore, the projection H → H/P is

a weak isomorphism.

Corollary 3.3 Every graphon has a weak isomorphism into a strong

Lebesguian graphon.
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The proof of this theorem (which is not hard, but technical) will be given

in the rest of this section.

3.3.1 Making a graphon strong

Let H = (Ω,A, π, W ) be a graphon, and let W ′ = E(W | A × A). Then

W ′ is A × A-measurable, and changing W ′ on a set of measure 0, we may

assume that W ′ is symmetric and bounded. Moreover,
∫

A×A′(W
′ −W ) = 0

for all A,A′ ∈ A, which implies that
∫

S
(W ′ −W ) = 0 for all sets S in the

completion of A × A, so W = W ′ almost everywhere. These observations

prove part (i) of the Theorem.

3.3.2 Countable generation

We prove a simple lemma, which implies Theorem 3.2(ii), and will also be

used at several other places (Sections 4.1 and 5.2).

Lemma 3.4 Let (Ω,A) and (Ω′,A′) be measurable spaces, and let W :

Ω × Ω′ → R be a bounded, (A × A′)-measurable function. Then there ex-

ist countably generated σ-algebras A0 ⊂ A and A′
0 ⊂ A′ such that W is

(A0 ×A′
0)-measurable.

Proof. Let C be the set of bounded, (A×A′)-measurable functions W for

which the statement of the lemma is true. The set C is clearly a vector space

that contains the constant function 1 as well as the indicator functions of all

rectangles A × B with A ∈ A and B ∈ A′. If is further not hard to show

that if (Wk) is a sequence of non-negative functions in C and Wk ↑ W for a

bounded function W , then the limiting function W is in C as well. By the

monotone class theorem (see, e.g., Theorem 3.14 in [15]), we conclude that

C contains all bounded functions which are measurable with respect to the

σ-algebra generated by the rectangles A×B, i.e., the σ-algebra A×A′. ¤
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3.3.3 Merging inseparable elements

If we identify elements in the same class of the partition P [A], we get a

σ-algebra which is isomorphic under the obvious map. This implies (iii) of

Theorem 3.2.

3.3.4 Lebesgue property

Consider a separating graphon H = (Ω,A, π, W ), and assume that A is

generated by the countable set S. Then S is a basis for the completion of

(Ω,A, π). We invoke the fact (see e.g. [14], Section 2.2) that any separat-

ing complete probability space with a countable basis can be embedded into

a Lebesgue space. Thus there exists an embedding ψ of the completion of

(Ω,A, π) into a Lebesgue space (Ω′,L′, λ′). Let W ′ be the push-forward of

W , W ′ = Wψ. By Lemma 3.1, we have that (W ′)ψ = W almost every-

where, which shows that ψ is an embedding of the completion of H into

(Ω′,L′, λ′, W ′). This proves part (iv) of Theorem 3.2.

3.3.5 Partitions into Twin-Classes

We prove (v) in Theorem 3.2. We may assume that A is countably generated.

ndeed, by Lemma 3.4, we can replace A by a countably generated σ-algebra

A0. This does not change the relation of being twins: Two points x, x′ ∈ Ω

are twins if and only if the set Ax,x′ = {y ∈ Ω : W (x, y) = W (x, y′)} has

measure 1. Since W is measurable with respect to A0×A0, the set Ax,x′ lies

in A0 ⊂ A, implying that x and x′ are twins with respect to H if and only

if they are twins with respect to H0.

Let AP consists of those sets in A that do not separate any pair of twin

points. Clearly AP is a σ-algebra.

Claim 1 W is almost AP ×AP-measurable.

Let W̃ = E(W | AP ×AP). We want to prove that
∫

A×B

W (x, y)dπ(x)dπ(y) =

∫

A×B

W̃ (x, y)dπ(x)dπ(y) (8)

15



for all A,B ∈ A. Define the functions

gA = E(1A | AP), UA(y) =

∫

A

W (x, y)dπ(x),

and

VA(x) =

∫
W (x, y)gA(y)dπ(y).

Since UA(y) = UA(z) if y, z are twins, the function UA is AP-measurable,

similarly for VA, and obviously for gA. Repeatedly using the fact that
∫

fg =∫
fE(g | A0) if f is A0-measurable, this implies
∫

A×B

W (x, y)dπ(x)dπ(y) =

∫
1B(y)UA(y)dπ(y) =

∫
gB(y)UA(y)dπ(y)

=

∫
VB(x)1A(x)dπ(x) =

∫
VB(x)gA(x)dπ(x)

=

∫
W (x, y)gA(x)gB(y)dπ(x)dπ(y)

=

∫
W̃ (x, y)gA(x)gB(y)dπ(x)dπ(y)

=

∫

A×B

W̃ (x, y)dπ(x)dπ(y).

(where the last equality follows since W̃ is AP × AP-measurable). This

implies (8) and completes the proof of Claim 1.

Let W̃ = E(W | AP × AP) as before, then HP = (Ω,AP , π, W̃ ) is a

graphon, which is clearly weakly isomorphic to (Ω,A, π, W ). Let N be the

set of points x ∈ Ω for which {y ∈ Ω : W̃ (x, y) 6= W (x, y)} has positive

measure. Then clearly N is a null set, and two points x, x′ ∈ Ω\N are twins

in H if and only if they are twins in HP . The graphon H/P is obtained

from HP by identifying indistinguishable elements, which implies that H/P
is twin-free.

To prove that H/P is Lebesguian if H is Lebesguian, we invoke the fact

(established in Section 3.2 of [14]) that (Ω/P ,A/P , π/P) is a Lebesgue space

provided (Ω,A, π) is a Lebesgue space and there exists a countable set S ⊆ A
that separates two points if and only they are in different partition classes.
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To construct such a set S, let T be a countable set generating A, closed

under finite intersections. For A ∈ A and x ∈ Ω, let

µx(A) =

∫

A

W (x, y)dπ(y).

Since W is a bounded A×A-measurable function, the function A 7→ µx(A)

is a finite measure for all x ∈ Ω, while the function x 7→ µx(A) is a A-

measurable function on Ω for all A ∈ A.

By definition, x, x′ ∈ Ω are twins iff the set {y ∈ Ω : W (x, y) = W (x, y′)}
has measure zero. This is equivalent to the condition that µx(A) = µx′(A)

for all A ∈ A. Since the measure µx(·) on A is uniquely determined by the

sets in T , we have that x and x′ are twins if and only if µx(T ) = µx′(T ) for

all T ∈ T .

For every T ∈ T and rational number r, consider the sets ST,r = {x ∈
Ω : µx(T ) ≥ r}. There is a countable number of these. Furthermore, if

x and x′ are twins, then they belong to exactly the same sets ST,r; if they

are not twins, then there is a T ∈ T such that µx(T ) 6= µx′(T ), and for any

rational number between µx(T ) and µx′(T ), the set ST,r separates x and x′.

This completes the proof of Theorem 3.2.

3.4 Isomorphism and Weak Isomorphism

We conclude this section with relating isomorphism and weak isomorphism.

Lemma 3.5 Let Hi = (Ωi,Ai, πi,Wi) be graphons with the Lebesgue property

(i = 1, 2), and let φ : Ω1 → Ω2 be measure-preserving. If H1 is almost twin-

free, and W1 = W φ
2 almost everywhere, then φ is an isomorphism mod 0, so

in particular H1
∼= H2.

Proof. Let

Ω′
1 = {x ∈ Ω1 : W2(φ(x), φ(y)) = W1(x, y) for almost all y},

and let N1 = Ω1 \ Ω′
1. Then π1(N1) = 0 by Fubini and our assumption that

W1 = W φ
2 almost everywhere.
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Let N ′
1 be a nullset such that all twin-classes of H1 have at most one

point in Ω1 \ N ′
1, and let φ′ to be the restriction of φ to Ω′

1 \ N ′
1. Then

φ′ is injective: indeed, if x1, x2 ∈ Ω′
1 \ N ′

1 and φ(x1) = φ(x2), then

W1(x1, y) = W2(φ(x1), φ(y)) = W2(φ(x2), φ(y)) = W1(x2, y) for almost all

y by the definition of Ω′
1, hence x1 and x2 are twins, a contradiction. As

shown in [14], Section 2.5, an injective measure preserving map between

Lebesgue spaces has a measurable inverse defined almost everywhere. This

implies that φ′ : Ω′
1 \ N ′

1 → Ω2 is an isomorphism mod 0, which shows that

φ is an isomorphism mod 0 as well. ¤

Corollary 3.6 If two twin-free graphons with the Lebesgue property are

weakly isomorphic, then they are isomorphic.

4 Canonical Ensembles

We could try to construct a “canonical form” of a graphon by assigning “tags”

to the points in Ω. For example, we could tag a point x with its marginal

d(x) =
∫

W (x, y) dπ(y), or by the sequence of marginals of higher powers of

W . This, however, would not work: for example, there could be a transitive

group of measure-preserving permutations of Ω leaving W invariant, and

then all points would still have the same tag.

To break the symmetry, we select an infinite sequence α = (a1, a2, . . . ) of

points in Ω, which we call anchor points. Now we can tag each point x ∈ Ω

with the sequence

Φα(x) = (W (x, a1),W (x, a2), . . . ) ∈ [0, 1]N (9)

(where we assume that 0 ≤ W ≤ 1) The map x 7→ Φα(x) defines a measurable

map from Ω into [0, 1]N (with respect to the standard Borel σ-algebra L on

[0, 1]N), which in turn defines a measure λα on the sets S ∈ L by

λα(S) = π(Φ−1
α (S)), (10)
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and a graphon WΦα on ([0, 1]N,L, λα) by (5). We denote the completion of

([0, 1]N,L, λα,WΦα) by Hα.

We will show that if α1, α2, . . . are taken i.i.d. at random with distribution

π then with probability one, then Hα is isomorphic mod 0 to the original

graphon H (see Section 4.2 for details). So using an infinite sequence of

independent random points as anchor points, the tags of the points contain

all information about the points.

These tags are almost canonical, except for the choice of the sequence α.

So instead of a canonical form, we get a “canonical ensemble”, a probability

distribution (Hα) of graphons such that H ∼= Hα for almost all α, and two

graphons are isomorphic if and only if their ensembles can be coupled so that

corresponding graphons are isomorphic.

To prove Theorem 2.1 (i), we will therefore have to show that if H and

H ′ satisfy (4), then we can “couple” the choice of anchor points α in H and

β in H ′ so that Hα
∼= H ′

β, thus yielding an isomorphism of H and H ′. This

second step in the proof will be carried out in Section 5.3.

4.1 Measure theoretic preparation

The next technical lemma will be important in the construction of “canonical

ensembles”.

Lemma 4.1 Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces, and let W :

Ω × Ω′ → R be a bounded A × A′-measurable function. Let Y1, Y2, . . . be

independent random points from Ω′. Let A0 ⊆ A be the (random) σ-algebra

generated by the functions W (·, Yk). Then with probability 1, W is almost

A0 ×A′-measurable.

Proof. By Lemma 3.4, we may assume that A and A′ are countably

generated. Let A′
1 ⊂ A′

2 ⊂ . . . and A′
1 ⊂ A′

2 ⊂ . . . be a sequence of finite

σ-algebras with σ(∪nAn) = A and σ(∪nA′
n) = A′, and let P ′

n denote the
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partition of Ω′ into the atoms of A′
n. For y ∈ S ∈ P ′

n with π′(S) > 0, define

Un,m(x, y) =
1

mπ(S)

∑
j≤m
Yj∈S

W (x, Yj)

We define Un,m(x, y) = 0 if y ∈ S ∈ P ′
n with π′(S) = 0.

First we prove that for every n ≥ 1, every A ∈ A and A′ ∈ A′
n, we have

with probability 1
∫

A×A′

Un,m dπ dπ′ −→
∫

A×A′

W dπ dπ′ (m →∞). (11)

It suffices to prove this in the case when A′ = S ∈ P ′
n and π′(S) > 0. Then

for every y0 ∈ A′, we have
∫

A

Un,m(x, y0) dπ(x) =
1

mπ(S)

∑
j≤m
Yj∈S

∫

A

W (x, Yj) dπ(x).

hence by the Law of Large Numbers,
∫

A

Un,m(x, y0) dπ(x) −→ 1

π(S)

∫

A×S

W dπ dπ′ (m →∞).

Since both sides are independent of y0 ∈ S, integrating over y0 ∈ S equation

(11) follows.

The number of choices of n, A ∈ ∪kAk and A′ ∈ A′
n is countable, and

hence it follows that with probability 1, (11) holds for all n ≥ 1, every

A ∈ ∪kAk and A′ ∈ A′
n. Since ∪kAk is dense in A, this implies that (11)

holds for all n ≥ 1, every A ∈ A and A′ ∈ A′
n.

From now on, we suppose that the choice of the Yi is such that this holds.

For a fixed n, the indices m have a subsequence m1 < m2 < . . . such that

Un,mj
converges to some function Un in the weak-∗-topology of L∞(A0×A′

n).

Hence by (11),
∫

A×A′

Un dπ dπ′ = lim
j→∞

∫

A×A′

Un,mj
dπ dπ′ =

∫

A×A′

W dπ dπ′

20



for all n ≥ 1, every A ∈ A and A′ ∈ A′
n. Thus Un is a representative of

E(W | A × A′
n). Since Un is A0 ×A′

n measurable, it is also a representative

of E(W | A0 ×A′
n). This shows that for every n ≥ 1 we have

E(W | A × A′
n) = E(W | A0 ×A′

n) (12)

almost everywhere.

By Levy’s Upward Theorem, the left hand side of (12) tends to E(W |
A×A′) = W almost everywhere. The right hand side of (12) tends to E(W |
A0 × A′) almost everywhere, so W = E(W | A0 × A′) almost everywhere,

which proves the Lemma. ¤

We formulate a couple of corollaries, the first of which is immediate:

Corollary 4.2 Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces, let

W : Ω × Ω′ → R be a bounded function that is measurable with respect

to A × A′, and let A0 ⊂ A be a sub-σ-algebra. If W (·, y) is A0-measurable

for almost all x ∈ Ω, then W is almost A0 ×A′-measurable.

Corollary 4.3 Let (Ω,A, π,W ) be a graphon, and let X1, X2, . . . be inde-

pendent random points from Ω. Let A0 ⊆ A be the (random) σ-algebra

generated by the functions W (·, Xk). Then with probability 1, W is almost

A0 ×A0-measurable.

Proof. Let A1 denote the σ-algebras generated by the functions W (·, X2k).

Clearly A1 ⊆ A0. By Lemma 4.1, W is almost A1 × A measurable with

probability 1, so we can change it on a set of measure 0 to get an A1 × A
measurable function W ′. Let A′

2 be the σ-algebras generated by the functions

W ′(X2k+1, ·). Applying the lemma again, we get that W ′ is almost A1 ×
A′

2 measurable. With probability 1, each function W (X2k+1, ·) differs from

W ′(X2k+1, ·) on a set of measure 0 only (since the X2k+1 are independent of

A1), and so A′
2 ⊆ σ(A0). So W ′ is A0 × σ(A0) measurable, which implies

that W ′, and hence W , are almost A0 ×A0 measurable. ¤
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4.2 Anchor Sequences

Let us consider the σ-algebra L on [0, 1]N generated by the sets A1×A2× . . . ,

where each Ai is a Borel subset of [0, 1] and only a finite number of factors

Ai are different from [0, 1]. Fix a graphon H = (Ω,A, π, W ) with 0 ≤
W ≤ 1. For every α ∈ ΩN, the map Φα : Ω → [0, 1]N defined by (9) is

measurable, and (10) defines a probability measure on L with respect to

which Φα is measure preserving. Thus (6) leads to a symmetric, L × L-

measurable function WΦα : [0, 1]N × [0, 1]N → [0, 1] which we denote by Wα.

We say that α ∈ ΩN is regular if W = WΦα
α almost everywhere.

Lemma 4.4 Almost all α ∈ ΩN are regular.

Proof. Let Aα denote the σ-algebra of subsets of Ω of the form Φ−1
α (A),

where A ∈ L. Note that Aα ⊆ A by the fact that Φα is measurable. Further,

almost by definition, Aα is the smallest sub-σ-algebra of A such that all the

functions W (·, αi) are measurable. As a consequence, we may apply Lemma

4.3 to conclude that for almost all α, W is almost Aα × Aα)-measurable,

which by Lemma 3.1 gives that W = WΦα
α almost everywhere. ¤

Let Lα be the completion of L with respect to λα. Then ([0, 1]N,Lα, λα)

is a complete, Polish space and hence Lebesgue, so Hα = ([0, 1]N,Lα, λα,Wα)

defines a Lebesguian graphon.

Lemma 4.5 Let H be a twin free graphon with the Lebesgue property. If α

is regular, then Φα is an isomorphism mod 0 and Hα
∼= H.

Proof. By (10), Φα is a measure preserving map from (Ω,A, π) into

([0, 1]N,L, λα). Since (Ω,A, π) is complete, Φα is measurable (and measure

preserving) from (Ω,A, π) into ([0, 1]N,Lα, λα) as well. By the definition of

a regular α, Hφα
α = H almost everywhere, and by Lemma 3.5, Φα is an

isomorphism mod 0. ¤
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5 Coupling

5.1 Partially Labeled Graphs and Marginals

We recall some notions from [9]. A partially labeled graph is a finite graph

in which some of the nodes are labeled by different nonnegative integers.

Two partially labeled graphs are isomorphic, if there is a label-preserving

isomorphism between them. A k-labeled graph is a partially labeled graph

with labels 1, . . . , k.

Let F1 and F2 be two partially labeled graphs. Their product F1F2 is

defined as follows: we take their disjoint union, and then identify nodes with

the same label (retaining the labels, and any multiple edges which this might

create). For two unlabeled graphs, F1F2 is their disjoint union. Clearly this

multiplication is associative and commutative.

Let H = (Ω,A, π,W ) be a graphon, and let α = (a0, a1, . . . ) be an infinite

sequence of points in Ω. Let F be a partially labeled graph with nodes

V (F ) = {1, . . . , k}, where nodes 1, . . . , r are labeled by distinct nonnegative

integers `1, . . . , `r. Let Xi = a`i
for 1 ≤ i ≤ r, and let Xr+1, . . . , Xk ∈ Ω be

independent points from the distribution π. Define

tα(F, H) = E
( ∏

ij∈E(F )

W (Xj, Xj)
)
.

Of course, this value only depends on those elements of α whose subscripts

occur as labels, and we’ll sometimes omit the tail of α if it contains no labels.

For example, if F is a 2-labeled triangle, then

ta1a2(F,H) = tα(F,W ) = E(W (a1, a2)W (a2, X)W (a1, X))

=

∫

Ω

W (a1, a2)W (a2, x)W (a1, x) dπ(x).

It is easy to see that if F1 and F2 are two k-labeled graphs, then

t(F1F2, H) =

∫

Ωk

tx1...xk
(F1,W )tx1...xk

(F2,W ) dπ(x1) . . . dπ(xk).
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5.2 Multiple Edges

Lemma 5.1 Let H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′) be two

graphons, and assume that t(F,H) = t(F,H ′) for every simple graph F .

Then t(F,H) = t(F,H ′) for every multigraph F .

Proof. We use induction on the number of parallel edges in F . Suppose

that F has two nodes, say i and j, connected by more than one edge. Let Fk

denote the multigraph obtained from F by subdividing one of these edges by

k − 1 new nodes. Let F ′ denote the multigraph obtained by removing one

copy of the edge ij. So F1 = F , but for k > 1, Fk has fewer parallel edges

than F , and so we may assume that

t(Fk, H) = t(Fk, H
′)

holds for every k ≥ 2. We consider all the multigraphs Fk and F ′ as 2-labeled

graphs, with i and j labeled 1 and 2.

Since Fk can be thought of as the product of F ′ and a path Pk+1 with

k + 1 nodes (the endpoints labeled), we can write

t(F, H) =

∫

Ω2

W (x, y)txy(F
′, H) dπ(x) dπ(y),

and

t(Fk, H) =

∫

Ω2

txy(Pk+1, H)txy(F
′, H) dπ(x) dπ(y).

The first factor inside the integral can be expressed as

txy(Pk+1, H) =

∫

Ωk

W (x, x1) · · ·W (xk−1y) dπ(x1) . . . dπ(xk−1),

which we can recognize as k-th power of the kernel W as an integral operator.

At this point, it will be useful to assume that H and H ′ are countably gen-

erated graphons (this can be done without loss of generality by Lemma 3.4).

As a consequence, W is an integral operator on the separable Hilbert space
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L2(Ω,A, π), and since W is bounded, this implies that W is Hilbert-Schmidt

and thus compact, which in turn implies that W has a spectral representa-

tion:

W (x, y) ∼
∞∑

n=0

λnϕn(x)ϕn(y). (13)

It follows that for every k ≥ 2,

txy(Pk+1, H) =
∞∑

n=0

λk
nϕn(x)ϕn(y),

and hence

t(Fk, H) =
∞∑

n=0

λk
n

∫

Ω2

ϕn(x)ϕn(y)txy(F
′, H) dπ(x) dπ(y).

Similarly, let

W ′(x, y) ∼
∞∑
i=0

µnψn(x)ψn(y)

be the spectral representation of W ′, then we get that for every k ≥ 2,

0 = t(Fk, H)− t(Fk, H
′) =

∞∑
n=0

anλk
n − bnµk

n, (14)

where

an =

∫

Ω2

ϕn(x)ϕn(y)txy(F
′, U) dπ(x) dπ(y)

and

bn =

∫

(Ω′)2

ψn(x)ψn(y)txy(F
′,W ) dπ(x) dπ(y)

are independent of k. (The integrals exist since tx,y(F
′, H) is a bounded

function of x and y.) It follows that in (14) everything must cancel, in other

words, for every value c,

∑
{an : λn = c} =

∑
{bn : µn = c}
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(it is known that the sums on both sides have a finite number of terms, since

the multiplicities of the eigenvalues are finite).

Now while (13) may not be true with equality, the “trace” with any other

kernel gives an equation; in particular,

t(F, H) =
∞∑

n=0

λn

∫

Ω2

W (x, y)txy(F
′, H) dπ(x) dπ(y) =

∞∑
n=0

anλn,

and similarly

t(F,H ′) =
∞∑

n=0

bnµn,

which shows that t(F, H) = t(F, H ′) as claimed. ¤

It will be convenient to assume that 0 ≤ W,W ′ ≤ 1. If this does not

hold, we can apply a linear transformation to the values of the functions, to

get two functions W0 and W ′
0 with 0 ≤ W0,W

′
0 ≤ 1. Expanding the product

in the definition (3), t(F,W0) can be written as a linear combination of the

values t(F ′,W ), where F ′ is a subgraph of F . Thus t(F,W ) = t(F, W ′) for

every graph F if and only if t(F,W0) = t(F,W ′
0) for every graph F (where

“graph” could mean either simple graph or multigraph). So (4) holds for W0

and W ′
0 if and only if it holds for W and W ′. If we prove that this implies

(Ω,A, π, W0) ∼= (Ω′,A′, π′,W ′
0), then H ∼= H ′ follows trivially.

5.3 Coupling Anchor Sequences

Consider two graphons H = (Ω,A, π,W ) and H ′ = (Ω′,A′, π′,W ′) satis-

fying the conditions in Theorem 2.1 (i) and 0 ≤ W,W ′ ≤ 1. Given two

“anchor” sequences α = (a1, a2, . . . ) from Ω and β = (b1, b2, . . . ) from Ω′,

let Hα = ([0, 1]N,Lα, λα, Wα) and H ′
β = ([0, 1]N,L′β, λ′β,W ′

β). We would like

to select α and β in such a way that λα = λ′β and Wα = W ′
β almost every-

where. This will complete the proof of the theorem. By Lemma 4.4, we can

guarantee that both α and β are regular by selecting a1, a2, . . . as well as

b1, b2 . . . independently and uniformly from π and π′, respectively; however,

the equality of Wα and W ′
β will only be true if we couple α and β carefully.
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The condition on the coupling is described in the following lemma.

Lemma 5.2 Let H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′) be two

graphons, and let α = (a1, a2, . . . ) and β = (b1, b2, . . . ) be regular sequences

for H and H ′, respectively. Suppose that for every partially labeled multigraph

F ,

tα(F, H) = tβ(F, H ′).

Then λα = λ′β and Wα = W ′
β almost everywhere (with respect to λα = λ′β).

Proof. First, we show that λα = λ′β. These probability measures are

defined on the σ-algebra L as the distribution measures of the random vari-

ables W (X, a1),W (X, a2), . . . ) and W ′(Y, b1), W
′(Y, b2), . . . ), where X and

Y are random points from π and π′, respectively. By Lemma 6.1 it therefore

suffices to prove that these random variables have the same mixed moments.

Let (k1, k2, . . . ) be a sequence of nonnegative integers, of which only a

finite number is nonzero; say ki = 0 for i > m. Then

E(
∏

i

W (X, ai)
ki) = tα(F,H),

where F is the star on m + 1 nodes, with the endnodes labeled 1, . . . , m,

and the edge between the center and endnode i replaced by ki parallel edges.

Similarly,

E(
∏

i

W ′(Y, bi)
ki) = tβ(F, H ′).

These numbers are equal by the hypothesis of the Lemma. This proves that

λα = λ′β.

Second, we show that Wα(x, y) = W ′
β(x, y) for almost all x, y ∈ [0, 1]N.

It suffices to show that the random variables Z1 = (X, Y, Wα(X, Y )) and

Z2 = (X, Y, W ′
β(X,Y )) (with values from [0, 1]N × [0, 1]N × [0, 1]) have the

same distribution, where X and Y are independent points in (ΩN, λα).

We can generate Z1 by choosing independent uniform random points X ′

and Y ′ from Ω, and letting X = Φα(X ′) and Y = Φβ(Y ′). Since α is regular,
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we have that

Wα(X,Y ) = W (X ′, Y ′)

with probability one, and hence

Z1 = (W (X ′, a1),W (X ′, a2), . . . , W (Y ′, a1),W (Y ′, a2), . . . , W (X ′, Y ′)).

Similarly, we have

Z2 = (W ′(X ′′, b1),W
′(X ′′, b2), . . . , W

′(Y ′′, b1),W
′(Y ′′, b2), . . . ,W

′(X ′′, Y ′′)),

where X ′′ and Y ′′ are independent random points from π′. To prove that Z1

and Z2 have the same distribution, it again suffices to prove that they have

the same mixed moments.

A particular mixed moment is given by nonnegative integers (k1, k2, . . . ),

(l1, l2, . . . ) and m (of which only a finite number is nonzero; say ki = li = 0

for i > n). Let us define the multigraph F as follows. F has two unlabeled

nodes vx and vy, and n further nodes labeled 1, . . . , n. We connect vx to i by

ki edges, vy to i by li edges (i = 1, . . . , n), and vx to vy by m edges. Then

E
(
W (X ′, a1)

k1 · · ·W (X ′, an)knW (Y ′, a1)
k1

· · ·W (Y ′, an)knW (X ′, Y ′)
)

= tα(F,H).

and similarly

E
(
W ′(X ′′, b1)

k1 · · ·W ′(X ′′, bn)knW ′(Y ′′, b1)
k1

· · ·W ′(Y ′′, bn)knW ′(X, Y )
)

= tβ(F, H ′).

These two numbers are the same by hypothesis. This completes the proof of

the Lemma. ¤

To prove Theorem 2.1, we next show:

Lemma 5.3 Let H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′) be two

Lebesguian graphons such that

t(F, H) = t(F, H ′).
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for every multigraph F . Then we can couple sequences α ∈ ΩN with sequences

β ∈ Ω′N so that if α, β) is a sequence from this joint distribution, then

tα(F, H) = tβ(F, H ′).

holds almost surely for every partially labeled multigraph F .

Proof. Let Fk be the set of k-labeled multigraphs. We define recur-

sively a coupling of sequences α ∈ Ωk with sequences β ∈ Ω′k so that

tα′(F,H) = tβ′(F, H ′) holds almost surely for every F ∈ Fk. Let (a1, . . . , ak)

and (b1, . . . , bk) be chosen from this coupled distribution. Consider two ran-

dom points X from π and Y from π′, and the random variables

A = (ta1...akX(F, H) : F ∈ Fk+1)

and

B = (tb1...bkY (F,H) : F ∈ Fk+1)

with values in [0, 1]Fk+1 . We claim that the variables A and B have the

same distribution. It suffices to show that A and B have the same mixed

moments. Consider any moment of A; in other words, let F1, . . . , Fm ∈ Fk+1,

let q1, . . . , qm be nonnegative integers, and let F qi

i be obtained from Fi by

replacing each edge in Fi by qi edges. Then the corresponding moment of A

is

E
( m∏

i=1

ta1...akX(Fi, H)qi

)
= E

(
ta1...akX(F q1

1 . . . F qm
m , H)

)
= ta1...ak

(F, H),

where the multigraph F is obtained by unlabeling the node labeled k + 1 in

the multigraph F q1

1 . . . F qm
m . Expressing the moments of B in a similar way,

we see that they are equal by the induction hypothesis. This proves that A

and B have the same distribution.

Using Lemma 6.2 it follows that we can couple the variables X and Y so

that A = B with probability 1. In other words, we can replace X and Y by
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a random variable (X ′, Y ′) ∈ Ω × Ω′ so that X ′ has distribution π, Y ′ has

distribution π′, and their joint distribution satisfies

ta1...akX′(F, H) = tb1...bkY ′(F, H ′)

for every F ∈ Fk+1 with probability 1. Thus we have extended the coupling

to Ωk × Ω′k.

It is clear that this sequence of couplings defines a coupling of ΩN with

Ω′N as claimed. ¤

5.4 Conclusion of proofs

Proof of Theorem 2.1. Part (i) follows easily: if we choose random se-

quences (α, β) from the coupled distribution given by Lemma 5.3, then these

sequences will be regular with probability 1, and so they satisfy the conditions

of Lemma 5.2.

To prove (ii), suppose that H = (Ω,A, π, W ) and H ′ = (Ω′,A′, π′,W ′)

satisfy (4) for every simple graph F . By Corollary 3.3, we can find twin-

free Lebesguian graphons G = (Γ,B, ρ, U) and G′ = (Γ′,B′, ρ′, U ′) and weak

isomorphisms φ and φ′ from H and H ′ to G and G′, respectively. It follows

by Theorem 2.1(i) that the G and G′ are isomorphic mod 0, so in particular

U = (U ′)ψ′ almost everywhere for some measure preserving map ψ′ : Γ → Γ′.

Defining ψ : Ω → Γ′ by ψ(x) = ψ′(φ(x)), we conclude that W = (U ′)ψ almost

everywhere. The maps ψ and φ′ are measure preserving from the completions

H and H ′ into G′. ¤
Proof of Corollary 2.2. The equivalence of (a), (b) and (c) follows by

Theorem 2.1 (ii) and the fact that a function which is measurable with respect

to the completion of L × L is almost everywhere equal to a function which

is measurable with respect to L × L. In the proof of (c), Theorem 2.1 may

give a graphon containing atoms, but it is easy to replace these atoms by

intervals of appropriate length.

To prove that (c)=⇒(e), assume that ϕ, ψ and U exist as in (c). Let

X, X ′ ∈ [0, 1] be independent random points from the uniform distribution
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λ on [0, 1]. Since ϕ and ψ are measure preserving, ϕ(X) and ψ(Y ) have the

same distribution, and hence by Lemma 6.2 there is a coupling measure γ

on [0, 1] × [0, 1] with marginals λ such that if (X,X ′) is a random sample

from γ, then ϕ(X) = ψ(X ′) with probability 1. So if (X,X ′) and (Y, Y ′) are

independent random points from γ, then

W (X,Y ) = U(phi(X), phi(Y )) = U ′(psi(X ′), psi(Y ′)) = W ′(X ′, Y ′).

To prove that (e)=⇒(d), consider the projections Φ, Ψ : [0, 1]2 → [0, 1]

defined by Φ(x, x′) = x and Ψ(x, x′) = x′. Then

WΦ((X, X ′), (Y, Y ′)) = W (X,Y )

and

(W ′)Ψ((X, X ′), (Y, Y ′)) = W ′(X ′, Y ′)

Thus, WΦ = (W ′)Ψ almost everywhere. Furthermore, Φ and Ψ are measure

preserving if we consider the coupling measure γ on [0, 1].

Since the completion of ([0, 1]2,L2, γ) is a Lebesgue space, we can find a

measure preserving map ρ : ([0, 1], λ) → ([0, 1]2, γ). Setting ϕ = Φ ◦ ρ and

ψ = Ψ◦ρ, we obtain the desired measure preserving maps ϕ, ψ : [0, 1] → [0, 1]

such that Wϕ = (W ′)ψ almost everywhere.

Finally, (d)⇒(a) is trivial. ¤
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6 Appendix: Moments and coupling of prob-

ability distributions

In this section we prove some probability theory lemmas, that are “well

known” but not easy to reference. We start with the fact that if two vector

valued random variables have the same mixed moments, then they have the

same distribution (cf. Feller [8], Problem XV.9.21).

Lemma 6.1 Let (Ω,A, π) and (Ω′,A′, π′) be probability spaces, and let

f : Ω → [0, 1]N and g : Ω′ → [0, 1]N be measurable functions, with

f(x) = (f1(x), f2(x), . . . ) and g(y) = (g1(y), g2(y), . . . ). If

∫
f1(x)k1 . . . fn(x)kn dπ(x) =

∫
g1(y)k1 . . . gn(y)kn dπ′(y)
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for every finite sequence of nonnegative integers k1, . . . , kn, then π(f−1(B)) =

π′(g−1(B)) for every Borel set B ⊆ [0, 1]N.

Proof. It suffices to prove that π(f−1(B)) = π′(g−1(B)) for every Borel set

of the form B = I1 × I2 × . . . In × [0, 1]× . . . , where I1, . . . , In are intervals.

Let pj,m(x) be a polynomial that approximates the indicator function 1Ij
on

[0, 1] in L1 with error less than 1/m (j = 1, . . . , n). Then

∫

Ω

p1,m(f1(x)) · · · pn,m(fn(x)) dx −→
∫

Ω

1I1(f1(x)) · · ·1In(fn(x)) dx

=

∫

f−1(B)

1 dx = π(f−1(B)) (m →∞).

Similarly,

∫

Ω

p1,m(g1(x)) · · · pn,m(gn(x)) dx −→ π(g−1(B)) (m →∞).

But the left hand sides of these two relations are equal for all m, which proves

the Lemma. ¤

We need the following natural fact about coupling.

Lemma 6.2 Assume that (Ω,A, π) and (Ω′,A, π′) are Lebesgue spaces, and

(Γ,B, ρ), a countably generated separating space. Let f : Ω → Γ and

g : Ω′ → Γ be measure preserving maps. Then there exists a coupling ν

of (Ω,A, π) and (Ω′,A, π′) such that

ν
{
(x, y) : f(x) = g(y)

}
= 1.

Proof. For A ∈ A, consider the measure λA(B) = π(A ∩ f−1(B)) defined

for B ∈ B, and its Radon-Nikodym derivative fA = dλA/dρ. Since λA ≤
π(f−1(B)) = ρ(B), this derivative exists, and 0 ≤ fA ≤ 1 almost everywhere.

Furthermore, f ∅ = 0 and fΩ = 1 almost everywhere.
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Similarly, for C ∈ A′, define µC(B) = π′(C ∩ g−1(B)) and gC = dµC/dρ.

Finally, let

ν(A× C) =

∫
fAgC dρ. (15)

Clearly

ν(A× C) ≤
∫

fA dρ = π(A),

and similarly ν(A× C) ≤ π′(C). Hence in particular ν(A× C) = 0 if either

π(A) = 0 or π′(C) = 0.

Claim 2 If Ai ∈ A, Ci ∈ A′ (i ∈ I) and the sets Ai × Ci form a (finite or

countably infinite) partition of A×C (A ∈ A, C ∈ A′), then
∑

i ν(Ai×Ci) =

ν(A× C).

It is easy to see that if A1, A2 ∈ A are disjoint sets and A = Ai∪A2, then

fA1 +fA2 = fA almost everywhere. It follows that for every C ∈ A′, we have

ν(A1 × C) + ν(A2 × C) = ν(A × C). This implies by standard arguments

that the claim holds if |I| is finite. This in turn implies that ν extends to a

finitely additive measure on the algebra F of sets that can be written as the

union of a finite number of product sets A× C (A ∈ A, C ∈ A′).

In the case of infinite |I|, it follows that
∑

i ν(Ai × Ci) ≤ ν(A × C); in

fact, for every finite J ⊆ I, we have ∪i∈JAi ×Ci ⊆ A×C, and hence by the

finite additivity of ν, we have

∑
i∈J

ν(Ai × Ci) = ν
(
∪i∈JAi × Ci

)
≤ ν(A× C).

Since this holds for every finite subset J of I, it also holds for I.

Suppose that there is a partition where {Ai × Ci : i = 1 ∈ N} of A× C

and an ε > 0 for which

∑
i

ν(Ai × Ci) < ν(A× C)− 4ε

on a set B of positive measure. Now we use that (Ω,A, π) and (Ω′,A, π′) are

Lebesgue spaces, so we may assume that they are intervals [0, a] and [0, b]
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respectively, together with a countable set of atoms. Thinking of the atoms as

converging to a from above, we have a compact topology on them. For every

i, we can find an open sets Ui ⊇ Ai and Vi ⊇ Ci such that π(Ui) ≤ π(Ai)+ε2−i

and π′(Vi) ≤ π′(Ci) + ε/2i. Also, we can find closed sets U ⊆ A and V ⊆ C

such that π(U) ≥ π(A)− ε and π′(V ) ≥ π′(C)− ε. Then

ν(Ui × Vi) ≤ ν(Ai × Ci) + ν((Ui \ Ai)× Ci) + ν(Ui × (Vi \ Ci))

≤ ν(Ai × Ci) + π(Ui \ Ai) + π′(Vi \ Ci) ≤ ν(Ai × Ci) + 2ε2−i.

It follows similarly that

ν(U × V ) ≥ ν(A× C)− 2ε.

Hence
∑

i

ν(Ui × Vi) ≤
∑

i

ν(Ai × Ci) + 2ε < ν(A× C)− 2ε ≤ ν(U × V ).

The open sets Ui × Vi cover the compact set U × V , and so a finite number

of them also covers. But the contradicts the finite additivity of ν which we

already established.

Claim 3 The setfunction ν extends to a measure on A×A′.

We have seen already that ν extends to F ; it follows by Claim 2 that this

extension is σ-additive. Thus the Claim follows by the Measure Extension

Theorem.

Define ∆ = {(x, y) ∈ Ω × Ω′ : f(x) = g(y)}. To complete the proof of

the Lemma, we want to prove that ν is a coupling between (Ω,A, π) and

(Ω′,A, π′) (which is trivial), and that ν(Ω × Ω′ \ ∆) = 0. Let S ⊆ B be a

countable family separating the elements of Γ. Then

Ω× Ω′ \∆ =
⋃
S∈S

f−1(S)× g−1(Γ \ S) ∪
⋃
S∈S

f−1(Γ \ S)× g−1(S).

Consider any term here, say f−1(S)× g−1(Γ \ S) = A× C. Then

ν(A× C) =

∫
fAgC dρ =

∫

S

+

∫

Γ\S
.
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Here
∫

S

fAgC dρ ≤
∫

S

gC dρ = µC(S) = π′(g−1(Γ \ S) ∩ g−1(S)) = 0,

and similarly ∫

Ω\S
fAgC dρ = 0.

This proves that ν(Ω× Ω′ \∆) = 0. ¤
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