
3D LayoutCRF for Multi-View Object Class Recognition and Segmentation

Derek Hoiem

Robotics Institute, Carnegie Mellon University

dhoiem@cs.cmu.edu

Carsten Rother, John Winn

Microsoft Research Cambridge, Cambridge, UK

{carrot,jwinn}@microsoft.com

Abstract

We introduce an approach to accurately detect and

segment partially occluded objects in various viewpoints

and scales. Our main contribution is a novel framework

for combining object-level descriptions (such as position,

shape, and color) with pixel-level appearance, boundary,

and occlusion reasoning. In training, we exploit a rough

3D object model to learn physically localized part appear-

ances. To find and segment objects in an image, we gener-

ate proposals based on the appearance and layout of local

parts. The proposals are then refined after incorporating

object-level information, and overlapping objects compete

for pixels to produce a final description and segmentation

of objects in the scene. A further contribution is a novel

instance penalty, which is handled very efficiently during

inference. We experimentally validate our approach on the

challenging PASCAL’06 car database.

1. Introduction

In this paper, we address the problem of detecting and

segmenting objects of a known class when seen from arbi-

trary viewpoints, even when the object is partially occluded.

This task is extremely challenging, since inferring the posi-

tion, orientation and visibility of an unknown number of

objects involves reasoning within a high dimensional latent

space.

Recently, Winn and Shotton [16] have introduced the

Layout Conditional Random Field (LayoutCRF) algorithm

to detect and segment objects while maintaining a consis-

tent layout of parts (e.g., a nose above a mouth in a face)

and reasoning about occlusions. They demonstrate suc-

cess in detecting and segmenting side views of cars, but

their method cannot handle multiple viewpoints or multiple

scales.

Our main contribution is to relax this restriction, using a

rough 3D model of the object class to register parts across

instances during training, allowing detection of cars in a

continuous range of viewpoints and scales. We also extend

the object model to include a description of the color of

the object. Further, we show how to include a per-instance

(a) Image (b) Parts/Object

Figure 1. We introduce the 3D LayoutCRF algorithm, which com-

bines pixel-level and object-level reasoning to detect, segment, and

describe the object.

cost in a CRF, while allowing efficient inference with graph

cuts. Altogether, we are able, not only to detect objects

across viewpoints and scales, but to label the pixels of the

object into parts and describe the position, bounding box,

viewpoint, and color of the object! In Figure 1, we show an

example of our results on a test image.

The main challenge in detecting and segmenting objects

across viewpoint and scale is that there is a huge space of

possible solutions. How do we get from simple pixels to

a complete description of the object? Our approach is to

build up to our final model in several steps, with each step

adding new information and providing a more precise hy-

pothesis about the objects. First, for several wide viewpoint

and scale ranges, we generate a set of proposals by labeling

the pixels of the image into parts while maintaining a lo-

cal consistency of neighboring parts. This gives us a rough

idea of the viewpoint (e.g. within 45 degrees), scale (within

a factor of
√

2), and position (within several pixels) of the

object. To more precisely define each proposed object, we

then enforce a global consistency of parts with respect to the

object bounding box and search for the most likely part la-

beling and object description. After this refinement step, we

compute a color model of each object (based on its current

segmentation estimate) and of the background surrounding

the object. This gives us several proposals at different view-

points and scales, each with a precise object description

and a pixel labeling into parts. Some of these proposals,

however, will be incorrect, and others will be contradictory,

claiming the very same pixels as parts. To decide which

proposals are valid, we assign a per-instance cost to each

object and find the best overall solution, considering both

how well each object explains the image and how likely we

are to see the object in a given position. In past CRF formu-

lations, label smoothing terms have been unfairly burdened

with the task of removing false positives. The incorporation

of an instance cost provides a much more reasonable way of

determining whether an object proposal has sufficient evi-

dence.

A key idea in our approach is to use a coarse 3D model to

roughly correspond physical parts across instances at differ-

ent viewpoints. The benefits of 3D object models have been

demonstrated by Ratan et al. [10], who find the object pose

that provides the best appearance match with a template,

Thomas et al. [14], who use an implicit 3D object model to

improve detection, and Kushal and Ponce [6], who find ob-

jects in cluttered photographs based on 3D models obtained

from stereo pairs. Our method allows us to take advantage

of currently available large datasets (e.g. LabelMe [12])

of hand-segmented images, avoiding the need for multiple

views [14] or stereo pairs [6] of the same object instance.

Additionally, our 3D part correspondence enables feature

sharing [15, 9] across viewpoints, rather than requiring sep-

arate appearance models for dozens of discrete viewpoints,

as in [13].

Although the above mentioned approaches tackle multi-

ple viewpoint detection and others have attempted to detect

and segment objects from a single viewpoint (e.g. [1]), ours

is the first, to our knowledge, to simultaneously detect and

segment objects in a large range of viewpoints and scales.

The key to our success is the ability to reason about local

part appearance and occlusion relationships while maintain-

ing a globally consistent description of the object.

2. The Model

We aim assign all pixels of an image x to an object in-

stance or to the background. For each object instance, we

also aim to capture the position, scale and viewpoint of that

object. Hence, our model contains both pixel-level vari-

ables h = {hi} and object-level variables T = {Tm}. An

overview of the entire model is shown in Figure 2.

At the pixel level, the part label hi indicates the object in-

stance that the pixel belongs to and the part of that instance

the pixel lies on. Instances are numbered {0, 1, . . . ,M}
where the background is indicated by 0, and M foreground

instances by {1, . . . ,M}. Each foreground instance is sub-

divided into H parts. Rather than defining parts according

to a 2D rectangle, as in the original LayoutCRF, we define

them over the surface of a 3D solid (Figure 3).

At the object level, the variables for the mth instance

are denoted Tm and consist of the position and scale zm,

viewpoint Vm and color distribution Cm. The scale is

anisotropic, so that instances of different aspect ratios can

be detected.

Image x

T1 Tm =

Part labels
h

position
scale

viewpoint
color

Object instances

Figure 2. The 3D LayoutCRF model. The part labels h (orange)

are conditioned on the image x (dark blue) and connected 4-wise

with their neighbors. These pairwise potentials encourage neigh-

boring parts to belong to the same object instance provided that

they are consistent with the part layout of that instance. Each ob-

ject instance has a set of variables Tm (green) relating to its posi-

tion, viewpoint, color distribution and visibility. These instance

variables affect the expected location/visiblity of the instance’s

parts via a rough 3D model. Each set of instance variables Tm

is connected to all of the part labels.

Average Back/Side Segments 3D Model

Image Initial Labels Deformed Labels

Figure 3. 3D LayoutCRF Part Assignment. During initializa-

tion, we use a rough 3D model (top) to consistently assign the

same physical part across different instances in different view-

points. We then learn appearance models over those parts and use

them to relabel the parts (bottom), allowing the part grid to deform

slightly to better fit each training instance.

The probability distribution for all latent variables con-

ditioned on the image is given by

P (h,T |x;θ) =
exp [−E(h,T |x;θ)]

Z(x,θ)
(1)

where θ are the model parameters and E is the energy:

E(h,T |x;θ) =
∑

i

part appearance
︷ ︸︸ ︷

φi(hi |x, {Tm})

+
∑

i,j

part layout
︷ ︸︸ ︷

ψij(hi, hj |x, {Vm})

+
∑

m

[∑

i

inst. appearance
︷ ︸︸ ︷

µi(hi, xi;Cm)+

inst. layout
︷ ︸︸ ︷

λi(hi, Tm)+

inst. cost
︷ ︸︸ ︷

βinst(Vm)
]

. (2)

The part appearance potentials φi use local image infor-

mation to detect which part is at pixel i. The part layout po-

tentials ψij encourage neighboring pixels to be layout con-

sistent, i.e. to have part labels belonging to the same object

instance and in the correct relative layout. The instance ap-

pearance and instance layout potentials {µi, λi} favor part

labelings that are consistent with the appearance, position,

scale and viewpoint of each object instance. Finally, the in-

stance cost βinst defines a prior on the existence of an object

at a particular viewpoint in the image. We will now look at

each of these potentials in more detail.

2.1. Part appearance

The part appearance potential captures the mapping from

local appearance features of the image to object parts. In the

original LayoutCRF, since parts were always seen from the

same viewpoint, this term had to represent only the intra-

class variability in the appearance of a part. In the 3D Lay-

outCRF, we have to consider how the appearance of a part

varies with viewpoint. One possibility is to train the ap-

pearance model to recognize parts independent of the view-

point. However, this leads to much greater variability in

appearance and so reduces detection accuracy, while pro-

viding less bottom-up information about the viewpoint. In-

stead, we choose to provide multiple appearance models for

each part, one for each 45◦ viewing range V .

As in [16], the appearance models we use are deci-

sion forests. While separate appearance models are learned

for each viewpoint range, we share features between the

models by ensuring that the decision forests for each

φi(hi |x, T ;θ) have identical structures. This sharing of

features helps to reduce over-fitting in the individual mod-

els, as demonstrated by [15]. For symmetrical objects, we

also enforce parameter sharing between pairs of viewpoints

that mirror each other (e.g. car facing left and car facing

Pixel

label

(p,q)

(p+1,q)

(p,q)

(p+1,q+1)

(p+1,q‐1)

Layout

consistent

 values for

pixel to

the right

(p,q)

(p,q+1)(p,q) (p+1,q+1)(p‐1,q+1)

Layout consistent

values for pixel

underneath

Pixel

label

Ordering of part

labels from

viewpoint V
(8,3) (9,3)(7,3)

(8,2) (9,2)(7,2)

(8,4) (9,4)(7,4)

Figure 4. Layout consistency. From a given viewpoint V , object

parts are expected to appear in a particular two-dimensional or-

dering (top). Neighboring part labels are layout consistent if they

are consistent with this ordering (defined over the 3D surface of

the object). To allow for object deformation and small rotations,

the diagonally-related part labels are also considered layout con-

sistent.

right), mirroring the image appropriately when evaluating

features. Descriptions of the features used in the decision

forests, along with details of the learning method are given

in Sec. 3.1.

2.2. Part layout

The part layout potential favors part labels which are lay-

out consistent, as defined in [16]. In essence, a part labeling

is layout consistent if all pairs of neighboring parts are in

the correct relative position, for example, in a face a nose

part is above a mouth part (see Figure 4 for a more detailed

explanation). For layout consistency to be applicable, it is

necessary for the object parts to appear in the same relative

position for any visible region of an object. When we fix

the viewpoint, this is a good assumption for most rigid ob-

ject classes. However, if we allow the viewpoint to change

arbitrarily, the relative position of the parts can also change

arbitrarily. For example, if a face can appear upside-down,

then a nose part can appear below a mouth part. To avoid

this, we fix the viewpoint to be within a 45◦ range for any

proposed object instance. With this restriction on the view-

point, layout consistency of any object region is a reason-

able assumption, given that the LayoutCRF allows for small

rotations/deformations. The assumption of a fixed view-

point range also allows the appropriate appearance model

to be selected for an object instance.

The part layout potential for a given viewpoint V , takes

the form

ψij(hi, hj |x, V ;θ) =







0 Layout Consistent

βoe.eij Object Edge

βoo.eij Object Occlusion

βinc Inconsistent

where eij is an edge cost that encourages object boundaries

to align with image contrast edges (see [16]) and the four

cases are:

Layout Consistent: Both hi and hj are layout consistent

foreground labels as seen from viewpoint V , or both are

background labels.

Object Edge: One label is the background, the other is an

edge part (i.e., a part that lies on the edge of the object when

seen from viewpoint V).

Object Occlusion: One label is an interior (non-edge) part

label, the other is the background label or an edge part la-

bel. This represents the case where an object is occluded by

another object or a ‘background’ object.

Inconsistent: Both labels are interior part labels which are

not layout consistent.

For the experiments in this paper, we set the cost param-

eters to {βoe = 3, βoo = 6, βinc = ∞} when generating

proposals and {βoe = 1, βoo = 2, βinc = ∞} for the later

stages (when instance layout can also be considered).

2.3. Object Instance Model

The instance model ensures that the part labeling is con-

sistent with the color, position, scale and viewpoint of the

instance. It also provides a prior on the existence of an

object at a particular viewpoint, through the use of a per-

instance cost.

Instance appearance: Though colors may vary widely

within an object class, any particular instance typically con-

sists of a small set of colors. For instance, red and blue car

doors are common, but a single car rarely has both. Thus,

we require the color of the parts to be consistent with the

overall color distribution of an instance. We represent the

color distribution for instance m as a mixture of Gaussians

model with parameters Cm, as used in [11]. We also learn

a localized color distribution C0 for the background. The

instance appearance potential is defined to be

µi(hi, xi;Cm) = −βcδ(hi ∈ m) log
PMoG(xi|Cm)

PMoG(xi|C0)
(3)

where PMoG is the mixture of Gaussians model and δ(hi ∈
m) is 1 if hi is a part of instance m and 0 otherwise. Since

this potential depends on the test image, it is learned during

inference (see Section 3.2). In our experiments, its weight

βc is set to 0.25.

Instance layout: While layout consistency ensures that

parts have a reasonable local layout, instance consistency

ensures that parts are globally consistent with the position,

scale and viewpoint of the instance. Unlike the single-

viewpoint LayoutCRF, the global position of parts can no

longer be specified using a 2D rectangular coordinate frame.

We now specify the likelihood of each part given its position

and the object’s position, scale, and viewpoint. Thus, our

object representation is expanded into viewpoint and scale

space. The quantization for determining instance layout is

finer than for part appearance sharing. In our experiments,

we subdivide each viewpoint range of 45 degrees and height

range of
√

2 into three subviewpoints, three height ranges,

and two aspect ratio (bounding box width:height) ranges.

The instance layout potential is a look-up table for each

quantized viewpoint Vm,

λi(hi, Tm) = −δ(hi ∈ m) log
P (hi|loc(zm, i), Vm)

P (hi)
(4)

where δ(hi ∈ m) is as specified above, loc(zm, i) returns

the position of pixel i in the object-coordinate system given

that the object is at position/scale zm, and P (hi) is the part

prior. During the proposal stage, when object-level infor-

mation is unavailable, we instead apply a constant penalty

βbg for assigning a pixel to background, in order to offset

the low prior probability of any individual part.

Instance cost: We introduce a per-instance cost βinst(Vm)
to the MRF formulation, which acts as a prior favoring im-

age interpretations with fewer object instances. Effectively,

it determines whether the total evidence for an object out-

weighs our prior bias against its existence. The instance

cost is commonly used in object classification (e.g. [13]),

and can be justified as the odds ratio in a log-likelihood ratio

test or as the object description length in the MDL principle.

The use of an instance cost is a more natural way to re-

move false detections than relying on smoothing terms, re-

sulting in better segmentations. It also provides the ability

to determine that disconnected regions are part of the same

object (for example, when a lamp post divides a car in two).

We define a cost that depends only on viewpoint; depen-

dence on scale and position could allow methods such as

[3] to be employed. In Sec. 4.1, we demonstrate improve-

ment due to our use of the instance penalty.

3. Training and Inference

3.1. Training

The full training process is summarized in Figure 5.

Learning the 3D Model: We create the 3D model (shown

in Figure 3) by space carving [7] from thresholded segmen-

tations of the rear and side views of cars, assuming an or-

thographic projection. To do this, we first center and rescale

(according to height) the segmentations of each viewpoint.

We then take the mean of the segmentations and threshold

TRAINING

1. Gather training examples with segmented and

viewpoint-labeled objects

2. Construct rough 3D object model

3. Assign part labels to training examples

4. Learn part appearance (randomized decision trees)

5. Learn instance layout (simple counting over part lo-

cations)

6. Refine labeling (run inference steps 1 and 2); go to

step 4 (one iteration)

Figure 5. Training procedure for 3D Layout CRF.

(at 0.5) to get an “average” segmentation from each view.

Assuming an orthographic projection, we then carve voxels

out of a solid cube. Finally, we assign parts to the surface

of the 3D object model, projecting a grid onto each side.

To assign parts to a new training instance, we require a

segmentation and orientation (obtained by clicking on the

corner of the car). We rotate and scale (separately in each

axis) our 3D prototype to match the orientation and seg-

mentation of the training instance as closely as possible and

back-project the part labels onto the object segment, again

assuming an orthographic projection.

Choice of image features: Our local parts appearances are

based on RGB intensity, filter responses of random patches

selected from the training images (similarly to [15]) and a

distance transform of a Canny edge image. The latter can

effectively model unique edge appearances, such as the cir-

cle of a wheel, and long-range properties, such as that a

pixel in large uniform regions will have a high distance to

the nearest edge, and, thus, is unlikely to be part of a car or

person.

Training Decision Trees: We apply the randomized trees

method [8] to estimate the likelihood of a pixel label given

its image features. Randomized trees allows efficient large-

label learning (we have 120 parts in our experiments) and

is robust to over-fitting. We learn a single set of 25 ran-

domized trees, each with 250 leaf nodes, on a subset of

our data. We then re-estimate the parameters of the trees,

without changing the structure, using the millions of pix-

els in our training set. By sharing the tree structure across

viewpoint models, we reduce over-fitting and allow more

efficient training and testing.

3.2. Inference

To optimize the full objective function in one step is in-

tractable and prone to poor locally optimal solutions. There-

fore, the inference is split into three different optimization

steps. In the first two steps, each potential instance in each

viewpoint/scale range is optimized individually. The final

step operates on the full objective function that considers

total evidence across the entire image. The inference proce-

INFERENCE

1. Generate Proposals (scale/viewpoint separately)

(a) Compute P(h |x)
(b) Label pixels into parts using only part-level

appearance and consistency (TRW-S)

(c) Connected components (by layout consis-

tency) become proposals

2. Refine Proposals (instance/scale/viewpoint separately)

For each proposal, iterate until convergence:

(a) Find all likely object configurations {T̂}
given parts ĥ (s.t. P(T̂ | ĥ) > 0.01)

(b) Find most likely parts ĥ given {T̂} (TRW-S)

Compute object and background color distributions,

object appearance terms

3. Create Final Labeling (instance/scale/viewpoint jointly)

Input: part labeling for each proposal with unary

potentials

Assign object labels m to pixels using complete

model (alpha-expansion graph cuts)

Figure 6. Inference algorithm for 3D Layout CRF.

dure is outlined in Figure 6 and illustrated in Figure 7.

1) Generate proposals: We use sequential tree-reweighted

message passing (TRW-S) [4] to obtain the MAP solution

and create layout-consistent connected components of parts

to get our initial proposals.

2) Refine proposals: To refine each proposal, we iteratively

(1) estimate the distribution of likely instance descriptions

(T) and marginalize to get the instance consistency terms

for that proposal; and (2) find the most likely parts given

the current instance estimate (also using TRW-S). By main-

taining a distribution of instance descriptions during this it-

erative process, we robustly converge to a good solution.

3) Combine proposals: To determine which proposals are

valid and the final segmentations of the objects, we apply

alpha-expansion [5], with each expansion being a potential

switch to a different object label. It can be shown that each

expansion is submodular, making graph cuts well suited for

this phase of the inference. The proposal and refinement

stages take most of the computational time (typically 1-5

minutes per scale in a 120x160 image). The final alpha-

expansion stage requires only a few seconds.

Applying the instance cost: We are the first, to our knowl-

edge, to show that an instance cost can be handled appro-

priately with the alpha expansion procedure (i.e., that the

objective function is expansion submodular).

The instance cost is defined as a cost per instance that is

present in the image. If at least one pixel is labeled as part of

an object, then that object must be visible, incurring a fixed

cost; otherwise, the object may be invisible (non-existent)

at no cost. Formally we may write this as hard constraint

(a) Input Image (b) Initial Parts (c) Connected Comps (d) Refined Proposals (e) Final Result

Figure 7. Inference illustration. From left to right, we show the input image, the initial part labelings (Figure 6, step 1b) that enforce

local consistency (4 of 8 total viewpoints per scale), the corresponding layout consistent connected components (step 1c), four (of 24 total)

refined proposals (step 2), and the final labeling after performing inference over the full model.

which is added to our objective function in Equation 2

∑

m

∑

i

∞ ((1 − sm) IPm(hi)) , (5)

where the instance part function IPm has a binary output

indicating whether hi is a part of instance m or not. The in-

stance variable sm is 1 if instancem exist in the image, oth-

erwise 0. Note that this function prohibits the configuration

that sm = 0 and a part of instancem is present in the image.

This term is indeed submodular [5], i.e. E(0, 0)+E(1, 1) ≤
E(0, 1) + E(1, 0). It is E(0, 0) = E(1, 1) = E(0, 1) = 0
and E(1, 0) = ∞, where E(hi, sm) is the pairwise term

between a pixel node and an instance node.

Learning the instance appearance: Since the color ap-

pearance of an object is instance specific the respective pa-

rameters in Equation 3 are learned during inference, in the

end of the refinement stage (step 2 in Figure 6). We gen-

erate two proposed segmentations: a conservative estimate

(increase βbg by 0.05) in which all pixels are highly likely

to be object and a loose estimate (decrease βbg by 1) such

that all pixels outside of it are highly unlikely to be object.

We define a local background region of pixels within an en-

larged bounding box (by ten pixels on each side), excluding

pixels in the loosely estimated segment. The object color

distribution and background color distribution are each esti-

mated over their respective regions using a mixture of three

diagonal-covariance Gaussians in L*a*b* space. The class-

conditional log likelihood ratio of the color likelihoods is

factored into our appearance term.

4. Experiments

In this paper, we have shown how to reason about object-

level properties, such as viewpoint, size, and color, while

also reasoning about pixel-level appearance and part con-

sistency. We have also introduced a 3D model to allow part

assignments on different instances to correspond roughly to

physical parts on the object. Finally, we have shown how to

incorporate a per-instance cost into the CRF, allowing ob-

ject proposals to be rejected or accepted based on the entire

evidence, instead of relying on local pairwise smoothing

costs to remove false positives. Our goal in these experi-

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
e

c
a

ll

Shotton et al.
Fergus et al.
Agarwal & Roth
Leibe et al.
LayoutCRF
3D LayoutCRF

Figure 8. Precision-recall on UIUC car test set.

ments is to demonstrate the value of each of these contribu-

tions.

4.1. Comparison to the Original LayoutCRF

The key contribution of our algorithm is the ability to de-

tect and segment objects in the presence of viewpoint and

scale variation. To do this, we have introduced many modi-

fications to the original LayoutCRF inference algorithm and

improved the basic model by including an instance cost.

To compare, we perform the experiment described by Winn

and Shotton [16] on the UIUC car dataset. Note that, since

this dataset is single-scale with only side views of cars, we

do not incorporate our 3D model for this experiment.

In Figure 8, we show that our algorithm achieves higher

recall (by about 8%) than Winn and Shotton at the high-

precision regions of the precision-recall curve, with sim-

ilar recall elsewhere. The benefit of incorporating an in-

stance cost into our model can be seen in the segmenta-

tion and qualitative results (see Figure 9). The instance

cost allows the smoothness and contrast costs to be reduced,

since they are no longer responsible for removing false posi-

tives. Thus, our algorithm has a segmentation accuracy (av-

erage intersection-union ratio of ground truth and inferred

object regions) of 0.77, compared to 0.66 for the original

(a) Image (b) Parts/Object (c) Segmentation (d) Image (e) Parts/Object (f) Segmentation

Figure 9. Test results on the UIUC dataset. Note the accurate segmentations and the ability to determine that disconnected car regions

can be explained by a single instance. In (b), parts are labeled with separate colors, bounding boxes indicate the estimated extent of an

object, and arrows indicate the estimated orientation. The instance cost allows disconnected object regions to be explained by a single

instance (left, and right bottom row). The orientation is incorrectly estimated in (right bottom row), leading to a poorer segmentation.

LayoutCRF algorithm. More importantly, the instance cost

allows our algorithm to correctly assign disconnected car

parts to a single instance, when they are separated by an

occlusion (see Figure 9 for examples). The instance cost

allows the algorithm to follow Occam’s razor – that if the

same pixels can be explained as well by the presence of one

car as by two, then the single-car hypothesis is preferred.

4.2. Multi­view Car Detection

To demonstrate our ability to recognize and segment cars

in a variety of viewpoints, we experiment on images from

the PASCAL 2006 challenge [2], a very difficult dataset. In

Figure 10, we show some example detections and segmen-

tations at different viewpoints and scales on test images.

Training: We trained using roughly 700 pre-segmented

cars from the LabelMe database [12] and 300 cars from the

PASCAL training set, which we manually segmented. We

train appearance models for four viewpoint ranges (45 de-

grees each) with a scale range of 26 to 38 pixels tall. When

estimating our instance consistency terms, we rescale the

cars to 30-34 pixels tall, divide them into groups with view-

point ranges of 15 degrees, and subdivide those into two

groups according to aspect ratio (width to height of bound-

ing box). Thus, during the refinement stage, we are able to

accurately recover the viewpoint and bounding box of the

cars. We set βbg = 4.75 and an instance cost for each view-

point at α ∗ {1000, 750, 1100, 1100}, where α determines

the precision-recall trade-off. We set the weight of the ob-

ject color term to 0.25. We have not found the algorithm to

be highly sensitive to these parameters, except βbg , which

must be set sufficiently high to allow high recall, but low

enough so that the entire image is not initially assigned to

object parts (i.e., no pixels assigned to background).

Testing: To create our test set, we downsample the PAS-

CAL car test set to 160x120 pixels and test on the first 150

images that contain cars at least 26 pixels tall. In a multi-

scale search, downsampling the image in steps of
√

2, we

process only those scales for which at least one car is be-

tween 26 and 38 pixels tall. This constraint is due to the

high computational cost of our current algorithm (it still

takes 1-10 minutes per image, depending on the number of

initial proposals) and not due to any fundamental limitations

of our approach. When searching within a 26-38 pixel scale

range, we produce separate proposals for each 45-degree

range of viewpoints and repeat with the mirrored the image

to cover the full 360 degree range (taking advantage of car

symmetry).

Results: Considering the large interclass variability, heav-

ily occluded objects, and viewpoint and scale variation in

the dataset, our quantitative and qualitative results are quite

good. We achieve equal precision-recall at 61%. For refer-

ence, the highest reported results [2] in the 2006 PASCAL

challenge had an equal precision-recall rate of about 45%

(but note that this rate is for the full-scale test set, which is

a much more difficult test). In Figure 10, we demonstrate

the ability to accurately detect, segment, and determine the

viewpoint of cars in a wide variety of cases. We also show

several examples of failure. Often the mistakes, such as

getting viewpoint wrong by 180 degrees or thinking that a

double-decker bus is actually two cars are reasonable in the

absence of high-level contextual information.

We also measure the value of our 3D model and of

modeling the color distribution of the object. For the for-

mer, we assign a 2D grid of parts for each viewpoint range

and relabel based on appearance, as is described in [16].

After learning appearance models under this part-labeling

method, we then run our inference keeping other aspects of

the algorithm equal (e.g., we include instance costs and the

object color term). Our 3D model outperforms the 2D grid

method of initial part assignment in accuracy (by about 5%

recall at the equal precision-recall point of 60%), produces

better segmentations, and a more precise viewpoint estima-

tion. Similarly, including the color model improves recall

by about 5% at 60% precision and improves segmentation.

(a) Image (b) Parts/Object (c) Segmentation (d) Image (e) Parts/Object (f) Segmentation

Figure 10. Results of multi-view car detection and segmentation on test images of the challenging Pascal Dataset.

5. Discussion and Future Work

We introduce a method which we believe is the first to

combine multi-viewpoint class recognition with segmenta-

tion. Our 3D LayoutCRF model makes it possible to reason

about object-level properties, such as viewpoint, size and

color, while also reasoning about pixel-level appearance,

part consistency and occlusion. Another important contri-

bution is an instance cost, which improves segmentation ac-

curacy and allows non-contiguous regions to be assigned to

the same object.

Some conceptually simple (but perhaps technically dif-

ficult) extensions include reducing the currently-prohibitive

computational time, modeling a larger number of objects,

and modeling scale dependencies (e.g., as in [3]). Major

challenges include extension to non-rigid or articulated ob-

jects and integration with methods that are more appropriate

for objects without a well-defined shape, such as buildings

or grass.

Acknowledgements: We would like to thank Vladimir

Kolmogorov for insights on the submodularity of the in-

stance cost and for improving the TRW-S inference speed.

References

[1] E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and

bottom-up segmentation. In CVPR, 2004.

[2] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool. The

Pascal VOC2006 results. Technical report, 2006.

[3] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective.

In CVPR, 2006.

[4] V. Kolmogorov. Convergent tree-reweighted message passing for en-

ergy minimization. IEEE Trans. PAMI, 28(10):1568–1583, 2006.

[5] V. Kolmogorov and R. Zabih. What energy functions can be mini-

mized via graph cuts? IEEE Trans. PAMI, 26(2):147–159, 2004.

[6] A. Kushal and J. Ponce. Modeling 3d objects from stereo views and

recognizing them in photographs. In ECCV, 2006.

[7] K. N. Kutulakos and S. Seitz. A theory of shape by space carving. In

TR692, Computer Science Dept., U. Rochester. May 1998.

[8] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time

keypoint recognition. In CVPR, June 2005.

[9] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object

detectors using a visual shape alphabet. In CVPR, 2006.

[10] A. L. Ratan, W. E. L. Grimson, and I. William M. Wells. Object de-

tection and localization by dynamic template warping. Int. J. Com-

puter Vision, 36(2):131–147, 2000.

[11] C. Rother, V. Kolmogorov, and A. Blake. GrabCut -interactive fore-

ground extraction using iterated graph cuts. In ACM SIGGRAPH

2004.

[12] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. La-

belMe: a database and web-based tool for image annotation. MIT AI

Lab Memo AIM-2005-025, 2005.

[13] H. Schneiderman and T. Kanade. A statistical method for 3D object

detection applied to faces and cars. In CVPR, 2000.

[14] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and

L. Van Gool. Towards multi-view object class detection. In CVPR,

2006.

[15] A. Torralba, K. Murphy, and W. Freeman. Sharing features: efficient

boosting procedures for multiclass object detection. CVPR, 2004.

[16] J. Winn and J. Shotton. The layout consistent random field for rec-

ognizing and segmenting partially occluded objects. In CVPR, 2006.

