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Abstract. We demonstrate that, by using a recently proposed leveled homomorphic en-
cryption scheme, it is possible to delegate the execution of a machine learning algorithm
to a computing service while retaining confidentiality of the training and test data. Since
the computational complexity of the homomorphic encryption scheme depends primarily on
the number of levels of multiplications to be carried out on the encrypted data, we define
a new class of machine learning algorithms in which the algorithm’s predictions, viewed as
functions of the input data, can be expressed as polynomials of bounded degree. We pro-
pose confidential algorithms for binary classification based on polynomial approximations to
least-squares solutions obtained by a small number of gradient descent steps. We present ex-
perimental validation of the confidential machine learning pipeline and discuss the trade-offs
regarding computational complexity, prediction accuracy and cryptographic security.

1 Introduction

Cloud service providers leverage their large investments in data centers to offer services which help
smaller companies cut their costs. But one of the barriers to adoption of cloud services is concern
over the privacy and confidentiality of the data being handled by the cloud, and the commercial
value of that data or the regulations protecting the handling of sensitive data. In this work we
propose a cloud service which provides confidential handling of machine learning tasks for various
applications. Machine learning (ML) consists of two stages, the training stage and the classification
stage, either or both of which can be outsourced to the cloud. In addition, when both stages are
outsourced to the cloud, we propose an intermediate probabilistic verification stage to test and
validate the learned model which has been computed by the cloud service. In the protocols we
describe here, we identify three parties: the Data Owner, the Cloud Service Provider, and the
Content Providers.

The Data Owner is the customer for the Cloud Service, and owns or is responsible for the
data being processed. Content Providers upload data to the cloud, data which belongs to or is
intended for the Data Owner. Content Providers could be remote devices, sensors or monitors
which belong to the Data Owner, and which may have been authorized by the Data Owner, for
providing data on the Data Owner’s behalf. A typical scenario might be a patient who is the Data
Owner, and Content Providers which consist of multiple health monitoring devices provisioned
to monitor the patient’s health and upload data to the Cloud Service. Alternatively, the Data
Owner could be some large company with many lab technicians, partners, or contracted Content
Providers which upload data to the Cloud Service on behalf of the company, for example in the
financial, pharmaceutical, or social media industry. The Cloud Service may be run by a third
party, a partner company, or even the company itself, off-premises or in some stand-alone facility.

Our rationale for proposing these protocols is that there are some scenarios where outsourcing
computation to a Cloud Service makes sense from a practical and rational economic point of view.
Namely, when data is collected or uploaded from many diverse sources or parties, an online service
can host the collection, storage, and computation of and on this data without requiring interaction
with the data owner. This service allows the data owner to access and query their potentially large
amount of data at any time from a device with little computational or storage capacity. The Data
Owner may subsequently designate privileges to other parties (such as a health care provider) to
access the data or to receive alerts or updates concerning some other processed form of the data.



When outsourcing computation to a service makes sense, and confidentiality of the data is an
issue, then our protocols for providing confidential processing of sensitive data are relevant.

One way to preserve confidentiality of data when outsourcing computation is to encrypt the
data before uploading it to the cloud. This may limit the utility of the data, but recent advances
in cryptography allow searching on encrypted data and performing operations on encrypted data,
all without decrypting it. An encryption scheme which allows arbitrary operations on ciphertexts is
called a Fully Homomorphic Encryption (FHE) scheme. The first FHE scheme was constructed by
Gentry [9], and subsequent schemes [20, 4,3, 10, 11] have rapidly become more practical, with im-
proved performance and parameters. Gentry’s scheme and several of the subsequent FHE schemes
have a so-called Somewhat Homomorphic Encryption (SHE) scheme as an underlying building
block, and use a technique called bootstrapping to extend it to an FHE scheme. An SHE scheme
performs additions and multiplications on encrypted data, but is limited in the amount of such
computations it can perform, because encryption involves the addition of small noise terms into
ciphertexts. Operating homomorphically on ciphertexts causes the inherent noise terms to grow,
and correct decryption is only possible as long as these noise terms do not exceed a certain bound.
Noise growth is much larger in homomorphic multiplications than in additions. This means that an
SHE scheme can only evaluate polynomial functions of the data up to a bounded degree before the
inherent noise grows too large. Bootstrapping, a very costly procedure, is then necessary to reduce
the noise to its initial level, enabling fully homomorphic computation. While noise grows exponen-
tially in SHE schemes, recent improvements have provided homomorphic schemes in which noise
grows only polynomial in the number of levels of multiplications performed [3, 2]. Such schemes are
called Leveled Homomorphic Encryption (LHE) schemes, and they allow evaluation of polynomial
functions of a higher, bounded degree without resorting to the bootstrapping component.

Recent schemes are based on computational hardness assumptions for problems related to
well known lattice problems such as the Shortest Vector Problem (SVP). Specifically, schemes
based on the Ring Learning With Errors (RLWE) assumption operate in polynomial rings, where
polynomials can alternatively be viewed as vectors in a lattice. It was shown in [16] how the
hardness of the RLWE problem is related to SVP.

In practice, as was observed in [14], many useful computational services only require evaluation
of low-degree polynomials, so they can be deployed on encrypted data using only an LHE or SHE
scheme. In this paper, we propose a confidential protocol for machine learning tasks, called ML
Confidential, based on Homomorphic Encryption (HE), and we design confidential machine
learning algorithms based on low-degree polynomial versions of classification algorithms. Section 2
describes the general ML Confidential protocol and discusses its security. Section 3 is devoted
to explaining basic classification algorithms that can be expressed as low-degree polynomials,
including the derivation of division-free, integer (DFI) versions of these algorithms. Section 4
describes the homomorphic encryption scheme we use in our proof-of-concept implementation of
the division-free, integer classification algorithms. Our implementation is discussed in Section 5
together with some initial performance numbers and analysis.

Our experiments implement a Linear Means (LM) Classifier and Fisher’s Linear Discriminant
(FLD) Classifier on a publicly available data set, the Wisconsin Breast Cancer Data set from [8].
Using up to 100 training and test vectors with up to 30 features each for the training and clas-
sification stages, our experiments show that (LM) classification can be accomplished in roughly
6 seconds using an unoptimized mathematics software package running on a standard modern
laptop. The FLD classifier runs in roughly 20 seconds for vectors with only 10 features. Across
all experiments, we observe a slow-down of roughly 6 — 7 orders of magnitude for operating on
encrypted data at these parameter and data sizes. This compares favorably with other recent
benchmarks for HE (see [11]).

Connections between cryptography and machine learning have been considered for a long time
(see, e.g., [19]), mostly with the view that they are inverses of one another in the sense that
cryptography aims to prevent access to information whereas machine learning attempts to extract
information from data. Note that the Confidential ML problem discussed in this paper is also
loosely related to doing inference on differentially private data (see [21] and references therein),
the difference being that in our case the Cloud Service performing the inference calculations is not
even able to interpret the results of its analysis.



2 The ML Confidential Protocol and Security Considerations

This section proposes the ML Confidential protocol based on a homomorphic encryption scheme
that provides algorithms HE.Keygen, HE.Enc, HE.Dec, and HE.Eval for key generation, encryption,
decryption, and homomorphic function evaluation. The scheme can be either a symmetric, secret
key scheme or an asymmetric, public key scheme. It can be a fully-homomorphic scheme, in which
case arbitrary machine learning algorithms can be carried out on the encrypted data by evaluating
them with HE.Eval. In a more practical case, it can be a somewhat or leveled homomorphic
scheme, where the function HE.Eval can only evaluate polynomial functions of the input data with
a bounded degree comprised of homomorphic addition HE.Add and multiplication HE.Mult on the
message space. Therefore, in that case, machine learning algorithms are restricted to algorithms
that can be expressed as polynomials with bounded degree. In either case, let ML.Train and
ML.Classify be the training and classification algorithms of the machine learning task which can
be homomorphically carried out on encrypted data with the function HE.Eval.

Three types of parties interact in the protocol: the Data Owner, the Cloud Service Provider,
and Content Providers. The protocol comprises the following main components.

Key Generation. The Data Owner executes the HE.Keygen algorithm for either a private key or
a public key version of the homomorphic encryption scheme. For the private key version, the Data
Owner shares the private encryption key with the Content Providers and they all securely store
the key locally. For the public key version, the Data Owner publishes the public key and securely
stores the private key locally.

Encryption and Upload of Training Data. Content Providers encrypt confidential, labeled
data to upload to the Cloud. For all classes of training vectors, and for all training vectors x in
each class, the Content Providers encrypt x and send HE.Enc(ek, x) to the Cloud Service Provider
along with the unencrypted label of the class. Here ek is the encryption key that is known to
the Content Providers, i.e. it is equal to the secret key in the symmetric version and to the
public key in the asymmetric version of the scheme. Alternatively, the Content Providers may
encrypt preprocessed versions of the training set data, e.g. synthetic data such as class sums or
class-conditional covariance matrices (i.e. sufficient statistics) for each class of training vectors.

Training. The Cloud Service Provider computes an encrypted Learned Model. Training vec-
tors consisting of encrypted, labeled content, HE.Enc(ek, x), are processed by the Cloud Service
Provider. This means that the algorithm HE.Eval of the homomorphic encryption scheme evaluates
the machine learning training phase ML.Train homomorphically on the encrypted training vectors.
An encrypted form of the Learned Model is stored by the Cloud Service Provider and can be
returned to the Data Owner on request.

Classification. An encryption HE.Enc(ek, x) of a test vector x, which usually has not been used
in the training stage, is sent to the Cloud Service Provider by the Data Owner or the Content
Providers. The Cloud Service Provider evaluates the classification phase ML.Classify of the machine
learning task on the encrypted test vector using the encrypted learned model, and encrypted
classifications are returned to the Data Owner. The Data Owner decrypts the results to obtain
the classifications.

Verification of the Learned Model. The Data Owner probabilistically tests the Learned Model.
The Data Owner encrypts test vectors with known classifications and sends the ciphertexts to the
Cloud Service Provider. The Cloud Service Provider classifies the encrypted vectors homomorphi-
cally and returns encrypted classification results to the Data Owner. The Data Owner decrypts
the results and compares with the known classification labels to assess the test error of the Learned
Model in the Cloud.

Security Considerations. The protocol assumes a model in which the Cloud is an Honest but
Curious party, i.e. the Cloud will follow the stated protocol to provide the desired functionality,
and will not deviate nor fail to provide the service or return results, but that it is Curious in
the sense that it would look at available information. This assumption is reasonable to model
a rational, economically motivated Cloud Service Provider: the Cloud is motivated to provide
excellent service, and yet would be motivated to take advantage of extra available information.



A Malicious Cloud is a much stronger adversary, who would potentially mishandle calculations,
delete data, refuse to return results, collude with other parties, etc. In most of these malicious
behaviors, the Cloud would be likely to get caught, and thus damage its reputation if trying to
run a successful business.

The verification step we propose is analogous to a naive version of Proof-of-Storage (PoS)
protocols. Verification requires the Data Owner to store a certain number of labeled samples locally
in order to be able to test correctness (and determine test errors) of the Cloud’s computations.
After the training stage, the Data Owner encrypts the test vectors and queries the cloud to provide
encrypted classifications of the test vectors, and then the Data Owner decrypts and compares to
the correct label. Since we are assuming an Honest but Curious model for the Cloud, the Data
Owner only needs to store enough test vectors to determine the test error of the Cloud (or detect
any accidental error). We are also implicitly assuming that the Content Providers do not behave
maliciously, and correctly encrypt and upload data.

The Cloud must necessarily learn a certain amount of information in order to provide the
functionality required. The Cloud computes an encrypted Learned Model from a collection of en-
crypted and labeled training vectors in Stage 1 and provides encrypted classifications of encrypted
test vectors in Stage 2. This includes knowing the number of vectors used in the training phase,
and the number of test vectors submitted for classification. In addition, our scheme discloses the
number of vectors within each class, and also an upper bound on the entries in the test vectors
can be deduced once the parameters for the HE scheme and the number of test vectors are known.

The underlying HE schemes are assumed to be randomized and have semantic security against
passive adversaries, a property which ensures that an adversary cannot distinguish an encryption
of one message from another. The Cloud handles encrypted data and performs HE operations, and
in the public key setting, can encrypt messages of its choice. However, the Cloud does not obtain
decryptions of the ciphertexts that it handles.

3 Polynomial Machine Learning

As discussed in Section 2, a homomorphic encryption scheme can be used to implement the ML
Confidential protocol to run machine learning algorithms on encrypted training and test data. An
FHE scheme theoretically supports arbitrary computations and thus imposes no restrictions on the
ML algorithms used in the protocol. However, implementing a scheme that is fully homomorphic
and does not require fixing a specific bound on the complexity of the computation to be done is
very costly due to the necessity of bootstrapping.

Useful and flexible as it may be, a fully homomorphic scheme is rarely necessary for most
applications, see for example [14]. Instead, if the computation is simple and of low complexity,
it is possible to use an SHE or LHE scheme. This not only avoids the expensive bootstrapping
procedure, but might also result in smaller parameters to instantiate the scheme, leading to a more
practical instantiation of homomorphic encryption. Vice versa, fixing an SHE or LHE scheme in
advance raises the question of which applications are possible under the restrictions imposed by
the homomorphic capability of the scheme. In practice, we can assume that an SHE or LHE scheme
with fixed parameters can homomorphically evaluate polynomials of a fixed limited degree D in
the encrypted elements of the message space. This means it can homomorphically evaluate and
still correctly decrypt a product of D message elements, while a product of D + 1 elements can
not necessarily be decrypted correctly. This section shows that even when using a scheme that is
restricted to evaluating polynomials for which the degree bound D is relatively small, it is still
possible to perform meaningful machine learning tasks confidentially.

Let us assume that we are given an HE scheme that is able to homomorphically evaluate
polynomial functions of encrypted messages of degree at most D, and that we aim at performing a
machine learning algorithm on encrypted data. This means that the predictions viewed as functions
of the training and test data must be polynomials of limited degree D. Note that, when the
classification stage is included, this restriction does not only refer to the actual input-output
mapping learned by the algorithm but to the dependency of the predictions on the training and
test data. To capture this limitation, we define a class of machine learning algorithms which are
represented by polynomial functions of bounded degree.



Definition 1 (Polynomial learning/prediction algorithm). Let A : (R™ x V)™ x R* —» Y
be a learning/prediction algorithm that takes a training sample (R™ x V)™ of size m and a test
input x € R™ and returns a prediction y € Y. If the function A is at most a polynomial of degree
D in its arguments, then we call the learning/prediction algorithm D-polynomial.

Straightforward implementation of many machine learning algorithms requires operations which
are not necessarily represented by a low-degree polynomial, ruling out certain algorithms, namely:

Comparison. A comparison z > y for z,y € R is not D-polynomial, unless the inputs are
encrypted bit-wise and a very deep circuit for comparison is implemented. This rules out learning
algorithms like the perceptron or the support vector machine because they derive their class labels
from thresholding real numbers. It also rules out the k-nearest neighbors classifier, which requires
ordering neighbors according to distance, and decision trees, which threshold features at the nodes
of the tree.

Division. A division z/y for € R and y € R\ {0} is not D-polynomial. This rules out algorithms
that rely on matrix inversion such as exact Fisher’s linear discriminant for classification and the
standard rule for determining the coefficients in regression.

Other non-polynomial functions. Other functions such as trigonometric functions or the ex-
ponential function are not D-polynomial, which rules out methods like exact logistic or probit
regression and non-linear neural networks which rely on the evaluation of sigmoidal functions, in
particular bounded sigmoid functions which are hard to approximate with polynomials.

Given the restrictions imposed by a homomorphic encryption scheme that can only guarantee
correct evaluation of polynomial functions of bounded degree, we are still able to design non-
trivial machine learning algorithms. Often, it is even possible to sufficiently approximate the
above mentioned functions by polynomials of a bounded degree, for example by means of truncated
Taylor series. The exponential function can be approximated by a truncation of its Taylor series, so
approximate versions of logistic regression can be implemented with HE as was suggested in [14].

The above definition can be applied directly to regression learning algorithms where ) = R"I,
and tells us that exact least-squares linear regression is not D-polynomial due to the required
matrix inversion. Note that classification algorithms cannot be D-polynomial by definition because
they have discrete outputs y € ). However, in this case we can still use the above definition as
guidance if we decompose a classification algorithm as A = go f, with a mapping f : (R™ x J)™ x
R™ — R"™ to a vector of real-valued scores, and a discretization operation g : R™ — Y. This
decomposition is possible for a large class of algorithms including Linear Discriminant Analysis
and Support Vector Machines, and allows the Cloud Service to evaluate the function f under D-
polynomial HE, and the Data Provider to evaluate the function g. In the following, we focus on the
task of binary classification to deduce examples of D-polynomial machine learning algorithms, but
note that tasks like regression and dimensionality reduction could be cast in a similar framework.

3.1 Classification

Let us consider the case of binary classification with inputs in R™ and binary target outputs
from Y = {+1, —1}. We consider a linear classifier of the form A(x;w,c) := sign(f(x;w,c)) with
the score function f(x;w,c) := wl'x — c¢. We assume in the Confidential ML protocol that it is
known for two encrypted training examples, whether they are labeled with the same classification
(without revealing which one it is). We therefore consider the cardinalities of the positive and
negative training sets to be known as well as which ciphertexts encrypt data vectors that belong
to the same class. Hence we can carry out operations on these two sets separately. This leads us
to consider the simple Linear Means and Fisher’s Linear Discriminant classifiers, both of which
require only class-conditional statistics to be evaluated.

Linear Means Classifier. The Linear Means (LM) classifier determines w and ¢ such that
f(x;w,c) =0 defines a hyper-plane midway on and orthogonal to the line through the two class-
conditional means. It can be derived as the Bayes optimal decision boundary in the case that the
two class-conditional distributions have identical isotropic Gaussian distributions [5].



Let I, := {i € {1,...,m}|y; = y} be the index set of training examples with label y and let
my = ||I,]|. Calculate the class-conditional mean vectors as m, := m,'s, with s, := Ziefy Xi,
from which we obtain the weight vector as the difference vector between the two class-conditional
means w* := m_; —m_;. The value of the threshold c is calculated using the condition w*Tx¢—c =
0 for the mid-point, x¢ := (my; + m_1)/2, between the two class means, which gives for the
threshold: ¢* = (my;—m_;)7(m,;+m_;)/2. For a given test example x the score f*(x; w*, c*) :=
w*Tx — ¢* is a quadratic function in the training data and a linear function in the test example
and the LM classifier is hence 2-polynomial.

Fisher’s Linear Discriminant Classifier. Now let us move on to a more demanding example,
Fisher’s linear discriminant (FLD) classifier [7]. This algorithm is similar to the Linear Means clas-
sifier, but does take into account the class-conditional covariances. It aims at finding a projection

that maximizes the separation between classes as the ratio S between the variance o2, between
classes and the variance o . within classes,
2 T
S o Uinter _ w DW (1)
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with D :=dd” andd := m;; —m_; and C := C;; + C_;. Here, C, := % icr, (x; —my)(x; —
my)T is the class-conditional covariance matrix of the data. Taking the gradient w.r.t. w and
setting it to zero shows that w* is the solution of a generalized eigenvalue problem Dw = ACw.
Since D = dd” has rank one, we can write Dw = ad for some a € R and hence Cw*
d. Determining w* requires solving a linear system of equations, i.e. it can be determined by
calculating the inverse C~! exactly. This requires division, which is not D-polynomial. In what
follows, we refer to this approach as the exact FLD algorithm.

In a second approach, we aim at solving the linear system approximately using a least-squares
approach so as to obtain a D-polynomial learning/prediction algorithm. The straight-forward
cost function is E (w) := 1||Cw — d|[?, but instead of the standard Euclidean norm, we choose
|[v]|? := vI'C~1v for better conditioning. Then the gradient is Vi E(w) = Cw — d and we can
use gradient descent to find the solution w*. Once w has been found the threshold can be chosen
as ¢ :=wT(my; + m_y)/2.

The challenge then is to approximately solve a linear system using as few multiplications as
possible. For the sake of illustration, let us consider standard gradient descent with a fixed learning
rate n). If we define R := I—nC and a := nd, we obtain the well-known recursion w;; = Rw;+a.
Defining wy = 0, we can express the rth order approximation w, of w* as

r—1

W, = X_:Rj a=ng Z(I—nC)j d. (2)
§=0

=0

This series converges if the spectral radius of R is less than one, i.e., if the absolute value of its
largest eigenvalue is less than one, which can be ensured by choosing 7 sufficiently small. Depending
on the order of approximation r, we obtain a D-polynomial FLD algorithm with D = 2(r —1) + 1.
Note that the sufficient statistics for the FLD algorithm are the class-conditional means m, and
covariance matrices C,. If it is desired to reduce the required communication overhead at the cost
of increasing the Data Provider workload, then instead of transmitting the raw training data to
the Cloud Provider, the Data Provider can calculate and transmit the sufficient statistics for the
training data instead.

3.2 Division-Free Integer Algorithms for Classification

In all of the above, the data input to a machine learning algorithm has been treated as being com-
prised of vectors of real numbers. Using standard representations for floating point numbers, one
could encrypt approximations to such numbers bitwise and then operate on single bit encryptions,
mimicking the unencrypted computations. For the sake of efficiency, it is necessary to deviate from
this bitwise encryption paradigm. Instead, we consider messages being integers or polynomials with
integer coefficients. In most of the recent, more practical homomorphic encryption schemes, it can



be assumed that integers up to a certain size can be embedded into the scheme’s message space,
and that the homomorphic operations correspond to the same operations on integers, respectively.
In such a setting, it is not possible to perform non-polynomial operations, leaving only polynomial
functions on integers as the only practical possibility. To encode a real number by an integer, it can
first be approximated to a certain precision by a rational number. Multiplying all such approxi-
mations through with a fixed denominator and rounding to the nearest integer provides an integer
approximation to the original real numbers. We assume from now on that approximations to real
numbers are represented by integers and that we homomorphically embed such representations
into the message space of the HE scheme.

In particular, this means that we must avoid divisions since there is no corresponding operation
for encoded integers. Below, we describe division-free integer (DFI) versions of the LM classifier
and the FLD classifier described in Section 3. The DFI versions of these algorithms are obtained
by multiplying with all possible denominators occurring in the computations and adjusting the
formulas to exactly compute multiples with the same sign of all magnitudes involved. In detail,
computations for both classifiers are as follows.

Linear Means Classifier. For the LM Classifier we compute m_;s;; and myis_; instead of
m,; and m_1, and replace the weight vector by

W i=m_1841 —myiSg =myimo(my; —m_g) =mogm_ow'. (3)
Similarly, the threshold is replaced by ¢ = Qmilnﬂ_lc”‘~ using Xg = M_1S41 + My1S_1 =
2my1m_1xg. Given a test vector x, we use the classifier f*(x;Ww*,¢*) 1= 2myym_;w*lx — &,

which simply computes a multiple of the original LM score function f*(x;w™,c*) with the same
sign. The algorithm can be made confidential by encoding all real vector coefficients as integers (as
described above). Then one encrypts the input vectors coeflicient-wise and carries out the linear
algebra operations with vectors of ciphertexts using HE.Add and HE.Mult. Note, that the server
only returns the result of the score function for each test example, and that the client takes the
sign to obtain the class label, because we assume that our HE scheme does not enable comparison.

Fisher’s Linear Discriminant Classifier. A similar procedure is done for the approximate
version of the FLD classifier using gradient descent. We use the same classifying function f * as for
the LM classifier, but with a different weight vector w*. As above, to avoid divisions, we compute
multiples of the class-conditional covariance matrices as (~3+1 = milCH and C~3,1 = m%lc,l. In
general, we compute C = mﬁ_lé,l + m?LlCH =m3%,;m3,C, but whenever we can use equal size
training classes, i.e. my; = m_j, we can reduce the coefficients by a factor mil.

The gradient descent iteration is done with fixed step size 7. When n < 1, we also have to
multiply through by its inverse to avoid divisions, which means we need to choose it such that
n~1 € Z. Taking good care of all denominators that need to be multiplied by, we can deduce
that the division free integer gradient descent computes the r-th weight vector w,., which is
w, = (m3,;m?,n7!)"w,, where w, is the result of the r-th iteration described in Section 3.1.
In this way, the DFI version computes multiples of the exact same magnitudes as in the standard
gradient descent approach described earlier, resulting in the score function being a multiple of the
original score function.

3.3 Other Machine Learning Tasks and Generalization Properties

While we focus on binary classification in this paper, it is certainly possible to extend our methodol-
ogy to other machine learning tasks including regression, dimensionality reduction, and clustering.
In particular, the case of multivariate linear regression is quite similar to FLD in that the exact so-
lution requires a matrix inverse, which can be approximated using gradient descent. Also, principal
component analysis (PCA) [12], which is probably the most popular method for dimensionality
reduction, can be expressed as a least squares problem the solution of which can be approximated
by gradient descent. Clustering may well be the most difficult task in this context, but it would
appear that spectral clustering solutions [17] could be approximated in a similar way.

Another interesting aspect of polynomial machine learning is its generalization properties.
Although in Confidential ML algorithms the hypothesis class (e.g., linear classifiers) remains the



same with respect to the exact algorithm, the restrictions imposed by D-polynomial HE require us
to produce predictions which are polynomials of limited degree in the input data. As a consequence,
the set of hypotheses that can be reached by a D-polynomial learning algorithm is very limited. One
would expect that this limited capacity would have a positive effect on the generalization ability.
While we do not have any formal results on this, we believe it may be possible to formalize this
idea based on the stability bounds on the generalization error in [18], because the approximations
required by SHE can be viewed as a specific form of “early stopping”.

4 A Homomorphic Encryption Scheme

In this section, we describe a homomorphic public-key encryption scheme based on the Ring
Learning With Errors (RLWE) problem [16]. It can be used to realize low degree confidential
machine learning algorithms as described in Section 3. It extends the encryption scheme in [16]
and resembles the LHE scheme from [2] in the RLWE case, as recently described in [6].

For simplicity and later reference in the description of our experiments, we discuss a special
case of the scheme, for more details see [16, 2, 6]. Ciphertexts consist of polynomials in the ring
R = Z[z]/(f(z)), where f(x) = 2 + 1 and d = 2, i.e. integer polynomials of degree at most
d — 1. Note that f is the 2d-th cyclotomic polynomial. Computations in R are done by the
usual polynomial addition and multiplication with results reduced modulo f(x). We fix an integer
modulus ¢ > 1 and denote by R, the set of polynomials in R with coefficients in (—¢/2, ¢/2]. For
z € Z denote by [z], the unique integer in (—¢/2,¢/2] with [z]; = z (mod ¢). The message space
is the set R; for another integer modulus ¢ > 1 (¢ < ¢). We use the same notation with ¢ replaced
by t. Thus, messages to be encrypted under the SHE scheme are polynomials of degree at most
d—1 with integer coefficients in (—t/2,t/2]. Let A = |g/t] be the largest integer less than or equal
to g/t. When applied to a polynomial g € R, |g| means rounding down coefficient-wise. We also
use the notation |-] for rounding to the nearest integer. As error distribution we take the discrete
Gaussian distribution x = Dyza , with standard deviation o over R. The parameters d,q,t and
o need to be chosen in a way to guarantee correctness, i.e. such that decryption works correctly,
and security. Section 5 below gives such concrete parameters. Given the above setting (following
notation in [6]), we now describe the SHE scheme with algorithms for key generation, encryption,
addition, multiplication, and decryption.

SH.Keygen. The key generation algorithm samples s < x and sets the secret key sk := s. It
samples a uniformly random ring element a; <— R, and an error e <— x and computes the public
key pk := (ag = [—(a15 + €)]q, a1).

SH.Enc(pk, m). Given the public key pk = (ag,a1) and a message m € Ry, encryption samples
u < x, and f, g < x, and computes the ciphertext ct = (cg,¢1) := ([ap-u+g+A-m]g, [a1-u+ flg).

Note that a homomorphic multiplication (as described below) increases the length of a cipher-
text. Using relinearization techniques, it can be reduced to a two-element ciphertext again (see
e.g. [14,6]). For the purpose of this paper, we do not consider relinearization, thus ciphertexts can
have more than two elements and we describe decryption and homomorphic operations for general
ciphertexts.

SH.Dec(sk, ct = (co, €1, - - - ,ck)). Decryption computes [t - [co + sk - 1 + ... + sk - ]y /q]]s

In general, the homomorphic operations SH.Add and SH.Mult get as input two ciphertexts
ct = (co,c1,...,¢x) and ct’ = (¢, ¢}, ..., ¢)), where w.lo.g. k > I. The output of SH.Add contains
k + 1 ring elements, whereas the output of SH.Mult contains k 4+ [ + 1 ring elements.

SH.Add(pk, ctg, cty). Let ct; = (co, ¢, ..., cx) and cty = (do, d1, . .., d;). Homomorphic addition
is done by component-wise addition ctagg = (co + do,c1 +di, ..., +di, ci41y- .-, Ck).

SH.Mult(pk, ctg, ct1). Let ct; = (co,¢1,-..,¢k), cta = (do,d1,-..,d;) and consider the polyno-
mials ct; (X) = co+c1 X +...+c, X* and cta(X) = do+d1 X +. . .+d; X! over R. The homomorphic
multiplication algorithm computes the polynomial product

cti(X) cta(X) =eo +ter X +... + ek+l+1Xk+l+1 (4)



in the polynomial ring R[X] over R. The output ciphertext is ctmr = (|t €0/¢],-- ., [t €rti+1/q])-

This scheme has been recently described and analysed in [6] and is closely related to the scheme
in [4] and [14]. We refer to these papers for correctness and security under the RLWE assumption.
However note that the evaluation of the ciphertext polynomial at the secret key (as computed
during decryption) can be written as [ct(sk)], = [A - m + v],, where v is a noise term that grows
during homomorphic operations. Only if v is small enough, the ciphertext still decrypts correctly.
How quickly v grows with each multiplication and addition determines the capabilities of the SHE
scheme. An advantage of the present scheme is that the factor by which v grows is independent
of the input ciphertext noise (see [2, 6]).

Encoding real numbers. In order to do meaningful computations for ML, we would ideally
like to do computations on real numbers, i.e. we need to encode real numbers as elements of R;.
Homomorphic operations under HE correspond to polynomial operations in R with coefficients
modulo ¢. To reflect addition and multiplication of given numbers by the corresponding polynomial
operations, we resort to the method in [14, Section 4] for encoding integers. We first represent a
real number by an integer value. Since any real number can be approximated by rational numbers
to arbitrary precision, we can fix a desired precision, multiply through by a fixed denominator,
and round to the nearest integer.

An integer value z is encoded as an element m, € R; by using the bits in its binary represen-
tation as the coeflicients of m,. This means we use the following encoding function:

encode : Z — Ry, z = sign(z)(zs, 2s—1, .- -, 21, 20)2 = m, = sign(z)(z0 + z12 + ... + zs2°).

To get back a number encoded in a polynomial, we evaluate it at z = 2. For the polynomial opera-
tions in R; to reflect integer addition or multiplication, it is important that no reductions modulo ¢
or modulo f occur. A multiplication after which a reduction modulo f is done does not correspond
to integer multiplication of the encoded numbers any more. The same holds for reductions modulo
t. The value ¢ must therefore be large enough that all coefficients of polynomials representing
values in the ML algorithm do not grow out of (—t/2,¢/2]. Also the initial polynomial degree of
encoded integers (i.e. their bit size) must be small enough so that the resulting polynomials after
all multiplications still have degree less than d.

5 Proof of Concept and Experimental Results

In this section, we provide experimental results at a small scale to show how confidential machine
learning works in principle. Due to the rather high computational cost of HE, we restrict ourselves
to binary classification on a standard data set: the Wisconsin Breast Cancer data set with 569
records obtained from [8]. Data vectors in this set have 30 features and whenever we restrict the
number of features in our experiments to some n < 30, we take the subset of the first n features.

With our experimental data we attempt to demonstrate the following claims: on small data sets,
basic Machine Learning algorithms on encrypted data are practical. We give performance numbers
for both Linear Means (LM) classifier and Fisher’s Linear Discriminant (FLD) classifier, varying
both the number of features and the number of vectors used in the training stage to estimate
how performance and accuracy scales as these parameters vary. We compare timings for these
two classifiers on encrypted and unencrypted data, to show the magnitude of the computational
cost for operating on encrypted data. For these experiments, we fiz the security parameters of the
system, to model the real-world setting where a cloud system deploys an implementation based
on parameters chosen to optimize for performance. In addition, we demonstrate the difference in
accuracy when using the DFI version of the FLD algorithm using gradient descent instead of the
exact linear algebra version that includes a matrix inversion (in the case of LM the DFI version is
exact and does not require an approximation).

This section is organized as follows: Section 5.1 describes how the security parameters are
chosen and how they scale with the operations to be performed. Section 5.2 gives timings for basic
HE operations for two different choices of system parameters, (P1) and (P2). Section 5.3 gives
performance numbers for the LM classifier on both unencrypted and encrypted data. On encrypted



data, with fixed security parameters (P1), we vary the number of training vectors and the number
of features. Section 5.4 gives performance numbers for the FLD classifier on both unencrypted and
encrypted data. On encrypted data, with fixed security parameters (P2), we vary the number of
training vectors and the number of test vectors. In Section 5.5, on unencrypted data, we compare
the accuracy of the models computed with the exact and DFI versions of the FLD algorithm with
varying number of steps in the gradient descent approximation.

5.1 Choice of Parameters

In this subsection, we discuss the specific parameters chosen for our implementation. It has been
recently shown in [13] that the hardness of the RLWE problem is independent of the form of the
modulus. This means that security is not compromised by choosing g with a special structure. Using
a power of 2 for ¢ dramatically speeds up modular reduction when compared to an implementation
where ¢ is prime. Therefore, as in [6] we choose both ¢ and ¢ to be powers of 2, i.e. A = |¢/t] = q/t
is also a power of 2. We also use the optimization proposed in [6] to choose the secret key sk = s
randomly with binary coefficients in {0, 1}.

To determine parameters that guarantee a certain level of security, one has to consider the best
known algorithms to attack the scheme. Its security is assessed by the logarithm of the running
time of such algorithms. A security level of ¢ bits means that the best known attacks take about 2
basic operations. We chose parameters considered secure under the distinguishing attack in [15],
using the method described in [14, Section 5.1] and [6, Section 6]. For the exact details of the
security evaluation, we refer to [15, 14, 6]. Security depends on the size of ¢, o, and d, and for a
given pair ¢, o one can determine a lower bound for d.

Additional conditions follow from ensuring correctness of decryption. As long as the inherent
noise in ciphertexts is bounded by A/2 = ¢/2t, decryption works correctly. Since homomorphic
computations increase the noise level, this bounds the number of computations from above. In the
division free integer algorithms the encrypted numbers tend to grow with the number of operations
due to multiplications by denominators. To ensure meaningful results, ¢ needs to be greater than all
the coeflicients of message polynomials that are held and operated on in encrypted form. The size
of the standard deviation for the error terms and the desired number of homomorphic operations
bound A and therefore ¢ from below. For our implementation, we determined these quantities
experimentally and then chose the degree d according to the security requirements.

5.2 Timings for basic HE operations

We implemented the HE scheme described in Section 4 and the division-free integer ML algorithms
under HE in the computer algebra package Magma [1], using internal functions for polynomial
arithmetic and modular reductions. Table 1 summarizes timings for the HE operations. The con-
fidential version of the DFI-LM classifier uses the first parameter set (P;) to encode and encrypt
data. Parameters (P) were chosen for encoding and encryption for the confidential version of the
3-step FLD method. Due to its higher complexity and the higher value for ¢ it requires a much
larger value for q.

HE.Keygen HE.Enc HE.Dec(2) HE.Dec(3) HE.Add HE.Mult

q:2128 t:215
o =16, d = 4096
q:2340 t:240
o =8,d=8192

(P1) 0.279 0.659 0.055 0.105 0.001 0.208

(P2) 0.749 1.56 0.227 0.442 0.005 0.853

Table 1. Timing in seconds for HE operations: key generation, encryption, decryption of 2- or 3-element
ciphertexts, homomorphic addition and multiplication.

All timings in this and the remaining subsections and tables were obtained running Magma on
an Intel Core i7 running 64-bit Windows 8 at 2.8 GHz with 8GB of memory. Timings are given in



seconds (s). No communication costs are included in these experiments since the computations are
all done on one machine. Parameters (P;) have 128 bits of security with distinguishing advantage
2764, Security for (P,) is around 80 bits due to small o compared to q.

5.3 Linear Means Classifier

For the Linear Means Classifier, the exact and the DFI versions of the algorithm coincide, so there is
no difference in the quality of the output. We compare in this section the timings for the encrypted
and unencrypted DFI versions of the algorithm. The Linear Means Classifier experiments in this
section were run with security parameters (P1),

q=2"t=2" 6=16, f= X" 11

The data was preprocessed by shifting the mean to 0 and scaling by the standard deviation. Also,
precision of computation was set at 2 digits, which means real numbers are multiplied by 100 and
rounded to integers.

Timings on Unencrypted Data for DFI-LM. Each line in the tables reports the number of
features used, the number of training vectors used in the training stage to build the classifier, the
number of test vectors used to test the model, the time spent in the training stage, the time per
test vector to classify, and the number of errors in the classification of test vectors.

# features # training # test| train (s) classify (s)|# errors
2 20 100 |2.3500E-6 2.0620E-5 11
5 20 100 |3.1500E-6 2.0620E-5 8
10 20 100 [3.9000E-6 2.0940E-5 12
20 20 100 |[5.4500E-6 2.1250E-5 16
30 20 100 |6.2500E-6 2.1560E-5 12
2 60 100 |[3.9000E-6 2.0620E-5 8
5 60 100 |6.2500E-6 2.0940E-5 10
10 60 100 [7.0500E-6 2.1410E-5 8
20 60 100 |(1.1700E-5 2.2030E-5 12
30 60 100 |1.4850E-5 2.2970E-5 11
2 100 100 [6.2500E-6 2.0780E-5 9
5 100 100 |8.5999E-6 2.0940E-5 8
10 100 100 |1.0900E-5 2.1410E-5 9
20 100 100 [1.8000E-5 2.2030E-5 13
30 100 100 [2.3450E-5 2.2650E-5 8

Table 2. DFI-LM Unencrypted Data

Remarks. Note that the time for classifying vectors is relatively constant, which is as expected.
The number of classsification errors varies, but tends to decrease as the size of the training set
increases.

Timings on Encrypted Data for DFI-LM. In the tables reporting timings for operations
on encrypted data, we also include the total time spent on encrypting and encoding the training
vectors for the training stage, and the total time spent on encrypting and encoding the test
vectors for the testing stage. The “ee-train” and “ee-test” columns in Table 3 are for the total
time including the time to encode and encrypt the training and test vectors, respectively. For the
encrypted and unencrypted versions of the the DFI algorithms, there is no need to list the number
of classification errors twice, since the algorithm is the same and has the same output on encrypted
and unencrypted data.



# features # training # test|train (s) ee-train (s)|classify (s) ee-test (s)
2 20 100 0.095 19.953 0.327 133.843
5 20 100 0.156 50.172 0.899  343.250
10 20 100 0.391 101.141 1.938  708.969
20 20 100 0.831 201.578 3.880 1405.875
30 20 100 1.374 303.937 5.961 2122.719
2 60 100 0.127 59.641 0.325 133.703
5 60 100 0.484 148.125 0.879  337.953
10 60 100 0.996 309.078 1.864 688.531
20 60 100 2.504 601.688 3.841 1400.266
30 60 100 3.346 899.953 5.838 2106.453
2 100 100 0.565 98.938 0.417 143.719
5 100 100 0.835 249.359 0.998  351.078
10 100 100 2.629 499.063 1.971  699.531
20 100 100 4.034 999.156 3.989 1403.172
30 100 100 6.221  1504.297 6.038 2110.000

Table 3. DFI-LM Encrypted Data

Remark 5.3

1.

The time for classifying a test vector and for encoding and encrypting the test vectors stays
relatively constant as the number of training vectors increases, as expected.

The time for computing the classifier in the training stage grows roughly linearly with the
number of training vectors. This is expected as long as the security parameters are fixed, as
is the case here.

The time for encoding and encrypting data in the training stage grows roughly linearly with
the number of training vectors. Again, this is expected as long as the security parameters are
fixed, as we have modeled here.

For a fixed training set size, the time for computing the classifier grows approximately linearly
with the number of features. Similarly, the time for classifying a test vector, and the time for
encoding and encrypting the training and the test vectors each grow approximately linearly
with the number of features.

The approximate order of magnitude of the slow-down due to operating on encrypted data is
6 or 7 orders of magnitude. This compares favorably with the slow-down for performing an
AES encryption operation on encrypted data reported in [11].

Note that even with this preliminary unoptimized implementation, both the training stage and
the classification of a test vector can be performed on encrypted data in roughly 6 seconds
using a Linear Means Classifier on 100 training vectors with 30 attributes.

5.4 Fisher’s Linear Discriminant classifier

The experiments in this section were run with security parameters (P2),

q:23407 t:240, 0':87 f:X8192+1.

The data was preprocessed by shifting the mean to 0 and scaling by the standard deviation. Also,
precision of computation was set at 2 digits, which means real numbers are multiplied by 100 and
rounded to integers. The DFI version of the FLD algorithm was run using 3 steps in the gradient
descent method with step size = 0.1.

Timings on Unencrypted Data for 3-Step DFI-FLD. Each line in the table reports the
number of features, the number of training vectors used in the training stage to build the classifier,
the number of test vectors used to test the model, the time spent in the training stage, the time
per test vector to classify, and the number of errors in the classification of test vectors.



# features # training # test| train (s) classify (s)|# errors
2 20 100 |2.6600E-4 1.7200E-6 11
5 20 100 |7.5000E-4 1.8800E-6 7
10 20 100 [2.4690E-3 2.1800E-6 9
20 20 100 [9.2030E-3 2.9700E-6 6
30 20 100 | 0.020390 3.9100E-6 8
2 60 100 [4.0700E-4 1.5700E-6 8
5 60 100 [1.7030E-3 1.7200E-6 7
10 60 100 [6.2190E-3 2.1800E-6 8
20 60 100 | 0.024125 2.9700E-6 9
30 60 100 | 0.054250 3.9000E-6 8
2 100 100 |[5.7800E-4 1.5600E-6 10
5 100 100 |2.6410E-3 1.7200E-6 7
10 100 100 0.0100 2.1900E-6 8
20 100 100 | 0.039282 2.9700E-6 6
30 100 100 | 0.087594 3.9000E-6 3

Table 4. 3-step DFI-FLD Unencrypted Data

Timings on Encrypted Data for 3-step DFI-FLD. Each line in the table reports the number
of features, the number of training vectors used in the training stage to build the classifier, the
number of test vectors used to test the model, the time spent in the training stage, the time per
test vector to classify, the total time spent on encrypting and encoding the test vectors (in the
“ee” column in Table 5), and the number of errors in the classification of test vectors.

# features # training # test| train (s) classify (s)  ee (s)|errors
2 20 20 299.437  3.836 46.562| 2
5 20 20 1309.578  10.049 117.033| 1
10 20 20 4472.922 20.857 236.514| 1
2 60 20 939.156  6.488 51.280| 1
5 60 20 3612.953  9.707 117.158| 1
10 60 20 |12211.719 20.465 235.236| 1
2 100 100 | 1420.781  3.850 619.828| 10
5 100 100 | 6017.688 10.364 1636.265| 8
10 100 100 |20222.515 21.572 3351.718| 35

Table 5. 3-step DFI-FLD Encrypted Data

Remark 5.4

1. The timings in the last line for 10 features and 100 training vectors should be disregarded, be-
cause the 35 classification errors indicate that the computation exceeded the allowable bounds
for the amount of computation which could be correctly done with these security parameter
sizes. This computation most likely resulted in decryption errors and should be redone with
larger system parameters.

2. Note that for both the LM and the FLD algorithms, the time spent in computing on encrypted
vectors is dominated by the time spent to encrypt the data. That is due to the fact that each
entry to be encrypted requires a multiplication of two polynomials of degree d, where d is either
4096 or 8192 in these experiments. Although Magma does have fast multiplication techniques
implemented, this is an aspect of the system where performance can be significantly improved
in a robust high-performance implementation.

3. The time spent in the training stage grows roughly quadratically with the number of features.
This is expected because the algorithm operates on an n x n matrix, where n is the number
of features.



4. The time spent in the training stage grows roughly linearly with the number of training vectors.
Also the time spent on encoding and encryption grows linearly with the number of features.

5. Time spent on classifying test vectors is relatively constant as the number of training vectors
increases, as expected.

6. The time spent on classifying test vectors grows roughly linearly with the number of features.

7. As for the confidential LM algorithms, we observe a slow-down of roughly 6 — 7 orders of
magnitude when executing the 3-step DFI-FLD algorithm on encrypted data under HE.

8. Despite the significant performance penalty for operating on encrypted data, note that clas-
sification of test vectors with 10 features is accomplished in 20 seconds with an unoptimized
implementation of HE. This time is relatively independent of the number of training vectors
used in the training stage for fixed system parameters. However, it is dependent on the amount
and size of the data to be processed in the sense that the system parameter sizes must be in-
creased once the bounds on the amount of computation which can be properly handled for a
given parameter size are exceeded.

5.5 Comparing the accuracy of exact and DFT versions of gradient descent

In Section 5.4 above, we gave performance numbers for the DFI version of the gradient descent
method for Fisher’s Linear Discriminant Classifier. The gradient descent method for minimizing
the cost function is an approximation algorithm, whereas there is an exact algorithm for minimiz-
ing the cost function which requires matrix inversion. In this section, we compare the accuracy
of the models obtained when using the exact version of FLD versus using the gradient descent
approximation method with a varying number of steps. In Table 6 we give the number of classifi-
cation errors for the exact version of FLD and the gradient descent method with 1 —5 steps. These
experiments were performed on unencrypted data, with step size 7 = 0.1. Based on these results,
three steps seemed to be sufficient in the gradient descent method for these data set sizes, so we
used 3 steps in all experiments in Section 5.4 to produce encrypted and unencrypted timings for
FLD.

# features # training # test|exact|1-step 2-step 3-step 4-step 5-step
2 100 100 | 10 10 10 10 10 11
5 100 100 7 7 7 7 7 7
10 100 100 8 8 9 8 8 8
20 100 100 6 19 5 6 5 6
30 100 100 2 29 6 3 2 1

Table 6. # errors in exact and DFI-FLD classification on unencrypted data

6 Conclusions and Future Work

With advances in machine learning and cloud computing the enormous value of data for commerce,
society, and people’s personal lives is becoming more and more evident. In order to realize this
value it will be crucial to make data available for analysis while at the same time protect it
from unwanted access. In this paper, we pointed out a way to reconcile these two conflicting
goals: Confidential Machine Learning. We formalize the problem in terms of a multi-party data
machine learning scenario involving a Data Owner, Data Providers, and a Cloud Service Provider
and describe the desired functionality and security properties. We showed that it is possible to
implement Confidential ML based on a recently proposed Homomorphic Encryption scheme, using
polynomial approximations to known ML algorithms.

Homomorphic encryption is a rapidly advancing field and so we expect that more complex
ML algorithms applied to larger data sets requiring fewer computational resources may soon be
possible. For example, it should soon be possible to use kernel methods to derive low-degree



polynomial machine learning algorithms implementing non-linear mappings. Other open problems
include the question, which protocols will be useful in practical data analysis scenarios, and how the
computational burden can be optimally distributed between cloud and client taking into account
the cost of communication. Furthermore, one can imagine even more complex multi-party scenarios
in which multiple data-owners (e.g., Amazon, Netflix, Google, Facebook) would like to provide
inputs for a single machine learning problem (e.g., product recommendation) without disclosing
their data.
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