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Abstract

We address the effects of noise in low-light images in this
paper. Color images are usually captured by a sensor with
a color filter array (CFA). This requires a demosaicing pro-
cess to generate a full color image. The captured images
typically have low signal-to-noise ratio, and the demosaic-
ing step further corrupts the image, which we show to be
the leading cause of visually objectionable random noise
patterns (splotches). To avoid this problem, we propose a
combined framework of denoising and demosaicing, where
we use information about the image inferred in the denois-
ing step to perform demosaicing. Our experiments show
that such a framework results in sharper low-light images
that are devoid of splotches and other noise artifacts.

1. Introduction
Low-light noise is a significant problem in photography.

Most consumer cameras have poor low-light characteristics,
which typically result in images with noticeable noise ar-
tifacts. Taking longer exposures reduces noise; however,
this is only useful for static cameras and scenes, otherwise
a blurry image is obtained. Active lighting in the form of
a flash is not always viable as it causes color aberrations
and is effective only for nearby objects. Recently, cam-
era manufacturers have started addressing the problem of
low-light photography by introducing cameras with larger
photon sensors to accumulate more light at shorter expo-
sures. In this paper, we propose a software-based approach
to suppress the random mid-frequency texture patterns (or
splotches) and other noise effects in low-light images, mak-
ing it possible to capture sharp as well as noise-free images
with short exposures.

Most modern consumer cameras capture images on a
single sensor with a color filter array (CFA), of which the
Bayer pattern [2] (Fig. 5(a)) is the most popular. A demo-
saicing algorithm is then used to interpolate the missing col-
ors (e.g., red and blue values wherever only green samples
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(a) RGB image (b) Demosaiced image

Figure 1. Effect of demosaicing on low-light noise characteristics:
(a) RGB image with spatially independent Poisson noise; (b) de-
mosaiced version of the noisy image. The simulated noisy RGB
image was subsampled to form the Bayer pattern image. Notice
how the demosaiced image demonstrates more splotches.

are observed) to form a full color image. With advances
in optical and electronic systems, current cameras can pro-
duce high quality images when the images are well exposed.
However, under low-light conditions, when the number of
photons entering the imaging system is low, the raw image
captured in the CFA has a low signal-to-noise ratio (SNR).
Most cameras then produce quite noisy images. Cameras
typically adapt to such low signal levels by increasing their
sensitivity (ISO level) to the input signal, which amplifies
the input noise. Such noise usually manifests itself in the
form of splotches that are very salient to the human vi-
sual system (Fig. 1(b)). In our work, we concentrate on
suppressing such visually unpleasant artifacts that typically
corrupt light-limited images.

Our paper has two major contributions. First, we show,
through simulations, that demosaicing is the main cause of
the splotches commonly observed in low-light images. This
finding leads us to our second contribution: a framework
for combined denoising and demosaicing specifically tar-
geting low-light images. To efficiently solve the joint prob-
lem, we pose the problem as that of vector upsampling in
the presence of noise. This vector upsampling is carried out
in a two-step framework that is motivated by Locally Linear
Embedding (LLE) [23]. In the first step (denoising), embed-
ding information is learned about the image from the noisy
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Figure 2. Outline of our denoising and demosaicing framework.

Bayer image, which is then enforced in an unknown low
resolution image to perform the second step (demosaicing).

2. Related Work
Image denoising is a well-studied problem that has seen

considerable performance improvement in recent years (see
[6] for a survey). Broadly, denoising techniques can be clas-
sified as either transform-domain-based or spatial. Portilla
et al. [21] proposed a wavelet-based method that was widely
regarded as the state-of-the-art until recently. The recently
proposed method of BM3D [8] employs a hybrid approach
by first identifying similar patches within the noisy image.
The similar patches are then denoised collaboratively in a
transform-domain (e.g., DCT) leading to remarkable de-
noising performance.

Spatial-domain methods can vary significantly in their
approaches. Techniques range from denoising using im-
age statistics [3, 7] or dictionaries [10] to using priors on
the noise in a segmentation-based framework [17]. An-
other popular class of methods is based on directional fil-
ters [4,24,25] where denoising is performed by learning an
embedding of the image in a local neighborhood. Local-
ity can be defined either spatially [24, 25] or in the patch
space [4], with the latter taking advantage of patch redun-
dancy in the input image.

Mathematically, denoising in Non-Local Means
(NLM) [4] is performed by representing each patch in
the image as ẑi = Ywi, where Y is a matrix (or dictio-
nary) of patches created from the noisy image, with the
coefficients wi being a measure of similarity between the
reference noisy patch yi and column elements in Y. The
self-similarity based framework has also been extended to
demosaicing [5]. Instead of using a fixed Y, Elad et al. [10]
proposed to iteratively update the over-complete dictionary
Y and sparse coefficients wi to improve performance.
This framework was later adapted for different restoration
problems by Mairal et al. [18, 19].

Although dictionary-based methods have been applied to
a variety of image restoration tasks, they rely on the pres-
ence of the ground truth to act as a prior on the desired out-
put. This is especially true for image demosaicing [18, 19].
They are, thus, not applicable to our problem where such
ground truth cannot be obtained without making simplistic
assumptions about low-light image generation. Moreover,
restoration can be adversely affected if the input image is
not described well by the dictionary.

Figure 3. Histograms of noise values in different color channels of
two different flat regions of the Macbeth color chart captured as
Bayer pattern. The image was captured under low-light conditions
at shutter speed 0.1 sec. and ISO 1600. In the plot to the right, the
histograms for the green and blue channels are very similar.

Prior techniques do not explicitly target the removal of
splotchy artifacts in low-light images. To remove such ar-
tifacts, it is essential to account for Poisson nature of the
noise in the CFA (typically Bayer) image. The methods
discussed thus far, and most CFA image denoising meth-
ods [11, 27], assume the noise to be Gaussian, and not
signal-dependent. Deledalle et al. [9] recently extended
NLM for Poisson noise by redefining the similarity measure
between noisy grayscale patches. However, it is not clear
how that work can be extended to Bayer images with non-
homogeneous noise in different subsampled color channels.

In the class of denoising approaches that use color in-
formation, Hirakawa et al. [15] proposed an interpolation
filter with the assumption that the color channels have sim-
ilar higher frequencies. Zhang et al. [28] proposed a PCA-
based approach for color reproduction from noisy raw data.
Bennett et al.’s approach [3] assumes the true color at each
pixel to be a combination of two colors which are esti-
mated from a neighborhood. Although noise is accounted
for in [3, 28], learning the basis colors and PCA vectors
respectively can be challenging under low SNR. Another
space-varying method for joint denoising and demosaicing
was proposed by Menon et al. [20]. However, the noise
there, as in [3, 28], is assumed to be independent and iden-
tically distributed Gaussian. As a result, they are not well
tuned to handle low-light images.

In contrast to prior approaches, we are specifically in-
terested in suppressing splotchy effects that are typical in
low-light images. In order to design an effective technique
to remove these artifacts, we first need to understand how
they are generated. The next section describes our findings.

3. Splotch Artifacts in Low-Light Images
Images are typically captured using a CFA (e.g., Bayer

pattern), where each sensor element is capable of capturing
light within specific wavelengths. The light (or photons) in-
cident on a sensor element is accumulated over a period of
time controlled by the shutter speed setting. Due to this pho-
tonic nature of light, the voltage resulting from the photon
counting process is noisy. This noise is called shot noise.
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(a) 14 bits/pixel,
RGB image

(b) 14 bits/pixel,
demosaiced image

(c) Gradient orientations in color channels of (a) (d) Gradient orientation in color channels of (b)

(e) 8 bits/pixel,
RGB image

(f) 8 bits/pixel, de-
mosaiced image

(g) Gradient orientation in color channels of (e) (h) Gradient orientation in color channels of (f)

Figure 4. Directionality of Poisson noise visualized with gradient orientations histograms for images with various quantization levels.

The voltage in each sensor element is usually magnified
by a gain factor based on the ISO setting of the camera.
While this increases sensitivity to the input signal, it also
results in amplification of the noise. The voltage is then
quantized to obtain the raw intensity values. Although im-
perfect electronic components also contribute to the noise
affecting the image, the dominant noise at lower intensities
has been shown to be shot and quantization noise [1].

Next, the camera demosaics the noisy Bayer image to
produce a color image. Since most demosaicing algorithms
do not account for noisiness of the raw data, a denoising
process is often applied to the resulting image. This is fol-
lowed by other non-linear operations such as gamma cor-
rection, color tone-mapping, and even sharpening before the
final color image is stored in the camera. Here we are in-
terested in identifying the chief causes of the splotches in
low-light images.

We start by studying the noise characteristics of such im-
ages. As mentioned earlier, shot noise is a result of pho-
tonic nature of light. Since the intensity values are a re-
sult of a counting process, the noise is Poisson distributed,
and can be assumed to be spatially independent. We con-
firmed this experimentally by capturing multiple images of
a static scene (e.g., Macbeth color chart) under various shut-
ter speeds and ISO settings. We found that in any given flat
region, the variance of the noise is proportional to the mean
intensity of the flat region obtained by averaging the inten-
sities of each color channel, the constant of proportionality
being dependent on the camera’s ISO setting (gain factor).
Moreover, the histogram of the noise in each color chan-
nel in each flat area fits a Poisson density function. This
is shown in Fig. 3 for two different flat regions of the color
chart captured under low-light conditions with shutter speed
0.1 second and ISO 1600. This Poisson distribution is at-
tributed to the shot noise [12, 14]. The quantization noise,
on the other hand, is due to the digitization of the voltage.

Although modern cameras are capable of storing raw inten-
sities with high precision (bits per pixel), we still study the
effects of such quantization in low-light images.

In our study, we ran simulations to study the com-
bined effects of different processes in the image formation
pipeline, namely, quantization and demosaicing. Our sim-
ulator is designed to study the effects of different levels of
Poisson distributed noise on different quantization levels of
mainly constant-intensity images. The effect was studied
when noise was added independently in each color channel
of color images, as well as in the demosaiced image ob-
tained from subsampling the noisy color image according
to the Bayer pattern. The synthetically generated noisy im-
ages were visually inspected and analyzed (by computing
gradient and orientation histograms).

In our simulations over multiple flat images, the effect
of quantization level on the splotches was visually indis-
cernible for the full color as well as demosaiced images
(Figures 4(a)-(d)). However, the histogram of gradient ori-
entations (Figures 4(e)-(h)) exhibit stronger directionality
along vertical and horizontal directions as quantization is
reduced to 8 bits per pixel. Considering that even lower-end
commercial cameras record information in at least 8 bits per
pixel and the fact that this does not lead to any visually de-
tectable increase in splotches, we eliminate quantization as
a significant factor of image noise artifacts. Henceforth, we
consider Poisson distributed shot noise as the major source
of low-light noise.

Our simulations with varying levels of Poisson noise led
to two important conclusions: (1) even when the noise is in-
dependent in each channel, patterns are visible in the noisy
image (gradient orientation histograms do not show any bias
in edge direction); (2) the visual patterns (splotches) are
more pronounced in demosaiced images, irrespective of the
demosaicing method employed. Interestingly, demosaicing
does not seem to alter the approximately uniform distribu-
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tion of gradient orientations. This leads us to believe that
the noisy patterns in the image are a result of humans be-
ing adept at identifying patterns in any image [26], and that
such patterns are noticeably enhanced by the demosaicing
process. An example of such enhanced splotches is illus-
trated in Fig. 1 showing a house image with simulated Pois-
son noise added independently in each color channel and its
demosaiced version obtained from the simulated CFA noisy
image sampled according to the Bayer pattern.

Although modern demosaicing techniques (see [13, 16]
for comprehensive reviews) take into account inter-channel
dependencies, most do not account for noise in the observed
Bayer samples. Interpolating across noisy color channels
corrupts the noise characteristics in the demosaiced im-
age, enhancing splotches in the process. Such artifacts are
then propagated further in the imaging pipeline. Hence, it
is important to suppress the Bayer domain Poisson noise
before demosaicing. Most Bayer domain denoising meth-
ods [11, 27] do not handle Poisson noise. Moreover, the
demosaicing method usually has no information about the
denoising process and errors in denoising can be propagated
easily. Motivated by this, we propose a method based on
LLE [23] that we adapt to perform combined denoising and
demosaicing in a vector upsampling framework.

4. Denoising–Demosaicing as Upsampling
In our proposed framework, we pose the problem

of denoising and demosaicing as that of vector upsam-
pling (Fig. 5). The task of demosaicing is to estimate
the unknown color information at each pixel location.
We consider this problem as estimating the unobserved
blocks (Fig. 5(b)), at exact one pixel shifts in horizontal,
vertical and diagonal directions. For example, consider the
numbered regions in Fig. 5(a), estimating the horizontally
shifted image results in estimating the green channel infor-
mation at locations where only a red value was observed. In
a similar manner, vertical and diagonally shifted image es-
timates result in obtaining estimates of different color chan-
nels. As a result, red, blue and two green color estimates are
accumulated at each pixel location, from which a full color
RGB image is obtained. Thus, we show that vector upsam-
pling with an appropriate choice of vectors ([R,G,G,B]
patterns shown in the figure) can lead to demosaicing. As
such, any method that performs 2-D upsampling of vector-
valued functions can be used for this purpose. However,
such interpolation methods must account for noise contam-
ination of the samples, as well as the correlation between
the observations ([R,G,G,B] vector elements).

Here we propose to perform vector interpolation by
learning local embeddings of each Bayer block (see Fig. 2),
where locality is in terms of similarity of block intensi-
ties (vector magnitudes). This is performed by representing
each observed block (black nodes) as a linear combination

of similar blocks to obtain a denoised Bayer image. This
embedding is then enforced in the demosaicing step through
an optimization framework. This implicitly enforces the
cross-color correlation in demosaicing as the embeddings
are learned simultaneously from all color channels.

4.1. Denoising Step

As mentioned earlier, denoising of the Bayer blocks is
performed by representing each noisy block as a linear com-
bination of similar blocks. To learn such an embedding, we
first need to identify similar blocks. However, under low-
light conditions, the weak signal corrupted by noise leads to
low signal-to-noise ratios (SNR), making it difficult to iden-
tify similar blocks. To add robustness, we consider larger
regions consisting of multiple spatially collocated blocks to
form patches. Blocks with similar neighborhoods to any
given reference patch are identified and the linear embed-
ding weights are learned. The denoising step thus consists
of learning a local embedding of a patch in the Bayer do-
main and using it to perform denoising. Below we provide
an outline for the denoising process (Fig. 6):

1. Form patches centered at each [R,G,G,B] node. For
any given patch centered at yi identify the K-most
similar patches (centers denoted by yj) within the im-
age subject to noise corruption.

2. Represent the center node of the patch ẑi under con-
sideration of similarity to yi as a linear combination of
the similar patches to be of the form

ẑi =

K∑
j=1

wijyj = Yiwi, (1)

where Yi is the matrix formed by concatenating the
vectorized center nodes of the similar patches yj , wij

are the weights that measure the confidence of a patch
centered at yj being similar to that centered at yi, and
wi is a vector containing the wij entries. The weights
are calculated in an optimization framework as

ŵi = argmin
wi

‖yi −Yiwi‖p, (2)

with p chosen to fit the error distribution.

3. Repeat the process for blocks with different patterns,
namely, [G,R,B,G], [G,B,R,G], & [B,G,G,R].

Note that with blocks of a certain pattern, we match
blocks with the same pattern only. The embedding learn-
ing process is carried out for each such pattern to obtain
multiple denoised estimates of the Bayer image. The final
estimate is obtained as an average of the multiple estimates.
This secondary averaging process reduces the residual noise
in the initial estimates to produce the final denoised raw im-
age. More importantly, doing so allows us to obtain mul-
tiple embeddings of each pixel, which provides more con-
straints for the optimization in the demosaicing step.
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(a) Demosaicing by estimating (b) Equivalent
shifted images vector upsampling

Figure 5. Demosaicing of noisy Bayer data as vector upsampling:
(a) single pixel shifts in horizontal, vertical, and diagonal (not
shown) directions fill-in missing color information at different
locations; (b) corresponding visualization of vector upsampling
where the black nodes are observed noisy Bayer patterns and gray
nodes marked H, V, and D are filled-in through horizontal, vertical
and diagonal shifted image estimation respectively.

In order to apply this scheme, we first need to identify
similar patches, given only their noisy observations. Under
low-light conditions, the noise has been shown to be Pois-
son distributed which is dependent on the (unknown) true
intensity of the Bayer pattern image. Similarity measures
based on such Poisson noise has been proposed by Alter
et al. [1]. However, in our case we found that using an `2
distance measure between noisy patches

d(yi,yj) = ‖yi − yj‖22, (3)

to identify similar patches works reasonably well for our
purposes. This is because we are merely interested in rank-
ing noisy patches based on similarity to a reference patch
to identify the K = 30 most similar patches. The weight
calculation mechanism of Eq. (2) then implicitly rejects dis-
similar patches by giving them low weights.

The patch-based embedding of each block allows us to
perform denoising of the raw data as outlined in Fig. 6. De-
mosaicing this image using any demosaicing method results
in a denoised color image. However, further noise suppres-
sion is achieved when the demosaicing step makes use of
the local linear embedding information learned in the de-
noising step.

4.2. Demosaicing step

Once the raw image is denoised, the missing color infor-
mation needs to be estimated to form the final image. This
process is known as demosaicing. One can use any existing
method to perform demosaicing of the denoised raw image.
However, demosaicing being a special form of interpola-
tion inherently leads to reduced sharpness in the final im-
age. Moreover, for images with low SNR as in our case, the
noise may not be sufficiently removed by denoising. One
way to further suppress the noise is to use any existing de-
mosaicing algorithm to obtain an initial color estimate and

Figure 6. Our combined denoising and demosaicing framework.

enforce the embedding on it to obtain the final output. How-
ever, such a method relies heavily on the performance of the
initial demosaicing. To counter that effect, we propose to
perform demosaicing in an optimization framework.

The motivation of our optimization framework arises
from the relation between a high resolution (HR) image and
its corresponding low resolution (LR) version. Consider the
Bayer image as an incomplete observation of an unknown
HR image that we wish to estimate. A 2× downsampled LR
image could then be formed by first averaging each color
channel of the HR image in a 2 × 2 region and then sub-
sampling the smoothed image. Thus, the color informa-
tion at any pixel at location i of the LR image is obtained
from averaging of the colors at the i-th block of the HR im-
age, only some of which are observed in the Bayer image.
Without loss of generality, consider the red color channel in
Fig. 5(a). We can see that the red value in the LR image cor-
responding to the numbered block (indexed by i) is obtained
from the observed ri1 and unobserved runil for l = 2, 3, 4.
For notational convenience, we denote ri1 as ri. The em-
beddings for each block in the Bayer domain can thus be
thought to be similar to the embedding for the correspond-
ing pixel in the (unknown) LR image. This is in keeping
with the spirit of LLE [23], where dimensionality reduction
is performed by enforcing local embeddings learned in the
higher dimension to data in the lower dimensional space. In
our context, we learn the local embeddings in the partially
observed HR (Bayer) image and enforce them in the down-
sampled LR image. Thus, we can write

ri +

4∑
l=2

runil =
∑
j

wij(rj +

4∑
l=2

runjl ) ∀ i. (4)

Rewriting the above equation in terms of all the observed
and unobserved samples of the HR image in a vector form
(r and run respectively) we obtain

r + Drun = W(r + Drun) (5)

⇒ r̃ = (W − I)Drun = W̃run, (6)

where D is a matrix operator where each row implements a
summation of the unobserved samples corresponding to the
observed samples r, W is a sparse matrix with wij as its
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i, j-th entry, r̃ = r −Wr is a function of observed sam-
ples only, and W̃ = (W − I)D with I as the identity
matrix. In the demosaicing step, we are interested in es-
timating run given the estimated W̃ and r̃. Note that there
are many more unobserved red values than observed ones
making the problem ill-posed. Hence, we employ a regu-
larization framework to reduce the solution space. We use
Eq. (6) as our data fitting term and an initial demosaicing of
the denoised Bayer image as prior information (run0 ). The
final estimate for the demosaiced image is obtained by solv-
ing for the unknown intensities as

r̂un = argmin
run
‖r̃− W̃run‖p + ‖Λ(run − run0 )‖q, (7)

where Λ is a diagonal matrix with varying diagonal entries
that allow us to control the penalty of deviating from the ini-
tial estimate, and p, q are chosen according to the distribu-
tion of the error for the data fitting and regularization terms.
We use p = q = 0.65, since the histogram of the data fit-
ting error fits a hyper-Laplace distribution for our simulated
experiments (see the following section). This also allows
us to avoid over-fitting at the higher intensities and over-
smoothing in the low-intensity regions [22].

As mentioned earlier, noise may still be present in the de-
noised Bayer image. Such noise is more perceptible in the
smoother regions. Thus, allowing the final estimate in the
smoother regions to deviate from the initial estimate can be
advantageous. On the other hand, enforcing the prior can be
good in the textured regions where there may be fewer simi-
lar patches. The diagonal entries of Λ can thus be chosen to
be inversely related to the number of similar blocks (large
wij values) found in the embedding stage which serves as
a good measure of the reliability of the learned embedding.
However, we found that simply using a fixed Λ = 0.1 I in
the optimization framework leads to satisfactory suppres-
sion of noise and splotches in low-light images, as demon-
strated in Sec. 5.

4.3. Poisson Noise Model and Error Norm

The form of the error norm in our LLE framework is de-
pendent on the image noise distribution. While it is known
that low-light noise is Poisson distributed, without further
analysis, it is not obvious what the error distributions would
be on the terms in Equations 2 and 7. We empirically mea-
sured the distributions, by generating Poisson distributed
samples in a low-intensity range from a set of known sam-
ples with known coefficients. We fit a generalized Gaus-
sian to this distribution and found it to be hyper-Laplacian
(p = 0.65 < 1), with the variance proportional to the mean
value of the samples. This distribution is consistent with a
mean subtracted Poisson distribution as it is sparser than a
Gaussian, which is to be expected for a Poisson distribution
at low-intensity levels, and its variance is proportional to the
original mean of the distribution. We minimized this norm
using iterative re-weighted least-squares.

5. Results

To validate our method, we perform experiments with
real-world images captured with different cameras, under
different low-light conditions. In Fig. 7, we compare our
method to straight demosaicing results – we use the ‘demo-
saic’ function in Matlab. The noise artifacts are significantly
reduced by our approach across a large range of SNR, im-
age content, and lighting conditions (indoor, outdoor, day-
time, nighttime, and flash), without any parameter tuning
or user input to handle the change in the noise levels and
image content. The images in these results were shot with
a Canon 1Ds Mark III and Rebel Xti, which have very dif-
ferent image sensors, showing that our method generalizes
across camera types. Note how the extremely high-textured
splotch patterns seen in the straight demosaiced results do
not appear in our results – the smooth areas appear smooth,
yet textures are largely retained.

In Fig. 8 we compare our results to several existing tech-
niques. For our comparisons, we choose two methods that
perform denoising after demosaicing, as is commonly done.
The methods used are Neat Image and BM3D [8] (state-of-
the-art denoiser [6]). Since our method performs denoising
on Bayer images, we also compare to a recent Bayer de-
noising method [27]. Finally, we show results from a joint
denoising and demosaicing method proposed by Menon et
al. [20]. For fair comparisons, we tuned the parameters of
each method to obtain the most visually pleasing results.

From Fig. 8, it can be seen that our method maintains a
good balance of denoising smooth regions while retaining
textured regions. For previous methods, a trade-off must
be made. Either the support-region needs to be large to re-
move the splotches, which then blurs the image detail, or
vice versa. Moreover, with many of the previous meth-
ods, even when the high and mid-frequency splotches are
removed, lower frequency components of the artifacts re-
main, where smooth regions appear to have a low-frequency
low-intensity color pattern. The benefits of our method are
best seen when viewing the images on a computer screen.

6. Conclusions

We proposed a framework for combined denoising and
demosaicing of low-light images, specifically targeted at re-
ducing the splotches and noise effects in such images. For
this we make use of a local linear embedding framework
where a linear embedding is learned in the denoising step.
This local embedding is then enforced within an optimiza-
tion framework to perform refinement of an initial demo-
saicing of the denoised image. We showed that the pro-
posed method is able to considerably improve the quality
of the final output image over the traditional approaches of
demosaicing and then denoising and also performs better
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Figure 7. Comparisons of real images captured under various conditions to those obtained by straight demosaicing. The low-light images
are shot with different cameras (Canon 1Ds Mark III and Rebel Xti)

than recently proposed joint denoising and demosaicing ap-
proaches.

Our method assumes access to the raw image data before
it is corrupted by various stages in the image formation pro-
cess. However, such raw data is not easily accessed for a
considerable number of consumer cameras. For those cases
and for existing images, it is necessary to invert the demo-
saicing and other in-camera processing to estimate the raw
data before applying our algorithm. This is a direction of
our future work.
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