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Abstract— The presence of broadcast channels renders net-
work coding particularly useful. For example, a single broadcast
transmission of a proper mixture packet may simultaneously
present useful information to multiple nodes. Motivated by the
practical application of network coding in wireless networks, this
paper formulates a local mixing problem: A source node has a
set of mutually independent sources; each source is available at a
subset of neighbors and needs to be transferred to another subset
of neighbors; the problem is to characterize theadmissible rate
region, i.e., the set of channel rate allocations that can fulfill the
traffic demand. This paper establishes that under the constraint
that each neighbor decodes only from received symbols that are
functions of sources that the node can eventually recover, the
admissible rate region can be characterized by a set of linear
constraints and linear mixing is optimal.

I. I NTRODUCTION

Network codingrefers to a scheme where a node is allowed
to generate output data by mixing (i.e., computing certain
functions of) its received data. This extends conventional
routing, which allows a node to only forward its received data.
This concept was first introduced by Ahlswede et al. [1] in the
context of multicasting data in a network of lossless links.

Network coding is particularly useful in a broadcast
medium. For example, consider three wireless nodesv0, v1, v2

illustrated in Figure 1, where nodesv1 andv2 are both within
the communication range of nodev0. Suppose nodev1 has
packetx1, nodev2 has packetx2, and nodev0 has packets
x1 andx2. Suppose further that nodev1 needs packetx2 and
nodev2 needs packetx1. A single transmission of a packet
x1 + x2 (where ‘+’ stands for the bit-wise XOR of the two
packets) by nodev0 achieves two purposes: It allows nodev1

to recoverx2 and nodev2 to recoverx1. This technique was
termedphysical piggybackingby Wu et al. [2] because the
two packets are combined into one, without even increasing
the size of the packet.

v1 v1v0

x1, x2x1 x2

Fig. 1. Physical piggybacking: A single broadcast transmission of x1 + x2

presentsx2 to nodev1 who knowsx1 andx1 to nodev2 who knowsx2.

Wu et al. [2] demonstrated that packet exchanges can
naturally benefit from physical piggybacking. More recently,
Katti et al. [3] presented a framework for taking advantage of
physical piggybacking to improve the efficiency of unicasting
in multi-hop wireless networks. In their framework, each node
snoops on the medium and buffers packets it heard. A node
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Fig. 2. A table representing the traffic demand. For each neighbor v, v.Has

denotes the set of sources thatv has;v.Wants denotes the set of sources
that v wants to receive.

also informs its neighbors which packets they overheard. This
allows nodes to know (roughly) what packets are available at
each neighbor and then perform mixing to efficiently use the
channel.

In such a system, a critical issue is how to optimize the
formation of mixture packets so as to most efficiently use the
channel resource. Figure 2 gives one example problem sce-
nario. The table lists the traffic demand. For this example, one
possible solution is to broadcastx1 + x3 + x4 to {v1, v2, v3}
andx2 + x5 to {v3, v4}.

In this paper we formulate a mathematical abstraction of
such an issue, which is called thelocal mixingproblem. There
is a source nodev0, who has a set of neighborsV . The source
node v0 has M mutually independent sources,x1, . . . ,xM .
The rate of sourcexm is rm. Each sourcexm is initially
available at a set of neighborsHm ⊆ V and is needed by a
set of neighborsWm ⊆ V . Hence the traffic demand can be
characterized byM tuples{〈Hm,Wm, rm〉}M

m=1.
The traffic demand needs to be fulfilled by the channel

resources. We abstract out the channel coding issue and focus
on the mixing (network coding) issue. This amounts to a
separate treatment of channel coding and network coding,
where the channel coding is concerned about converting the
noisy channel into near-lossless bits and the network coding
is concerned about using the lossless bits to fulfill the traffic
demand. Although this separation approach could be subop-
timal than a joint channel and network coding approach, the
separation approach is closer to engineering practice and it
allows us to focus on mixing without referring to channel
properties. Specifically, the physical layer is abstractedby a
capacity regionC consisting of channel rate vectorsc of length
2|V |−1. In the case there are three neighbors,v1, v2, v3, each
channel rate vector is of the form

c
∆
= [c{1}, c{2}, c{3}, c{1,2}, c{1,3}, c{2,3}, c{1,2,3}], (1)

meaning that the channel can simultaneously provide ratec{1}
to v1, rate c{1,2} to {v1, v2}, etc. In other words, we are



modelling the physical layer as2|V | − 1 lossless channels
indexed by the set of receivers; the channel for a subsetQ ⊆ V

can transfer information reliably fromv0 to Q at ratecQ.
Therefore, the problem is to characterize theadmissible rate

region, i.e., the set of channel rate allocationsc that can fulfill
the traffic demand{〈Hm,Wm, rm〉}M

m=1.
The main result of this paper is that under the constraint

that each neighbor decodes only from received symbols that
are functions of sources that the node can eventually recover,
the admissible rate region can be characterized by a set of
linear constraints and linear mixing is optimal.

II. OPTIMAL M IXING ASSUMING POLLUTION-FREE

DECODING

Consider traffic demand{〈Hm,Wm, rm〉}M
m=1. For the rest

of the paper, we use a different representation of the traffic
demand. We can classify the sources into several types: A
source characterized by〈Hm,Wm, rm〉 is said to be of type
〈Hm,Wm〉. Let Φ denote the set of all possible source types.
For example, if there are two neighborsV = {v1, v2}, then

Φ = {〈∅, {1}〉, 〈∅, {2}〉, 〈∅, {1, 2}〉, 〈{1}, {2}〉, 〈{2}, {1}〉} .

We represent the original traffic demand{〈Hm,Wm, rm〉}M
m=1

as a length-|Φ| vector r, whose entryrφ is the sum rate of
sources of typeφ ∈ Φ. We then treat as if there are|Φ| sources,
with rate specified byr.

Any solution for the problem sends out a sequence of output
symbols on the broadcast channels. Each output symbol is a
function of some of the sources{xφ}.

Each neighborv ∈ V receives a subset of the output
symbols and needs to recover its needed sources using the
received output symbols, and the source symbols that it
initially has. For each neighborv, denote the set of sources
that v has or wants by

xv

∆
= {xφ ∈ Φ : v ∈ φH ∪ φW }. (2)

Here we writeφ = 〈φH , φW 〉 as a convention. Sources outside
xv are said to be “pollution sources” forv. If a pollution
source is involved in generating an output symbolY , then
we sayY is a “polluted” symbol fromv’s point of view. In
this section we impose the following constraint and look for
optimal solutions under this constraint.

Constraint 1 (“Decoding from Unpolluted Data Only”):
Each nodev ∈ V decodes its needed information using only

the sources it initially has, and its received output symbols
that are functions of sources inxv. In other words, each node
is required to ignore any polluted symbols that it receives.

Theorem 1 (Two-Stage Assignment):
Assuming pollution-free decoding (i.e., under Constraint1),

the traffic demandr can be fulfilled by channel rate vectorc
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Fig. 3. Illustration of the linear constraints in Theorem 1.

if and only if there exists{f (v)
φP , gP , σPQ} that satisfy

∑

P

f
(v)
φP = rφ, ∀v ∈ V, ∀φ : v ∈ φW (3)

∑

φ

f
(v)
φP ≤ gP , ∀v ∈ V, ∀P : {v} ⊆ P ⊆ V, (4)

f
(v)
φP ≥ 0, ∀P, φ, v : {v} ⊆ P ⊆ φH ∪ φW ⊆ V, (5)
∑

Q

σPQ = gP , ∀P : ∅ ⊂ P ⊆ V (6)

∑

P

σPQ ≤ cQ, ∀Q : ∅ ⊂ Q ⊆ V (7)

σPQ ≥ 0, ∀P,Q : ∅ ⊂ P ⊆ Q ⊆ V. (8)

Here variablef (v)
φP exists only for{v} ⊆ P ⊆ φH ∪φW ⊆ V ;

variableσPQ exists only for∅ ⊂ P ⊆ Q ⊆ V .
Furthermore, if the above linear system of constraints has

a feasible solution, then the traffic demandr can be fulfilled
by c via linear coding.

We now explain the linear constraints in Theorem 1. We
introduce a directed graphZ, as illustrated by Fig. 3. There are
three layers of vertices. The nodes in layer 1,{inφ : φ ∈ Φ},
model the|Φ| sources; the nodeinφ has an associated (source)
traffic rφ. The nodes in layer 2,{outP : ∅ ⊂ P ⊆ V }, model
the 2|V | − 1 “output buffers” that hold output symbols (their
meaning will be explained shortly); the bufferoutP has an
associated rategP , representing the total rate of its output
symbols. The nodes in layer 3,{chQ : ∅ ⊂ Q ⊆ V }, model the
2|V |− 1 physical channels; the channel chQ has an associated
capacitycQ.

A source nodeinφ has an outgoing edge to an output buffer
outP if φH ∪ φW ⊇ P ; such an edge is denoted byφP . An
output bufferoutP has an outgoing edge to channel chQ if
P ⊆ Q; such an edge is denoted byPQ. We use the name
“stage 1” (resp. “stage 2”) to refer to the subgraph ofZ

induced by layer-1 and layer-2 nodes (resp. layer-2 and layer-3
nodes).



In Theorem 1, Constraints (3)-(5) correspond to an traffic
assignment in stage 1for each neighborv, where the sources
that v wants are assigned to the output buffers{outP } that
v receives. Constraints (6)-(8) correspond to an traffic assign-
ment in stage 2, where the traffic held by buffers{outP } are
assigned to the channels{chQ}.

Theorem 1 can now be alternatively stated as follows.
Assuming pollution-free decoding, traffic demandr can be
fulfilled by channel resourcec if and only if there exists a
valid traffic assignment{f (v)

φP } in stage 1for each individual
neighborv and a common valid traffic assignment{σPQ} in
stage 2for all neighbors.

A. Proof of Necessity

Any solution S corresponds to an assignment of output
symbols to the2|V | − 1 channels, such that the total rate in
each channelQ does not exceed the channel capacitycQ.

Consider assigning each output symbol into one of(2|V |−1)
output buffers{outP : ∅ ⊂ P ⊆ V } as follows. For each
output symbolY , we put it into bufferoutP , where P is
the set of neighbors that usesY for decoding. After such a
classification process, letgP denote the sum rate of output
symbols in bufferoutP ; collectively, let g be the length-
(2|V | − 1) vector obtained by concatenating{gP } together.
Note that if a symbol is transmitted by channelchQ and used
by P for decoding, thenP ⊆ Q. Let σPQ be the sum rate of
symbols that are transmitted by channelchQ and used byP
for decoding. Then (6)-(8) must be satisfied.

Now consider an arbitrary neighborv. It has access to the
symbols in buffers{outP : P ∋ v}, and the sources{xφ′ :
φH ∋ v}. It needs to recover sources{xφ : φW ∋ v}. Due to
Constraint 1, each symbol inoutP can only be a function of
{xφ : φH ∪ φW ⊇ P}.

The coding for nodev can be viewed as a single source
network coding problem in a network, illustrated by Fig. 4.
In Z, add a virtual source nodesv that has an outgoing edge
with capacityrφ to each sourcexφ that v wants. In addition,
add a virtual destination nodetv that has an incoming edge
with infinite capacity from each sourcexφ′ that v has, and
an incoming edge with capacitygP from each output buffer
outP with P ∋ v. Denote the resulting graph byZv. Then any
solutionS for the original local mixing problem maps into a
solution inZv for the problem of transferring the sourcesxv

from sv to tv. From [1], there must exist ansv–tv flow in
Zv that provides rate

∑
φ:φH∪φW ∋v rφ. Such flow condition

is equivalent to the constraints (3)-(5).
Therefore the constraints (3)-(8) hold for any solutionS.

B. Proof of Sufficiency

We first explain the basic idea underlying the proof. We
associate a tag with each output symbol; the value of the tag is
a subset ofV , which indicates the set of neighbors “interested”
in this symbol. If a symbolY is tagged withU ⊆ V , thenY

must not be pollution to any neighbor inU ; i.e.,

Y = f(xφ : φH ∪ φW ⊇ U), for some functionf. (9)

…

Fig. 4. The graphZv .

We maintain2|V |−1 tagged buffers{outP : ∅ ⊂ P ⊆ V }; the
buffer outP holds output symbols tagged withP . The output
symbols in outP are generated by mixing the compatible
sources{xφ : φH ∪ φW ⊇ P}; this is modelled by the
connection structure in stage 1 ofZ.

Proof of Sufficiency: Consider an arbitrary feasible so-
lution, {f

(v)
φP , gP , σPQ}, that satisfies the linear system of

constraints (3)-(8). Without essential loss of generality, we
assume all the variables and constants in (3)-(8) are integer.

In Z, replace each edgeφP in stage 1 byrφ parallel unit-
capacity edges frominφ to outP , and each edgePQ in stage 2
by σPQ parallel unit-capacity edges,{PQi : i = 1, . . . , σPQ},
from outP to chQ. Denote the resulting graph byZ. We next
show that there exists a linear network coding assignment inZ

that enables all neighbors to recover its needed information.
Such a linear network coding assignment corresponds to a
feasible solution that fulfills the traffic demand using channel
resourcec. The proof is based on the algebraic framework
introduced by Koetter and Medard [4].

Let F denote the operating finite field. Each unit-capacity
edge inZ can carry one symbol fromF. Therφ parallel edges
from inφ to outP carry therφ source symbols,xφ1, . . . , xφrφ

,
respectively. LetyP denote the vector (of lengthgP ) formed
by the set of all output symbols generated by bufferoutP .
Then in a linear coding assignment,yP is a linear transfor-
mation of the sources observed by bufferoutP :

yP =
∑

φ: φP∈E(Z)

wφP xφ (10)

The elements inwφP are said to be “mixing coefficients”.
Let w be a vector that includes everywφP for φP ∈ E(Z).
Hence a linear network coding assignment is specified by an
assignment ofw, from F

|w| (here |a| denotes the length of
vectora).

Consider an arbitrary neighborv. We treatxv defined in
(2) as a vector formed by concatenating the sources thatv has
or wants. It has access to all the channels{chQ : Q ∋ v}.
Since all symbols generated byoutP are assigned to channels
{chQ : P ⊆ Q} in stage 2,v has access to the output symbols
{yP : P ∋ v}. In addition,v has access to the source symbols
{xφ : φH ∋ v}. Let y

v
be a vector formed by{yP : P ∋ v}

and{xφ : φH ∋ v}. For eachP ∋ v, note thatyP is a function
of only xv, due to the connection structure ofZ. Thusy

v
is



a linear function ofxv:

y
v

= Qvxv, (11)

where each element ofQv is either a binary constant or a
mixture coefficient inw.

The needed source informationxv can be decoded fromy
v

if and only if Qv has full column rank, which holds if and
only if there exists a matrixPv of size |xv| × |y

v
| such that

det(PvQv) 6= 0. Note that{f (v)
φP } is a valid assignment of

the sources traffic{rφ : φW ∋ v} to the buffers{outP : P ∋
v}. Thus, there exists an assignment ofw andPv, with each
element being either 0 or 1, such thatdet(PvQv) 6= 0.

Now we consider the recoverability of all destination nodes.
There exists a linear coding solution such that each destination
can recover its needed information if and only if there exists
an assignment ofw and{Pv : v ∈ V } that satisfies

∏

v∈V

det(PvQv) 6= 0. (12)

Following [4], the quantity
∏

v∈V det(PvQv) can be viewed
in two ways: (i) as a polynomial in terms of the variables
w and {Pv : v ∈ V } with coefficients in F, (ii) as a
number in F for given w and {Pv : v ∈ V }. Earlier
we have established that for each destinationv alone, there
exists an assignment of the elements inw and Pv from
F = GF (2) such thatdet(PvQv) 6= 0. This implies that
for each destinationv, det(PvQv) is a nonzero polynomial.
Therefore,

∏
v∈V det(PvQv) is a nonzero polynomial in terms

of the variablesw and {Pv : v ∈ V } with coefficients inF.
It is known that for a non-zero polynomial defined over a
sufficiently large finite fieldF, it must evaluate to a nonzero
value at a certain point. This establishes the existence ofw

and{Pv : v ∈ V } such that all needed symbols are recovered
simultaneously at all destinations.

In the above we have shown the existence of a linear coding
solution for a sufficiently large fieldF. In fact, if we choose
each mixing coefficient inw and each element of{Pv : v ∈
V } uniformly and independently fromF, then the probability
that all needed symbols are recovered approaches 1 as the
field size |F| approaches infinity; this can be established via
the Schwartz-Zippel Theorem (e.g., [5], according to [6]).

III. O PTIMAL M IXING UNDER A RELAXED CONSTRAINT

In this section we show it is possible to characterize the
optimal mixing under Constraint 2, which is a relaxed version
of Constraint 1.

Constraint 2 (“Extended Pollution-Free Decoding):
If node v uses an output symbolY that is a function of a

subset of source symbolsX , for decoding, then nodev must
recover all source symbols inX .

Constraint 2 relaxes Constraint 1 by allowing a nodev

to treat some unwanted source symbols as wanted symbols.
Equivalently, some source symbols now have more recipients.
This results in more symbols to be recovered; the benefit is

Stage 1:
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neighbor v.

Stage 2:
There must exist a 

common assignment
for all neighbors.
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for all neighbors.

Layer 0:

Fig. 5. Illustration of the linear constraints in Theorem 2.

that some polluted symbols under Constraint 1 now become
symbols that can be used byv for decoding.

The degree of freedom in adding recipients can be modelled
by an additional assignment stage, as illustrated by Fig. 5 for
the caseV = {v1, v2}. We can treat a part of the original
sourcexθ as source symbols of a sourcex′

φ with θH = φH

and θW ⊆ φW . Let τθφ denote the amount of traffic which
is originally of type θ and converted to typeφ. Then (13)-
(15) hold. After such an assignment stage, the original traffic
demandr is now converted into a traffic demandr′. Therefore,
we have the following extension of Theorem 2.

Theorem 2 (Three-Stage Assignment):
Under Constraint 2, the traffic demandr can be ful-

filled by channel rate vectorc if and only if there exists
{τθφ, r′φ, f

(v)
φP , gP , σPQ} that satisfy

∑

φ

τθφ = rθ, ∀θ ∈ Φ, (13)

∑

θ

τθφ = r′φ, ∀φ ∈ Φ, (14)

τθφ ≥ 0, ∀θ, φ ∈ Φ : θH = φH , θW ⊆ φW . (15)
∑

P

f
(v)
φP = r′φ, ∀v ∈ V, ∀φ : v ∈ φW (16)

∑

φ

f
(v)
φP ≤ gP , ∀v ∈ V, ∀P : {v} ⊆ P ⊆ V, (17)

f
(v)
φP ≥ 0, ∀P, φ, v : {v} ⊆ P ⊆ φH ∪ φW ⊆ V, (18)
∑

Q

σPQ = gP , ∀P : ∅ ⊂ P ⊆ V (19)

∑

P

σPQ ≤ cQ, ∀Q : ∅ ⊂ Q ⊆ V (20)

σPQ ≥ 0, ∀P,Q : ∅ ⊂ P ⊆ Q ⊆ V. (21)

Here variableτθφ exists only forθ, φ ∈ Φ : θH = φH , θW ⊆

φW ; variablef
(v)
φP exists only for{v} ⊆ P ⊆ φH ∪ φW ⊆ V ;

variableσPQ exists only for∅ ⊂ P ⊆ Q ⊆ V .
Furthermore, if the above linear system of constraints has

a feasible solution, then the traffic demandr can be fulfilled
by c via linear coding.



IV. RELATION WITH MULTI -SOURCEMULTICASTING

The local mixing problem can be viewed as a special case
of the general multi-source multicasting problem (see, e.g.,
[7]). In the multi-source multicasting problem, there are aset
of independent sources; each source is to be multicast through
a network of lossless channels to a set of destination nodes.

We now show how to interpret the local mixing problem
as a multi-source multicasting problem. We introduce a graph
consisting of four layers of nodes, as illustrated by Figure6.
The first layer consists of one node for each source typeφ ∈ Φ.
The second layer consists of a single nodev0. The third layer
consists of one node for each nonempty subset ofV . The
fourth layer consists of one node for each neighbor inV .
There is an edge with infinite capacity from every sourceXφ

to v0, representing thatv0 has access to all these sources.
Each sourceXφ has edges with infinite capacity pointing to
neighbors that have the source. The use of the channel for
broadcasting to a setQ ⊆ V is represented by a tree-like
structure: There is an edge with capacitycQ from v0 to the
nodeQ in the third layer and there is an edge with infinite
capacity fromQ to each neighbor inQ.

Therefore the local mixing problem is a special case of
the multi-source multicasting problem. As a result, known
theoretical results about the multi-source multicasting problem
can be applied. In particular, the bounding techniques by Song
et al. [8] (see also Chapter 15 of [7]) can be applied. We now
explain the results.

Introduce random variables{Xφ : φ ∈ Φ} and {YQ : ∅ ⊂

Q ⊆ V }. Let N denote the union of these two sets. Letn
∆
=

|N | = |Φ|+2|V |−1. Let Hn denote the(2n−1)-dimensional
Euclidean space with the coordinates labelled by{hA : ∅ ⊂
A ⊆ N}. A column vectorh ∈ Hn is called entropic if
for a certain joint distribution of random variables inN , hA

is equal to the joint entropy of the random variablesA, for
every coordinateA ⊆ N . Then, the set of all entropic vectors
is called theentropy spaceΓ∗

n of n random variables:

Γ∗
n

∆
= {h ∈ Hn : h is entropic}. (22)

Let Γ∗
n denote the closure ofΓ∗

n. For ease in notation, define
hA|B

∆
= hA∪B − hB .

Specifying the inner bound of [8] and after some manipu-
lations, we see thatc can fulfill traffic demandr if there exist
h ∈ Γ∗

n that satisfies the following conditions:

h(Xφ:φ∈Φ) =
∑

φ∈Φ

hXφ
, (23)

hYQ|(Xφ: φ∈Φ) = 0, (24)

h(Xφ:v∈φW )|(Xφ:v∈φH),(YQ: v∈Q) = 0, ∀v ∈ V, (25)

cQ > hYQ
, ∀Q : ∅ ⊂ Q ⊆ V, (26)

hXφ
> rφ, ∀φ ∈ Φ. (27)

These inequalities can be interpreted as follows. Here (23)says
that the sources are mutually independent; (24) says that the
output symbols has to be a function of the inputs; (25) says
that each node must be able to recover all its wanted sources;

v0

v1 vk

X1 X|Φ|…

… …

…

∞∞

∞ ∞

∞ ∞

Edges pointing to 
nodes that have X1

Edges pointing to 
neighbors in Q

Fig. 6. Interpretation of the local mixing problem as a multi-source problem.

(26) says that the entropy of the outputYQ must be strictly
less than the total available channel bit-rate; (27) says that the
entropy ofXφ must be strictly less than the information rate
of sourceφ.

The outer bound of [8] is applicable. Furthermore, following
the derivations of [8] (or Chapter 15 of [7]), an outer bound
customized for the current context can be obtained. The result
is that ifc can fulfill traffic demandr, then there existsh ∈ Γ∗

n

that satisfies the linear constraints obtained by replacing‘>’ in
(26)(27) by ‘≥’. Moreover, a relaxed bound can be obtained
by replacingΓ∗

n by its outer boundΓn, which is the set of
nonnegative vectorsh ∈ Hn that satisfies all Shannon-type
inequalities; see Chapter 15 of [7] for details.

V. CONCLUSION

We introduced the local mixing problem and presented
constructive results. Theorem 1 states that if a system of
linear constraints has a feasible solution, then the traffic
demand can be fulfilled by the given channel resource via
(random) linear coding. This result is established via two
key constructive techniques: (i) organizing data into different
categories based on the interested neighbors, (ii) systematically
exploring the degree of freedom in adding recipients. The
local mixing problem is a special case of the multi-source
multicasting problem: It does not involve multi-hop relaying.
The techniques in this paper have been extended to the general
multi-source multicasting problem in [9].
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