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Abstract—The presence of broadcast channels renders net- ~Field Has Wants
work coding particularly useful. For example, a single broadcast Neighbor
transmission of a proper mixture packet may simultaneously Vi X1, X3 X4

present useful information to multiple nodes. Motivated by the

. L e . . V2 Xy, X4 X3
practical application of network coding in wireless networks, this
paper formulates alocal mixing problem: A source node has a i X0, X3, X4 | XpXs
set of mutually independent sources; each source is available at a v, X X5 X,

subset of neighbors and needs to be transferred to another sabt

of neighbors; the problem is to characterize theadmissible rate Fig. 2. A table representing the traffic demand. For each eigh, v. Has

region, i.e., the set of channel rate allocations that can fulfill the genqtes the set of sources thahas;v.Wants denotes the set of sources
traffic demand. This paper establishes that under the constraint that+ wants to receive.

that each neighbor decodes only from received symbols that are
functions of sources that the node can eventually recover, the
admissible rate region can be characterized by a set of linear z|so informs its neighbors which packets they overhearis Th

constraints and linear mixing is optimal. allows nodes to know (roughly) what packets are available at

|. INTRODUCTION each neighbor and then perform mixing to efficiently use the
Network codingefers to a scheme where a node is aIIowe%Panne"

. : . . In such a system, a critical issue is how to optimize the
to generate output data by mixing (i.e., computing certa%n

: ; . : : rmation of mixture packets so as to most efficiently use the
functions of) its received data. This extends convention h :
. : : . channel resource. Figure 2 gives one example problem sce-
routing, which allows a node to only forward its receivedadat

This concept was first introduced by Ahlswede et al. [1] in thréano. The table lists the traffic demand. For this exampie, o

context of multicasting data in a network of lossless links. possible solution is to broadcasi + a5 + x4 10 {v1, vz, vs}
Network coding is particularly useful in a broadcas?
medium. For example, consider three wireless nages;, v,
illustrated in Figure 1, where nodes andwv, are both within
the communication range of nodg. Suppose node; has
packetz,, nodev, has packetr;, and nodev, has packets "0 o sourcer,, is r,,. Each sourcec,, is initially
x; andx,. Suppose further that node needs packets and . ; .
. L available at a set of neighboig,, C V and is needed by a
nodewvs needs packek;. A single transmission of a packet . )
o I set of neighbord¥,,, C V. Hence the traffic demand can be
x1 + x2 (Where '+ stands for the bit-wise XOR of the two : M
ackets) by node, achieves two purposes: It allows node charactenzgd bW tuples {{Hm, Wi, r"”>.}m:1'
P 0 N ) The traffic demand needs to be fulfilled by the channel
to recoverz, and nodev, to recoverz;. This technique was .2
. . . resources. We abstract out the channel coding issue and focu
termed physical piggybackindoy Wu et al. [2] because the - . . }
. ; . ; .on the mixing (network coding) issue. This amounts to a
two packets are combined into one, without even increasing : .
. seéparate treatment of channel coding and network coding,
the size of the packet. T .
where the channel coding is concerned about converting the

ndxs, + x5 to {Ug, U4}.

In this paper we formulate a mathematical abstraction of
such an issue, which is called tleeal mixingproblem. There

is a source nodey, who has a set of neighbols. The source
node vy, has M mutually independent sourcesy,...,x ;.

noisy channel into near-lossless bits and the network godin
/Y\ is concerned about using the lossless bits to fulfill theficraf
@ @ @ demand. Although this separation approach could be subop-

timal than a joint channel and network coding approach, the
separation approach is closer to engineering practice and i
Fig. 1. Physical piggybacking: A single broadcast transioissf @1 + 22 allows us to focus on mixing without referring to channel
presentse; to nodev; who knowsz; andz; to nodewvs who knowszo.  properties. Specifically, the physical layer is abstradigda
capacity regiorC consisting of channel rate vectar®f length

Wu et al. [2] demonstrated that packet exchanges cal! — 1. In the case there are three neighbersy,, vs, each
naturally benefit from physical piggybacking. More recgntl channel rate vector is of the form
Katti et al. [3] presented a framework for taking advantafe o A
physical piggybacking to improve the efficiency of unicagti € = leqp cap osp G2y Cusp Czap cnzayl, - (1)
in multi-hop wireless networks. In their framework, eactdao meaning that the channel can simultaneously providedate
snoops on the medium and buffers packets it heard. A noev;, rate c(; 5, to {v1,v2}, etc. In other words, we are
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modelling the physical layer agV! — 1 lossless channels e 5E%)  fouts i Be BCV) femyt Bcacvy

indexed by the set of receivers; the channel for a susetl’ , @{ . 90 cr1)
can transfer information reliably from, to @ at ratecq. sy ve
Therefore, the problem is to characterize #ugnissible rate , T % .
region i.e., the set of channel rate allocatianthat can fulfill @.(2) (2t _{2}
the traffic demand (H,, Wy, ) }M_,. T W )
The main result of this paper is that under the constraint o412 2 N
that each neighbor decodes only from received symbols that Ty/
are functions of sources that the node can eventually recove ({142}
the admissible rate region can be characterized by a set of TV
linear constraints and linear mixing is optimal. T{{2},{1})
T Stage 1: Stage 2:
The_re must exist an There mustvexist a
1. OPTIMAL MIXING ASSUMING POLLUTION-FREE ass'%lr%mf\rfam Cof?rr:\[ﬁnnifgsﬁ%gﬂe.m

DECODING
Fig. 3. lllustration of the linear constraints in Theorem 1.

Consider traffic deman@(H,,,, W, rm) }4_,. For the rest
of the paper, we use a different representation of the trafﬂrc . . (v) .
' . . and only if there exist that satis
demand. We can classify the sources into several types: A y S{f‘bp’gp’JPQ} fy

source characterized by, W,,,, ) is said to be of type ng;)) =ry, YEV,Vo:vE€ dw 3)

(Hm, Wp,). Let © denote the set of all possible source types. “;

For example, if there are two neighbdrs= {v;, v}, then

> i <gp. VeV, VP:{o}CPCV, @
@
O = {0, {11, (@, {2}), (0, {1,2}), {1}, {21), ({2}, {1D)}. »
(0010, 0 20, 0. 0120, (01 2D (LD s 0 pgu e PConUon Y, ©
We represent the original traffic demafdH,,,, Wi, 7 ) 2, Z opg=gp, VP:0CPCV (6)
as a length®| vector r, whose entryr, is the sum rate of Q
sources of typg € ®. We then treat as if there af@| sources, ZUPQ <, VQ:0CQCV @)
with rate specified by-. P
Any solution for the problem sends out a sequence of output o > 0, VP,Q: DCPCQCV. (8)
symbols on the broadcast channels. Each output symbol is a /
function of some of the sourcese,}. Here variablef(;”P) exists only for{v} C P C ¢y Udw CV;

Each neighboru € V receives a subset of the output@riablecpq exists only forf c PCQ C V. _
symbols and needs to recover its needed sources using theurthermore, if the above linear system of constraints has
received output symbols, and the source symbols thatajffeasible solution, then the traffic demandan be fulfilled
initially has. For each neighbar, denote the set of sourcesby c via linear coding.

thatv has or wants by
We now explain the linear constraints in Theorem 1. We

introduce a directed graph, as illustrated by Fig. 3. There are
three layers of vertices. The nodes in laye{ s, : ¢ € O},

) ) _model the|®| sources; the nodi,; has an associated (source)
Here we writep = (¢, ¢w ) as a convention. Sources outsideaffic rs. The nodes in layer 2outp : ) C P C V}, model
x, are said to be “pollution sources” far. If a pollution neolVl _ 1 “output buffers” that hold output symbols (their
source is involved in generating an output symbal then  meaning will be explained shortly); the buffeutp has an
we sayY is a “polluted” symbol fromv's point of view. In 5g5ociated ratep, representing the total rate of its output
this section we impose the following constraint and look fQé‘ymboIs. The nodes in layer &h, : § ¢ Q C V}, model the
optimal solutions under this constraint. 2IVl — 1 physical channels; the channelchas an associated

Constraint 1 (“Decoding from Unpolluted Data Only”): capacitycg.

Each nodev € V decodes its needed information using only A source noden, has an outgoing edge to an output buffer
the sources it initially has, and its received output symbobytp if ¢ U ¢y O P; such an edge is denoted BP. An
that are functions of sources ),. In other words, each nodeoutput bufferoutp has an outgoing edge to channelycii
is required to ignore any polluted symbols that it receives. p C : such an edge is denoted Q. We use the name

Theorem 1 (Two-Stage Assignment): “stage 1" (resp. “stage 2") to refer to the subgraph 2f
Assuming pollution-free decoding (i.e., under Constrdint induced by layer-1 and layer-2 nodes (resp. layer-2 and-aye
the traffic demand- can be fulfilled by channel rate vecter nodes).

z, 2 {xy €@ vE by Udw). 2



P )
In Theorem 1, Constraints (3)-(5) correspond to an traffic in(p (1) . out{1y
assignment in stage fbr each neighbow, where the sources

that v wants are assigned to the output bufféraitp} that - n(0.42})
. . . . 041} 9{1}
v receives. Constraints (6)-(8) correspond to an trafficgassi ‘
ment in stage 2, where the traffic held by buff¢rsitp} are st p{1,2) \
igned to the channefshy} e 9(12178 1
assigne ho}. _ T{1h{2h 00
Theorem 1 can now be alternatively stated as follows. AN

. . . . ({251}
Assuming pollution-free decoding, traffic demamdcan be

fulfilled by channel resource if and only if there exists a
valid traffic assignmen{fgjg)} in stage 1for each individual
neighborv and a common valid traffic assignmefitpg} in Fig. 4. The graphZ,.
stage 2for all neighbors

A. Proof of Necessity We maintain2!V! — 1 tagged bufferdoutp : ) ¢ P C V}; the
Any solution S corresponds to an assignment of outpuuffer outp holds output symbols tagged with. The output
symbols to the2!Vl — 1 channels, such that the total rate irsymbols inoutp are generated by mixing the compatible

each channel) does not exceed the channel capaeity sources{zy : ¢y U dpw 2 P}, this is modelled by the
Consider assigning each output symbol into ong8fl—1)  connection structure in stage 1 4f.
output buffers{outp : ) ¢ P C V} as follows. For each  Proof of Sufficiency: Consider an arbitrary feasible so-
output symbolY, we put it into bufferoutp, where P is lution, {fé,?,gp,OPQ}, that satisfies the linear system of
the set of neighbors that usés for decoding. After such a constraints (3)-(8). Without essential loss of generalite
classification process, letp denote the sum rate of outputassume all the variables and constants in (3)-(8) are intege
symbols in bufferoutp; collectively, let g be the length- In Z, replace each edgeP in stage 1 byry parallel unit-
(2IVl — 1) vector obtained by concatenatifgp} together. capacity edges fronm, to outp, and each edglq in stage 2
Note that if a symbol is transmitted by chanmél, and used by opq parallel unit-capacity edge$PQ; :i =1,...,0pq},
by P for decoding, then? C Q. Let opg be the sum rate of from outp to chq. Denote the resulting graph by. We next
symbols that are transmitted by chanegl, and used by show that there exists a linear network coding assignmeft in
for decoding. Then (6)-(8) must be satisfied. that enables all neighbors to recover its needed informatio
Now consider an arbitrary neighbot It has access to the Such a linear network coding assignment corresponds to a
symbols in buffers{outp : P > v}, and the source$z, : feasible solution that fulfills the traffic demand using chan
éu > v}. It needs to recover sourcs, : ¢y > v}. Due to resourcec. The proof is based on the algebraic framework
Constraint 1, each symbol iutp can only be a function of introduced by Koetter and Medard [4].

{zg : o Udw 2 P}. Let F denote the operating finite field. Each unit-capacity
The coding for nodev can be viewed as a single sourc&dge inZ can carry one symbol froffi. Ther parallel edges
network coding problem in a network, illustrated by Fig. 4fromin, to outp carry ther, source symbolsgy1, . .., zer,,

In Z, add a virtual source node, that has an outgoing edgerespectively. Lety , denote the vector (of length») formed
with capacityrs to each source, thatv wants. In addition, by the set of all output symbols generated by buffet .
add a virtual destination nodeg that has an incoming edgeThen in a linear coding assignmen, is a linear transfor-
with infinite capacity from each source, thatv has, and mation of the sources observed by bufer p:
an incoming edge with capacityp from each output buffer _
outp with P 5 v. Denote the resulting graph %,. Then any Yr = Z
solution S for the original local mixing problem maps into a ¢: #PEE(Z)
solution in Z, for the problem of transferring the sources The elements inwyp are said to be “mixing coefficients”.
from s, to t,. From [1], there must exist as,—t, flow in Letw be a vector that includes evety,p for oP € E(Z).
Z, that provides rate . 4,5, 7¢- Such flow condition Her}ce a linear network coding assignment is specified by an
is equivalent to the constraints (3)-(5). assignment ofw, from F!*! (here |a| denotes the length of
Therefore the constraints (3)-(8) hold for any soluti®n  vectora).
Consider an arbitrary neighboer. We treatz, defined in
B. Proof of Sufficiency (2) as a vector formed by concatenating the sourcesvthats
We first explain the basic idea underlying the proof. Wer wants. It has access to all the channflég : Q > v}.
associate a tag with each output symbol; the value of thestagSince all symbols generated byt p are assigned to channels
a subset o/, which indicates the set of neighbors “interested{chq : P C Q} in stage 2p has access to the output symbols
in this symbol. If a symbol” is tagged withU C V, thenY {yp : P > v}. In addition,v has access to the source symbols
must not be pollution to any neighbor 1; i.e., {zy : ém > v}. Lety be a vector formed bfyp : P > v}
] and{xz, : ¢y > v}. For eachP 5 v, note thaty » is a function
Y = f(@s: on Udw 2U), for some functionf. — (9)  of only z,, due to the connection structure & Thusy_ is

WyppTy (10)



a linear function 0@@: {Salz-a%/eer g) {inwl_:a)(frglq:)} fouts :Lamygrgzg " {t?(/)e:r 3@;CQ£”
L T
y, =@z (11) "o ro.(1) e
o L 1
where each element a, is either a binary constant or a T(0,{2}) o 12 902} ez}
mixture coefficient imw. |

/
The needed source informatian, can be decoded from 002 W _ N7

if and only if @, has full column rank, which holds if and

/
. . . . T T({1} {2
only if there exists a matrix’, of size |z, | x [y | such that ey hRE

() - ;

det(P,Q,) # 0. _Note that{f¢P} is a valid assignment of 2141} "2Ln

the sources traffi¢ry : ¢w > v} to the buffers{outp : P > — Stage 1: Stage 2.

v}. Thus, there exists an assignmentwfand P,, with each common assignment | assignment foreah | common sssinment
for all neighbors. neighbor v. for all neighbors.

element being either 0 or 1, such thkt(P,Q,) # 0.
Now we consider the recoverability of all destination nodes
There exists a linear coding solution such that each dé&tima
can recover its needed information if and only if there exist
an assignment ofv and {P, : v € V'} that satisfies

Fig. 5. lllustration of the linear constraints in Theorem 2.

that some polluted symbols under Constraint 1 now become
H det(P, Q) # 0. (12) symbols that can be useq b’yfor. decod.in.g.

The degree of freedom in adding recipients can be modelled
by an additional assignment stage, as illustrated by Figr5 f
Following [4], the quantity[[, ., det(P,Q,) can be viewed the casel’ = {v;,v.}. We can treat a part of the original
in two ways: (i) as a polynomial in terms of the variablegoyrces, as source symbols of a soureg with 0y = ¢p
w and {P, : v € V} with coefficients inF, (i) as a and@y, C ¢w. Let 7y, denote the amount of traffic which
number inF for given w and {P, : v € V}. Earlier s griginally of type# and converted to type. Then (13)-
we have established that for each destinatioalone, there (15) hold. After such an assignment stage, the originafi¢raf
exists an assignment of the elementsnand P, from gdemand- is now converted into a traffic demamél Therefore,
F = GF(2) such thatdet(P,Q,) # 0. This implies that \ye have the following extension of Theorem 2.
for each destinatiow, det(P,Q,) is a nonzero polynomial.  Theorem 2 (Three-Stage Assignment):
Therefore[], ¢ det(P,Q.) is a nonzero polynomial in terms  ynder Constraint 2, the traffic demand can be ful-

of the variablesw and {P, : v € V} with coefficients inF.  fjled by channel rate vectoe if and only if there exists
It is known that for a non-zero polynomial defined over ?T@@T;,fg,gp,apcg} that satisfy

sufficiently large finite fieldF, it must evaluate to a nonzero
value at a certain point. This establishes the existence of ZT% =g, VO E D, (13)
and{P, : v € V'} such that all needed symbols are recovered 7
simultaneously at all destinations. ,

In the above we have shown the existence of a linear coding Z Top =T¢, Y € P, (14)
solution for a sufficiently large field. In fact, if we choose

veV

each mixing coefficient inv and each element ofP, : v € 796 =20, V0,90 € ©:0p = ¢, 0w C dw. (15)
V} uniformly and independently frorfi, then the probability Z f(fﬂg) = r(’b, Yo eV, Vo:v € ow (16)
that all needed symbols are recovered approaches 1 as ther
field size |F| approaches infinity; this can be established via qu(ﬁvlg <gp, WeV,VP:{v} CPCV, (17)
the Schwartz-Zippel Theorem (e.g., [5], according to [6]). )
I1l. OPTIMAL MIXING UNDER A RELAXED CONSTRAINT fiﬁa) 20, VP ¢v:{v}CPConUdw CV, (18)
In this section we show it is possible to characterize the Y opq =gp, YP:0 C P CV (19)
optimal mixing under Constraint 2, which is a relaxed varsio @
of Constraint 1. ZUPQ <co, VQ:0cCQCV (20)
Constraint 2 (“Extended Pollution-Free Decoding): I3
If node v uses an output symbdl that is a function of a opg >0, VPQ: D CPCQCYV. (21)
subset of source symbols, for decoding, then node must
recover all source symbols i’ Here variableryy exists only forf,¢ € ® : 0y = ¢, 0w C

ow; variablef(;’}? exists only for{v} C P C ¢y Uy CV;
Constraint 2 relaxes Constraint 1 by allowing a nade variableopg exists only ford c P C Q C V.
to treat some unwanted source symbols as wanted symbold-urthermore, if the above linear system of constraints has
Equivalently, some source symbols now have more recipienasfeasible solution, then the traffic demandan be fulfilled
This results in more symbols to be recovered; the benefithy ¢ via linear coding.



IV. RELATION WITH MULTI-SOURCEMULTICASTING

The local mixing problem can be viewed as a special case
of the general multi-source multicasting problem (see,,e.g

[7]). In the multi-source multicasting problem, there arsed

of independent sources; each source is to be multicastghrou
a network of lossless channels to a set of destination nodes.

°

neighbors in Q

@

We now show how to interpret the local mixing problem
as a multi-source multicasting problem. We introduce algrapig- 6. Interpretation of the local mixing problem as a mudtissce problem.

consisting of four layers of nodes, as illustrated by Figbre
The first layer consists of one node for each source typed.
The second layer consists of a single nagdeThe third layer
consists of one node for each nonempty subset’ ofThe
fourth layer consists of one node for each neighborVin
There is an edge with infinite capacity from every souitg

to vy, representing thaty has access to all these sources
Each sourceX, has edges with infinite capacity pointing to

neighbors that have the source. The use of the channel
broadcasting to a se) C V is represented by a tree-like
structure: There is an edge with capacity from v, to the
node @ in the third layer and there is an edge with infinit
capacity from@ to each neighbor ird).

Therefore the local mixing problem is a special case

the multi-source multicasting problem. As a result, know

theoretical results about the multi-source multicastingpfem

(26) says that the entropy of the outpkiy must be strictly
less than the total available channel bit-rate; (27) sagsttie
entropy of X4 must be strictly less than the information rate
of sourceq.

The outer bound of [8] is applicable. Furthermore, follogvin
he derivations of [8] (or Chapter 15 of [7]), an outer bound
4 tomized for the current context can be obtained. Thétresu
is that if ¢ can fulfill traffic demand-, then there existe € 'z,
that satisfies the linear constraints obtained by replacirign
26)(27) by >'. Moreover, a relaxed bound can be obtained
y replacingl; by its outer bound’,, which is the set of

t

&onnegative vectoré € H,, that satisfies all Shannon-type

Wequalities; see Chapter 15 of [7] for details.

V. CONCLUSION

can be applied. In particular, the bounding techniques 9SO \we introduced the local mixing problem and presented
etal. [8] (see also Chapter 15 of [7]) can be applied. We NQWnstryctive results. Theorem 1 states that if a system of

explain the results.
Introduce random variablegX : ¢ € @} and{Yy : 0 C

Q C V}. Let N denote the union of these two sets. et
IN| = |®|+2!VI -1. Let H,, denote thg2" — 1)-dimensional
Euclidean space with the coordinates labelled{by; : ) C
A C N}, A column vectorh € H, is called entropic if
for a certain joint distribution of random variables M, h 4
is equal to the joint entropy of the random variablésfor

linear constraints has a feasible solution, then the traffic
demand can be fulfilled by the given channel resource via
(random) linear coding. This result is established via two
key constructive techniques: (i) organizing data intoetiht
categories based on the interested neighbors, (ii) sy$it=tha
exploring the degree of freedom in adding recipients. The
local mixing problem is a special case of the multi-source
multicasting problem: It does not involve multi-hop relagyi

every coordinated C V. Then, the set of all entropic vectorsThe techniques in this paper have been extended to the genera

is called theentropy spacd}, of n random variables:
I 2 {h€H,: his entropig. (22)

Let T denote the closure df?. For ease in notation, define

has 2 haup — hp.

Specifying the inner bound of [8] and after some maniplﬂg]

lations, we see that can fulfill traffic demandr if there exist
h € I} that satisfies the following conditions:

hix,:pca) = Z hx,, (23)
PeD

hy,|(x4: pev) = 0, (24)

h’(X¢,:’UE¢W)|(X¢!’U€¢H),(YQ: vEQ) — 0, Yv € ‘/, (25)

cQ>hy,, VQ:0CQCV, (26)

ths > T, Vo € . (27)

These inequalities can be interpreted as follows. Here4a33
that the sources are mutually independent; (24) says tleat

multi-source multicasting problem in [9].
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