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ABSTRACT

Verified security provides a firm foundation for crypto-
graphic proofs by means of rigorous programming language
techniques and verification methods. EasyCrypt is a frame-
work that realizes the verified security paradigm and sup-
ports the machine-checked construction and verification of
cryptographic proofs using state-of-the-art SMT solvers, au-
tomated theorem provers and interactive proof assistants.
Previous experiments have shown that EasyCrypt is effective
for a posteriori validation of cryptographic systems. In this
paper, we report on the first application of verified security
to a novel cryptographic construction, with strong security
properties and interesting practical features. Specifically,
we use EasyCrypt to prove in the Random Oracle Model
the IND-CCA security of a redundancy-free public-key en-
cryption scheme based on trapdoor one-way permutations.
Somewhat surprisingly, we show that even with a zero-length
redundancy, Boneh’s SAEP scheme (an OAEP-like construc-
tion with a single-round Feistel network rather than two)
converts a trapdoor one-way permutation into an IND-CCA-
secure scheme, provided the permutation satisfies two addi-
tional properties. We then prove that the Rabin function
and RSA with short exponent enjoy these properties, and
thus can be used to instantiate the construction we propose
to obtain efficient encryption schemes. The reduction that
justifies the security of our construction is tight enough to
achieve practical security with reasonable key sizes.

Categories and Subject Descriptors

E.3 [Data encryption]: Public key cryptosystems; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs
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1. INTRODUCTION
More than three decades after its inception by Rivest,

Shamir and Adleman, the RSA algorithm [40] has become
a recommendation of several international standards for
public-key cryptography and is widely used in practical cryp-
tosystems. In order to achieve the level of security man-
dated by modern cryptography, RSA is used for instantiat-
ing cryptographic systems based on trapdoor one-way func-
tions, rather than as a standalone primitive. The prevailing
definition of security for public-key encryption schemes is
the notion of ciphertext indistinguishability against chosen-
ciphertext attacks (IND-CCA) [39], which requires that no ef-
ficient adversary with access to a decryption oracle be able
to distinguish between the ciphertexts resulting from en-
crypting two messages of its choice. Since IND-CCA security
cannot be achieved by deterministic encryption algorithms
like RSA, encryption systems adopt the encode-then-encrypt
paradigm, in which a message is pre-processed and random-
ized before encryption. For instance, the PKCS standard
recommends that the RSA algorithm be used together with
the Optimal Asymmetric Encryption Padding [11] scheme
(OAEP), a two-round Feistel construction due to Bellare and
Rogaway. In OAEP, redundancy is added during the encod-
ing phase with the goal of achieving plaintext-awareness,
that is, of making infeasible for an adversary to obtain a
valid ciphertext other than by encrypting a known plain-
text. Although the formalization of plaintext-awareness has
unveiled subtleties (see Section 6 for a brief discussion), it
is an appealing notion satisfied by many prominent encryp-
tion schemes. Furthermore, plaintext-awareness is achieved
by cryptographic transformations [26, 27, 36] that convert
encryption schemes that are just semantically secure under
chosen-plaintext attacks [29] into IND-CCA-secure schemes.
As a consequence, it was a widespread belief that plaintext-
awareness was necessary to achieve IND-CCA security. In
2003, Phan and Pointcheval [37] proved this intuition wrong,
by proposing the first IND-CCA-secure encryption schemes
without redundancy, both in the ideal-cipher model and the
random oracle model. They showed that a trapdoor one-way
permutation combined with a full-domain random permuta-
tion, in a similar way to the FDH signature scheme [12],
suffice to build a redundancy-free IND-CCA-secure scheme.
In addition, Phan and Pointcheval showed that a 3-round
version of OAEP together with a partial-domain one-way



permutation would not require redundancy, as in the clas-
sical OAEP construction [11, 28]. This result was later im-
proved when it was shown that (full-domain) one-wayness
on its own is actually enough to eliminate redundancy in
a 3-round version of OAEP [38]. Abe et al. [2] construct a
redundancy-free scheme based on a 4-round Feistel network
that achieves optimal ciphertext overhead (but that imposes
a minimal message size). This line of work was further devel-
oped in a series of papers, including [20, 33], in the context
of identity-based encryption and DL-based cryptosystems.

In this paper, we revisit the problem of designing
redundancy-free IND-CCA-secure schemes based on trap-
door one-way functions. Our starting point is the SAEP

and SAEP+ padding schemes, put forward by Boneh [19]
in 2001. SAEP and SAEP+ are basically one-round OAEP-
like paddings, that when combined with the Rabin func-
tion or RSA with exponent 3, yield encryption schemes with
efficient security reductions. We generalize Boneh’s con-
struction to an arbitrary trapdoor one-way function and we
show that SAEP padding without redundancy, which we call
ZAEP (Zero-Redundancy Asymmetric Encryption Padding),
achieves IND-CCA security in the Random Oracle Model for
a class of trapdoor one-way functions that satisfy two novel
properties: Common Input Extractability (CIE), and Sec-
ond Input Extractability (SIE). Informally, CIE allows us
to efficiently extract the plaintexts and randomness from
two different ciphertexts that share the same randomness,
whereas SIE allows us to efficiently extract the plaintext
from a ciphertext and its randomness—in both cases, with-
out knowing the trapdoor to the underlying one-way func-
tion. Using Coppersmith algorithm [21], we then show that
the original Rabin function and RSA with short exponent
satisfy these two properties. We thus obtain two efficient
encryption algorithms, that are well-suited to encapsulate
AES keys at a very low cost, with classical RSA moduli,
either under the integer factoring assumption or the RSA

assumption with exponent 3.
Our result is remarkable in two respects. First, ZAEP

is surprisingly simple in comparison to the previous
redundancy-free 3-round variant of OAEP that was shown
to achieve IND-CCA security. Second, it constitutes the first
application of verified security to a novel cryptographic con-
struction. Specifically, we formally verify the security re-
duction (and the exact probability bound) of ZAEP using
the EasyCrypt framework [4], which aims to make machine-
checkable security proofs accessible to the working cryp-
tographer by leveraging state-of-the-art methods and tools
for program verification. Quite pleasingly, the functional-
ities and expressive power of EasyCrypt proved adequate
for converting an incomplete and intuitive argument into
a machine-checked proof. In less than a week, we were able
to flesh out the details of the proof, including the new se-
curity assumptions, concrete security bound, and sequence
of games, and to build a machine-checked proof. As further
developed in Section 7, our work contributes to evidencing
that, as anticipated by Halevi [30], computer-aided security
proofs may become commonplace in the near future.

Organization of the paper. Section 2 describes the ZAEP

redundancy-free encryption scheme; Section 3 presents some
background on verified security and the EasyCrypt frame-
work; Section 4 overviews the machine-checked reduction of
the security of ZAEP to the one-wayness of the underlying

trapdoor permutation, while Section 5 discusses possible in-
stantiations. We conclude with a discussion on related work
in Section 6, and an analysis of the significance of our re-
sults in Section 7. The EasyCrypt input file corresponding
to the proof presented in Section 4 appears in an extended
version [7]; all the infrastructure needed to machine-check
this proof is available on request.

2. REDUNDANCY-FREE ENCRYPTION
In 1994, Bellare and Rogaway [11] proposed the padding

scheme OAEP (see Fig. 1(a)), that in combination with a
trapdoor permutation (e.g. RSA) yields an efficient encryp-
tion scheme. When encrypting using OAEP, a random value
r is first expanded by a hash function G and then xor-ed
with the redundancy-padded input message. The resulting
value s is then hashed under an independent function H and
the result xor-ed with r to obtain t. The ciphertext is com-
puted by applying the permutation to the concatenation of
s and t. OAEP was proved IND-CCA-secure by Fujisaki et
al. [28] under the assumption that the underlying trapdoor
permutation is partial-domain one-way. This is in general a
stronger assumption than just one-wayness, but fortunately
both assumptions are equivalent in particular for RSA. The
reduction from the security of OAEP to the RSA problem
is not tight for two reasons: (1) the generic reduction from
OAEP security to the partial-domain one-wayness of the un-
derlying permutation is itself not tight, and (2) the reduction
from RSA partial-domain one-wayness to the RSA problem
introduces an extra security gap. In order to obtain a direct
reduction to the RSA problem (or the one-wayness of the
underlying permutation), one needs to add a third round
to the Feistel network used in OAEP [38]. Although this
latter reduction is still not tight, the redundancy resulting
from padding the input message can be removed without
breaking the proof.

Boneh [19] showed that by exploiting Coppersmith algo-
rithm [21], it is possible to shave off one round of OAEP

without compromising security. Encryption in the resulting
scheme, SAEP (see Fig. 1(c)), works by choosing a random
value r, hashing it under a function G and xor-ing it with the
message padded with a zero-bitstring of length k0. The re-
sulting value s is then concatenated with the random value
r and fed to the RSA function. However, an efficient re-
duction is possible only if a small RSA public exponent is
used, or if the Rabin function is used instead. The security
reduction of SAEP is quite tight, but the redundancy intro-
duced when padding the input message is essential and can-
not be removed—as a by-product, SAEP achieves plaintext-
awareness. We revisit SAEP with zero-length redundancy
(i.e., letting k0 = 0) and show that a reduction to the one-
wayness of the underlying trapdoor permutation is still pos-
sible under additional (but achievable) assumptions.

2.1 A Novel Redundancy-Free Scheme
We recall the SAEP construction [19] with zero-length re-

dundancy (see Fig. 1(d)). We use k to denote the length
of the random value used during encryption and ℓ to de-
note the length of input messages. Let (KGf , f, f

−1) be a
family of trapdoor one-way permutations on {0, 1}n, where
n = k + ℓ. For any pair of keys (pk, sk) output by the key
generation algorithm KGf , fpk(·) and f−1

sk (·) are permuta-
tions on {0, 1}n and inverses of each other. We model fpk
and f−1

sk as two-input functions from {0, 1}k × {0, 1}ℓ onto
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Figure 1: Asymmetric Encryption Paddings

{0, 1}n. Let in addition G : {0, 1}k → {0, 1}ℓ be a hash
function, which we model as a random oracle in the reduc-
tion [10]. The ZAEP encryption scheme is composed of the
triple of algorithms (KG, E ,D) defined as follows:

Key Generation KG is the same as the key generation al-
gorithm KGf of the underlying trapdoor permutation;

Encryption Given a public key pk and an input message
m ∈ {0, 1}ℓ, the encryption algorithm Epk(m) chooses
uniformly at random a value r ∈ {0, 1}k and outputs
the ciphertext c = fpk(r,G(r)⊕m);

Decryption Given a secret key sk and a ciphertext c, the
decryption algorithm Dsk(c) computes (r, s) = f−1

sk (c)
and outputs m = s ⊕ G(r). No additional check is
required because all ciphertexts are valid.

2.2 Adaptive Security of ZAEP
We recall the usual definitions of trapdoor one-way

function and IND-CCA security for public-key encryption
schemes.

Definition 1 (Trapdoor one-way function) Consider
a family of trapdoor functions (KG, f, f−1) on {0, 1}n.

The success probability SuccOW
f (I) of an algorithm I in

inverting fpk on a freshly generated public-key pk and a
uniformly chosen input is defined as follows:

Pr

[

(pk, sk)← KG(1η);
x $← {0, 1}

n; x′ ← A(fpk(x))
: fpk(x) = fpk(x

′)

]

In an asymptotic setting, a family of trapdoor functions is
one-way if this probability is negligible on the security pa-
rameter η for any efficient (probabilistic polynomial-time)
algorithm I.

Definition 2 (IND-CCA security) The advantage of an
adversary A = (A1,A2) against the IND-CCA security
of an asymmetric encryption scheme Π = (KG, E ,D),

AdvCCA
Π

(A), is defined as follows:
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In both stages of the experiment the adversary has access
to a decryption oracle, but in the second stage A2 cannot
query for the decryption of the challenge ciphertext c∗. In

an asymptotic setting, Π is IND-CCA-secure if all efficient
adversaries have a negligible advantage.

In order to prove the IND-CCA security of ZAEP, we re-
quire that the underlying trapdoor function satisfy the two
properties defined below.

Definition 3 (Second-Input Extractability) A family
of trapdoor functions (KG, f, f−1) satisfies SIE if there ex-
ists an efficient algorithm sie that given a public key pk,
c ∈ {0, 1}n and r ∈ {0, 1}k, outputs s if c = fpk(r, s) or ⊥
otherwise.

Observe that Second-Input Extractability collapses the
distinction between one-wayness and partial one-wayness.
If a family of one-way functions satisfies Second-Input Ex-
tractability, then it is also partial-domain one-way over its
first input.

Definition 4 (Common-Input Extractability) A fam-
ily of trapdoor functions (KG, f, f−1) satisfies CIE if there
exists an efficient algorithm cie that given a public key pk
and c1, c2 ∈ {0, 1}

n, outputs (r, s1, s2) if c1 = fpk(r, s1),
c2 = fpk(r, s2) and s1 6= s2, or ⊥ otherwise.

Since we conduct our proof in a concrete security setting
rather than in an asymptotic setting, and we prove exact
probability and time bounds, we fix the security parame-
ter and omit it in the remainder. We prove the following
security result for ZAEP.

Theorem 1 Let (KG, f, f−1) be a family of trapdoor per-
mutations satisfying both SIE and CIE properties. Let A be
an adversary against the IND-CCA security of ZAEP instan-
tiated with (KG, f, f−1) that runs within time tA and makes
at most qG queries to the random oracle G and at most qD
queries to the decryption oracle. Then, there exists an algo-
rithm I running within time tI such that

tI ≤ tA + 2qGqD tsie + q2D tcie

SuccOW
f (I) ≥ AdvCCA

ZAEP(A)−
qD
2n

where tcie (resp. tsie) is an upper bound on the execution time
of the algorithm cie (resp. sie) for (KG, f, f−1).

In Section 4 we give an overview of a machine-checked
reductionist proof of the above theorem in EasyCrypt. We
observe that while ZAEP can be cast as an instance of SAEP
by setting the length of the padding k0 = 0, our reduction



is different from Boneh’s reduction for SAEP [19]; in fact,
Boneh’s exact security bounds are meaningless as soon as
k0 is of the order of log(qD).

3. A PRIMER ON VERIFIED SECURITY
Verified security [4, 6] is an emerging approach to cryp-

tographic proofs. While adhering to the principles and the
methods of provable security, verified security takes the view
that cryptographic proofs should be treated in a manner
similar to high-integrity software, so that confidence in the
design of a cryptographic system is no lower than confidence
in the software systems that use it. Thus, verified security
mandates that security proofs are built and validated using
state-of-the-art technology in programming languages and
verification.

EasyCrypt [4] is a recent realization of the verified secu-
rity paradigm. As its predecessor CertiCrypt [6], it adopts
a code-centric view of cryptography. Under this view, secu-
rity assumptions and goals are formalized using probabilistic
programs, also called games. Each game is a probabilistic
imperative program composed of a main command and a
collection of concrete procedures and adversaries. More-
over, the statements of the language include deterministic
and probabilistic assignments, conditional statements and
loops, as given by the following grammar:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

where V is a set of variable identifiers, P a set of procedure
names with a distinguished class of abstract procedures used
to model adversaries, E is a set of expressions, and DE is
a set of distribution expressions. The latter are expressions
that evaluate to distributions from where values can be sam-
pled; for the purpose of this paper, we only need to consider
uniform distributions over bitstrings.

Programs in EasyCrypt are given a denotational seman-
tics, that maps initial memories to sub-distributions over
final memories, where a memory is a (well-typed) mapping
from variables to values. We let Pr [c,m : A] denote the
probability of an event A in the sub-distribution induced by
executing the program c with initial memory m, which we
omit when it is not relevant. For additional details on the
semantics, we refer the reader to [6].

As envisioned by Halevi [30] and Bellare and Rog-
away [13], this code-centric view of cryptographic proofs
leads to statements that are amenable to verification using
programming language techniques. EasyCrypt captures com-
mon reasoning patterns in cryptographic proofs by means of
a probabilistic relational Hoare Logic (pRHL). Judgments
in pRHL are of the form

|= c1 ∼ c2 : Ψ⇒ Φ

where c1 and c2 are probabilistic programs, and Ψ and Φ,
respectively called the pre-condition and the post-condition,
are relations over program states. We represent these rela-
tions as first-order formulae defined by the grammar:

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ→ Φ | ∀x. Φ | ∃x. Φ

where e stands for a Boolean expression over logical vari-
ables and program variables tagged with either 〈1〉 or 〈2〉
to denote their interpretation in the left or right-hand side
program, respectively. We write e〈i〉 for the expression e in
which all program variables are tagged with 〈i〉. A relational
formula is interpreted as a relation on program memories.
For example, the formula x〈1〉 + 1 ≤ y〈2〉 is interpreted as
the relation

R = {(m1, m2) | m1(x) + 1 ≤ m2(y)}

There are two complementary means to establish the va-
lidity of a pRHL judgment. Firstly, the user can apply in-
teractively atomic rules and semantics-preserving program
transformations. Secondly, the user can invoke an auto-
mated procedure that given a logical judgment involving
loop-free closed programs, computes a set of sufficient condi-
tions for its validity, known as verification conditions. In the
presence of loops or adversarial code, EasyCrypt requires the
user to provide the necessary annotations. The outstanding
feature of this procedure, and the key to its effectiveness, is
that verification conditions are expressed as first-order for-
mulae, without any mention of probability, and thus can
be discharged automatically using off-the-shelf SMT solvers
and theorem provers.

As security properties are typically expressed in terms of
probability of events, and not as pRHL judgments, Easy-

Crypt provides mechanisms to derive from a valid judgment

|= c1 ∼ c2 : Ψ⇒ Φ

inequalities of the form

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B] (+Pr [c2,m2 : F ])

for events A, B and F that are suitably related to the post-
condition Φ. The mechanisms are described more precisely
by the next two lemmas.

Lemma 2 (Probability Lemma) Let c1 and c2 be two
games, and A and B be events such that

|= c1 ∼ c2 : Ψ⇒ A〈1〉 → B〈2〉

For every pair of memories m1,m2 such that m1 Ψ m2, we
have

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]

Lemma 3 (Shoup’s Fundamental Lemma) Let c1 and
c2 be two games and A,B, and F be events such that

|= c1 ∼ c2 : Ψ⇒ (F 〈1〉 ↔ F 〈2〉) ∧ (¬F 〈1〉 → A〈1〉 → B〈2〉)

Then, for every pair of memories m1,m2 such that
m1 Ψ m2, we have

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B] + Pr [c2,m2 : F ]

Moreover, EasyCrypt includes support for applying proba-
bility laws (e.g. the union bound) and computing the proba-
bility of simple events. The proof of ZAEP relies on two main
rules. The first one states that an adversary has probability
1
2
of guessing a bit b independent from its view; indepen-

dence is captured by proving that sampling the bit b after
the adversary returns its guess does not change the seman-
tics of the game. The second rule allows to upper bound the
probability that a uniformly sampled value belongs to a list



of bounded length. For instance, if L is a list of values in A
of length at most q and x is a value sampled independently
and uniformly over A, the probability that x belongs to L is
upper bounded by q/|A|.

3.1 User Perspective
Building a cryptographic proof in EasyCrypt is a process

that involves the following tasks:

• Defining a logical context, including declarations of
types, constants and operators, axioms and derived
lemmas. Declarations allow users to extend the core
language, while axioms allow to give the extension
a meaning. Derived lemmas are intermediary results
proved from axioms, and are used to drive SMT solvers
and automated provers.

• Defining games, including the initial experiment en-
coding the security property to be proved, intermedi-
ate games, and a number of final games, which either
correspond to a security assumption or allow to di-
rectly compute a bound on the probability of some
event.

• Proving logical judgments that establish equivalences
between games. This may be done fully automatically,
with the help of hints from the user in the form of re-
lational invariants, or interactively using basic tactics
and automated strategies. In order to benefit from ex-
isting technology and target multiple verification tools,
verification conditions are generated in the intermedi-
ate language of the Why3 Software Verification Plat-
form [18] and then translated to individual provers to
check their validity.

• Deriving inequalities between probabilities of events in
games, either by using previously proven logical judg-
ments or by direct computation.

Although the above tasks can be carried out strictly in the
order described, one can conveniently interleave them as in
informal game-based proofs. To ease this process, Easy-

Crypt provides an interactive user-interface as an instance
of ProofGeneral, a generic Emacs-based frontend for proof-
assistants. Figure 2 gives an overview of the workflow in the
framework.

4. SECURITY PROOF
We overview the proof of Theorem 1 in EasyCrypt. The

proof is organized as a sequence of games starting from
game CCA, that encodes an adaptive chosen-ciphertext at-
tack against ZAEP for an arbitrary adversary A, and ending
in game OW, that encodes the reduction to the one-wayness
of the underlying trapdoor permutation. These two games
are shown in Figure 3; the rest of the games are shown in Fig-
ure 4. Games are shown alongside the oracles made available
to adversary A and global variables are typeset in boldface.

Formalizing the security proof of ZAEP in EasyCrypt re-
quired providing an appropriate axiomatization of the un-
derlying trapdoor permutation and the SIE and CIE prop-
erties. We extended the expression language with the fol-
lowing operators corresponding to the permutation f , its

ProofGeneral Frontend

EasyCrypt Toplevel

Emacs Shell

Why3 Software Verification Platform

Why3 API

SMT Solvers

Alt-Ergo

CVC3
Z3
Yices

AutomatedProvers

Vampire

E-Prover
SPASS

Interactive Provers

Coq

Figure 2: Overview of workflow in EasyCrypt

inverse, and algorithms sie and cie:

op f : (pkey, {0, 1}k × {0, 1}l)→ {0, 1}k × {0, 1}l

op finv : (pkey, {0, 1}k × {0, 1}l)→ {0, 1}k × {0, 1}l

op sie : (pkey, {0, 1}k × {0, 1}l, {0, 1}k)→ {0, 1}ℓ option

op cie : (pkey, {0, 1}k × {0, 1}l, {0, 1}k × {0, 1}l)→
({0, 1}k × {0, 1}ℓ × {0, 1}ℓ) option

We gave these operators a meaning by introducing their
specifications as axioms; for instance, the operator sie is
specified as follows:

axiom sie_spec :
forall (pk : pkey, sk : skey), key_pair(pk, sk) =⇒
forall (c : {0, 1}k × {0, 1}ℓ, r : {0, 1}k, s : {0, 1}ℓ),
sie(pk, c, r) = Some(s)⇐⇒ c = f(pk, (r, s))

Verification conditions generated during the proof are first-
order formulae over a mixture of theories: e.g. finite maps,
integer arithmetic, exclusive-or, an the above axiomatiza-
tion of the SIE and CIE solvers. All verification conditions
are discharged automatically using the CVC3 and Alt-Ergo
SMT solvers.

The proof itself begins by transforming the initial CCA
game into game G1, where we inline the encryption of the
challenge ciphertext and eagerly sample the random value
r∗ used. We also introduce a Boolean flag bad that is set
to true whenever r∗ would be appear as a query to G in the
CCA experiment. All these changes are semantics-preserving
w.r.t. to the event b = b′ and thus we have

Pr
[

CCA : b = b′
]

= Pr
[

G1 : b = b′
]

Game G2 behaves identically to game G1 except that the
value of G(r∗) used to mask the plaintext of the challenge
ciphertext is always chosen at random, regardless of whether
it has been queried by the adversary during the first stage
of the experiment. Subsequent queries to G(r∗) are also
answered with a fresh random value. This only makes a
difference if the flag bad is set, and applying Lemma 3, we
obtain:

|Pr
[

G1 : b = b′
]

− Pr
[

G2 : b = b′
]

| ≤ Pr [G2 : bad]



Game CCA :
LG ← nil; c∗

def
← false; q ← 0;

(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
b $← {0, 1};
c∗ ← Epk(mb);
c∗
def
← true;

b′ ← A2(c∗, σ);
return (b = b′)

Oracle G(x) :
if x /∈ dom(LG) then

LG[x] $← {0, 1}ℓ;
return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;

(r, s)← f−1
sk

(c);
g ← G(r);
return g ⊕ s

else return ⊥

Game OW :
(pk, sk)← KG();
z $← {0, 1}k+ℓ;
(x, y)← I(pk, fpk(z));
return (fpk(x, y) = fpk(z))

Adversary I(pk, z) :
LG,LD ← nil; c∗

def
← false; q ← 0;

c∗ ← z; pk← pk;
(m0,m1, σ)← A1(pk);
c∗
def
← true;

b′ ← A2(c∗, σ);
r ← find r ∈ dom(LG). siepk(c

∗, r) 6= ⊥;
if r 6= ⊥ then return (r, siepk(c

∗, r));
else

c← find c∈dom(LD). ciepk(c
∗, c) 6= ⊥;

if c 6= ⊥ then

(r, s, t)← ciepk(c
∗, c); return (r, s)

else return ⊥

Oracle G(x) :
if x /∈ dom(LG) then

c← find c ∈ dom(LD). siepk(c, x) 6= ⊥;
if c 6= ⊥ then

LG[x]← LD [c]⊕ siepk(c, x);
else

LG[x] $← {0, 1}ℓ;
return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;
r ← find r ∈ dom(LG). siepk(c, r) 6= ⊥;
if r 6= ⊥ then return LG[r]⊕ siepk(c, r)
else

if c ∈ dom(LD) then return LD[c]
else

c′ ← find c′ ∈ dom(LD). ciepk(c, c
′) 6= ⊥;

if c′ 6= ⊥ then

(r, s, t)← ciepk(c, c
′);

return LD[c′]⊕ s⊕ t;
else

if c∗
def
∧ ciepk(c, c

∗) 6= ⊥ then

(r, s, t)← ciepk(c, c
∗);

LG[r] $← {0, 1}ℓ; return LG[r]⊕s;
else

LD[c] $← {0, 1}ℓ; return LD [c]
else return ⊥

Figure 3: Initial IND-CCA game and reduction to the problem of inverting the underlying permutation

In game G3 we remove the dependency of the adver-
sary’s output on the hidden bit b by applying a semantics-
preserving transformation known as optimistic sampling. In-
stead of of sampling g∗ at random and computing the chal-
lenge ciphertext c∗ as fpk(r

∗, g∗⊕mb), we sample directly a
value s∗ at random and compute c∗ as fpk(r

∗, s∗), defining
g∗ as s∗ ⊕mb. Once this is done, and since g∗ is no longer
used elsewhere in the game, we can drop its definition as
dead-code and postpone sampling b to the end of the game,
making it trivially independent of b′. We have

Pr
[

G2 : b = b′
]

= Pr
[

G3 : b = b′
]

=
1

2

Pr [G2 : bad] = Pr [G3 : bad]

In game G4, instead of always using f−1 to compute the pre-
image (r, s) of an input c in the decryption oracle, we use
the sie and cie algorithms to compute it when possible from
previous queries made by the adversary. We can do this in
two cases:

1. when r appeared before in a query to oracle G, using
algorithm sie to obtain the second input s;

2. when r = r∗, using algorithm cie to compute s from
c∗.

When neither of these two cases occur, we use f−1 and the
secret key to invert c and obtain (r, s). Rather than sam-
pling a fresh value for G(r), we apply once more the opti-
mistic sampling transformation to sample a response m at
random and define G(r) as m⊕ s. We store values of G(r)
computed in this fashion in a different map L′

G. We prove
the following relational invariant between G3 and G4, which
allows to characterize the event bad of G3 in terms of the

variables of G4:

bad〈1〉 ⇐⇒ (r∗ ∈ dom(LG) ∨ r
∗ ∈ dom(L′

G))〈2〉

To prove this, we have to first show that the simulation of
the decryption oracle using algorithms cie and sie in G4 is
consistent with the view of the adversary in G3. We do this
by establishing that the following is a relational invariant
between the implementations of D in games G3 and G4:

(r∗, s∗, c∗def , q)〈1〉 = (r∗, s∗, c∗def , q)〈2〉 ∧
(c∗ = fpk(r

∗, s∗))〈2〉 ∧
bad〈1〉 ⇐⇒ (r∗ ∈ dom(LG) ∨ r∗ ∈ dom(L′

G))〈2〉 ∧
(∀x ∈ dom(LG〈2〉).

x ∈ dom(LG〈1〉) ∧ LG〈1〉[x] = LG〈2〉[x]) ∧
(∀x ∈ dom(LG〈1〉).

x /∈ dom(LG〈2〉)→ LG〈1〉[x] = L′
G〈2〉[x]) ∧

(∀x. x ∈ dom(LG〈1〉)↔ (x ∈ dom(LG) ∨ x ∈ dom(L′
G))〈2〉

We have hence that

Pr [G3 : bad] = Pr
[

G4 : r
∗ ∈ dom(LG) ∨ r

∗ ∈ dom(L′
G)

]

In game G5 we finally eliminate every reference to f−1 from
the decryption oracle. We do this by replacing the map L′

G

with a map LD in where we store ciphertexts that implicitly
define values of G(r). We reformulate the simulation of the
decryption oracle using this map instead of L′

G, by proving
the following invariant between the implementations of D in



Game G1 G2 :
LG ← nil; c∗

def
← false; q ← 0;

bad← false; r∗ $← {0, 1}k ;
(pk, sk)← KG();
(m0,m1, σ)← A1(pk); b $← {0, 1};
if r∗ /∈ dom(LG) then

g∗ $← {0, 1}ℓ; LG[r∗]← g∗;

else

bad← true;

g∗ ← LG[r∗]; g∗ $← {0, 1}ℓ;

c∗ ← fpk(r
∗,g∗ ⊕mb); c∗

def
← true;

b′ ← A2(c∗, σ);
return (b = b′)

Oracle G(x) :
if x = r∗ then bad← true;
if x /∈ dom(LG) then

LG[x] $← {0, 1}ℓ;
return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;

(r, s)← f−1
sk

(c);
g ← G(r);
return g ⊕ s

else return ⊥

Game G3 :
LG ← nil; c∗

def
← false; q ← 0;

bad← false; r∗ $← {0, 1}k ;
(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
if r∗ ∈ dom(LG) then bad← true;
s∗ $← {0, 1}ℓ;
c∗ ← fpk(r

∗, s∗); c∗
def
← true;

b′ ← A2(c∗, σ);
b $← {0, 1};
return (b = b′)

Oracle G(x) :
if x = r∗ then bad← true;
if x /∈ dom(LG) then

LG[x] $← {0, 1}ℓ;
return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;

(r, s)← f−1
sk

(c);
g ← G(r);
return g ⊕ s

else return ⊥

Game G4 :
LG,L′

G ← nil; c∗
def
← false; q ← 0;

r∗ $← {0, 1}k ;
s∗ $← {0, 1}ℓ;
c∗ ← fpk(r

∗, s∗);
(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
c∗
def
← true;

b′ ← A2(c∗, σ);
return true

Oracle G(x) :
if x /∈ dom(LG) then

if x /∈ dom(L′
G) then

LG[x] $← {0, 1}ℓ;
else

LG[x]← L′
G[x];

return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;
r ← find r ∈ dom(LG). siepk(c, r) 6= ⊥;
if r 6= ⊥ then return LG[r]⊕ siepk(c, r)
else

r ← find r ∈ dom(L′
G). siepk(c, r) 6= ⊥;

if r 6= ⊥ then return L′
G[r]⊕ siepk(c, r)

else

if c∗
def
∧ ciepk(c, c

∗) 6= ⊥ then

(r, s, t)← ciepk(c, c
∗);

LG[r] $← {0, 1}ℓ; return LG[r]⊕ s
else

(r, s)← f−1
sk

(c);
m $← {0, 1}ℓ; L′

G[r]← m⊕ s;
return m;

else return ⊥

Game G5 :
LG,LD ← nil; c∗

def
← false; q ← 0;

r∗ $← {0, 1}k ;
s∗ $← {0, 1}ℓ;
c∗ ← fpk(r

∗, s∗);
(pk, sk)← KG();
(m0,m1, σ)← A1(pk);
c∗
def
← true;

b′ ← A2(c∗, σ);
return true

Oracle G(x) :
if x /∈ dom(LG) then

c← find c ∈ dom(LD). siepk(c, x) 6= ⊥;
if c 6= ⊥ then

LG[x]← LD [c]⊕ siepk(c, x);
else

LG[x] $← {0, 1}ℓ;
return LG[x]

Oracle D(c) :
if q < qD ∧ ¬(c

∗

def
∧ c = c∗) then

q ← q + 1;
r ← find r ∈ dom(LG). siepk(c, r) 6= ⊥;
if r 6= ⊥ then return LG[r]⊕ siepk(c, r)
else

if c ∈ dom(LD) then return LD[c]
else

c′ ← find c′ ∈ dom(LD). ciepk(c, c
′) 6= ⊥;

if c′ 6= ⊥ then

(r, s, t)← ciepk(c, c
′);

return LD[c′]⊕ s⊕ t;
else

if c∗
def
∧ ciepk(c, c

∗) 6= ⊥ then

(r, s, t)← ciepk(c, c
∗);

LG[r] $← {0, 1}ℓ; return LG[r]⊕s;
else

LD[c] $← {0, 1}ℓ; return LD [c]
else return ⊥

Figure 4: Sequence of games in the proof of ZAEP. Fragments of code displayed inside a box appear only in
the game whose name is surrounded by the matching box.



games G4 and G5:

(LG, c
∗, c∗def , q)〈1〉 = (LG, c

∗, c∗def , q)〈2〉 ∧
(∀c. (∀r ∈ dom(L′

G). siepk(c, r) = ⊥)〈1〉 ↔
(∀c′ ∈ dom(LD). ciepk(c, c

′) = ⊥ ∧ c /∈ dom(LD))〈2〉 ∧
(∀r. r /∈ dom(L′

G〈1〉)↔ (∀c ∈ dom(LD). siepk(c, r)=⊥)〈2〉∧
(∀c. let (r, s) = f−1

sk (c) in
c ∈ dom(LD))〈2〉 →
r ∈ dom(L′

G〈1〉) ∧L′
G〈1〉[r] = s⊕LD〈2〉[c])

We then prove the following relational invariant between
games G4 and G5:

(r∗ ∈ dom(LG) ∨ r∗ ∈ dom(L′
G))〈1〉 →

(r∗ ∈ dom(LG) ∨ ∃c ∈ dom(LD). ciepk(c, c
∗) 6= ⊥)〈2〉

From which we obtain

Pr [G4 : r∗ ∈ dom(LG) ∨ r∗ ∈ dom(L′
G)] ≤

Pr [G5 : r∗ ∈ dom(LG) ∨ ∃c ∈ dom(LD). ciepk(c, c
∗) 6= ⊥]

We can finally write an inverter I against the one-wayness
of the underlying trapdoor permutation that uses the map
LD in the previous game to perfectly simulate the decryption
oracle for the IND-CCA adversary A. However, the inverter
I only succeeds if r∗ ∈ dom(LG):

Pr [G5 : r
∗ ∈ dom(LG) ∨ ∃c ∈ dom(LD). ciepk(c, c

∗) 6= ⊥] ≤
Pr [OW : fpk(x, y) = fpk(z)] + Pr [OW : c∗ ∈ dom(LD)]

We bound the second term on the right-hand side of the
above inequality by qD/2n using a short sequence of games
that we omit. Putting all the above results together, we
conclude:
∣

∣

∣

∣

Pr
[

CCA : b = b′
]

−
1

2

∣

∣

∣

∣

≤ Pr [OW : fpk(x, y) = fpk(z)] +
qD
2n

The execution time of tI can be bound by inspecting the
formulation of the inverter I in game OW:

• Each simulated query to G requires at most qD evalu-
ations of algorithm sie;

• Each simulated query to D requires at most qG evalu-
ations of algorithm sie and at most qD evaluations of
algorithm cie;

• When the simulation finishes, the inverter I requires
at most qG evaluations of algorithm sie and at most
qD + 1 evaluations of algorithm cie to find the inverse
of its challenge.

Thus

tI ≤ tA + 2qGqD tsie + q2D tcie + qG tsie + (qD + 1) tcie

The last two terms are negligible w.r.t. the rest and can be
safely ignored.

5. INSTANTIATIONS
In this section, we show that both the Rabin function

and RSA with small exponent satisfy the properties required
for the security reduction of ZAEP. Moreover, we provide a
practical evaluation of both instantiations of ZAEP and a
comparison to 3-round OAEP. Our proofs are inspired by [19]
and rely on Coppersmith algorithm to find small integer
roots of polynomials [21]:

Theorem 4 (Coppersmith method) Let p(X) be a
monic integer polynomial of degree d and N a positive inte-
ger of unknown factorization. In time polynomial in log(N)
and d, using Coppersmith algorithm one can find all integer
solutions x0 to p(x0) = 0 mod N with |x0| < N1/d.

We denote by tC(N,d) an upper bound on the running time
of the above method for finding all roots modulo N of a
polynomial of degree d.

5.1 Short Exponent RSA
For an n-bit RSA modulus N = pq, the function

RSA[N, e] : x 7→ xe mod N

is a well-known trapdoor one-way permutation on Z
∗
N for

any exponent e coprime to ϕ(N). For any non-negative
ℓ ≤ n, an element x ∈ Z

∗
N can be uniquely represented as

r× 2ℓ + s, where s ∈ {0, 1}ℓ and r ∈ {0, 1}n−ℓ. We can thus
express the RSA function as a function of two arguments:

RSA[N, e] : (r, s) 7→ (r × 2ℓ + s)e mod N

We denote by RSA-ZAEP the encryption scheme resulting
from instantiating ZAEP with this function.

Second-Input Extractability. Given an output c of
RSA[N, e] and a tentative value r, the Second-Input Extrac-
tion problem boils down to solving p(X) = 0 mod N for
p(X) = c − (r × 2ℓ + X)e mod N with the additional con-
straint |X| < 2ℓ. The Coppersmith method finds the root
s (the second input to the function when r is the correct

first input) when 2ℓ < N1/e, or equivalently, when ℓ < n/e.
We thus have an efficient sie algorithm that executes within
time tsie ≤ tC(N,e).

Common-Input Extractability. Given two different out-
puts c1 and c2 of RSA[N, e], the Common-Input Extraction
problem for RSA[N, e] consists in finding r, s1 and s2 such
that c1 = (r×2ℓ+s1)

e mod N and c2 = (r×2ℓ+s2)
e mod N ,

if they exist. Let us consider the two polynomials

p1(X,∆) = c1 −Xe mod N

p2(X,∆) = c2 − (X +∆)e mod N

These polynomials should be equal to zero for the correct
values x = r× 2ℓ + s1 mod N for X and δ = s2 − s1 mod N
for ∆. Therefore, the resultant polynomial R(∆) of p1 and
p2 in X, which is the determinant of the 2e × 2e Sylvester
Matrix associated to the polynomials p1 and p2 in the vari-
able X, and thus with coefficients that are polynomials in
∆ (of degree 0 for the coefficients of p1, but of degree up to
e for the coefficients of p2), is a polynomial with δ = s2− s1
as a root. Due to the specific form of the matrix, R(∆)
is of degree at most e2 modulo N , and the Coppersmith

method finds the root δ provided 2ℓ < N1/e2 or equiva-
lently, when ℓ < n/e2. Once this root is known, we can
focus on the monic polynomials p1(X) = c1 − Xe mod N
and p2(X) = c2− (X+ δ)e mod N , for which x is a common
(and unique) root. These two polynomials are distinct, but
are both divisible by X − x, which can be found by com-
puting their GCD. We thus have an efficient cie algorithm
that executes within time tcie bounded by the running time
of Coppersmith method for finding δ, tC(N,e2), plus the time
needed to compute the GCD of two polynomials of degree
e, which we denote tGCD(e).



5.2 Rabin Function
The Rabin function is unfortunately not a permutation.

However, for particular moduli we can limit its domain and
co-domain to convert it into a bijection. More precisely, if
p and q are Blum integers, then −1 a non-quadratic residue
modulo p and q, and hence is a false square modulo N =
pq. Put otherwise, JN (−1) = +1 where JN (·) denotes the
Jacobi symbol modulo N . In addition, any square x in Z

∗
N

admits four square roots in Z
∗
N , derived from the two pairs of

square roots of x in Z
∗
p and Z

∗
q using the Chinese Remainder

Theorem. As a consequence, one and only one is also a
quadratic residue modulo N , which we denote α. Then, α
and −α are the two square roots of x with Jacobi symbol
+1. We will ignore the other two square roots of x that
have Jacobi symbol −1. Let JN denote the subgroup of the
multiplicative subgroup of ZN whose elements have Jacobi
symbol +1 (membership can be efficiently decided). We
additionally restrict JN to the elements smaller than N/2,
and we denote this subset J<

N . We now consider the function

SQ[N ] : J<
N × {0, 1} → JN

SQ[N ] : (x, b) 7→ (−1)bx2 mod N

The inverse function takes an element y ∈ JN , which may
be a true quadratic residue or a false one. In the former case,
one extracts the unique square root α that is also a quadratic
residue and sets x to be the smallest value in {α,N − α}
that is less than N/2; the inverse of y is (x, 0). In the latter
case, one does as before to compute x, but from −y, which
is a true quadratic residue; the inverse of y is (x, 1). The
function SQ[N ] thus defined is a bijection from J<

N × {0, 1}
onto JN .

One-wayness. Let us assume that an algorithm A can in-
vert SQ[N ] with non-negligible probability. Then one can
first choose a random z ∈ Z

∗
N\JN (instead of J<

N ) and a
random bit b, and submit y = (−1)b×z2 mod N to A. This
element y is uniformly distributed in JN , and thus with non-
negligible probability A outputs (x, b′) ∈ J<

N × {0, 1} such

that y = (−1)b
′

×x2 = (−1)b×z2 mod N . Since −1 is a false
quadratic residue, necessarily b′ = b and x2 = z2 mod N ,
with x ∈ JN and z 6∈ JN . The GCD of x − z and N is
either p or q, from which N can be factored. This function
is thus one-way under the integer factoring problem.

As above, in order to be used with ZAEP, we have to
consider the function SQ[N ] as a function of two bitstrings.
Given an input (x, b) ∈ J<

N ×{0, 1}, for any 0 ≤ ℓ ≤ n−1 we
can uniquely write x ∈ Z

∗
N as x = r×2ℓ+s, with s ∈ {0, 1}ℓ

and r ∈ {0, 1}n−1−ℓ. We consider thus the function:

SQ[N ] : {0, 1}n−ℓ × {0, 1}ℓ → {0, 1}n

SQ[N ] : (b‖r, s) 7→ (−1)b × (r × 2ℓ + s)2 mod N

Second-Input Extractability. Given an output c of SQ[N ]
and a pair of values b, r, the Second-Input Extraction prob-
lem consists in solving the equation p(X) = 0 mod N for
p(X) = c− (−1)b× (r×2ℓ+X)2 mod N with the additional
constraint |X| < 2ℓ. The above Coppersmith method finds
the root s (the second input to SQ[N ] used to compute c if

b‖r is the correct first input) provided 2ℓ < N1/2, or equiva-
lently when ℓ < n/2. We thus have an efficient sie algorithm
that runs within time tsie ≤ tC(N,2).

Common-Input Extractability. The Common-Input Ex-
traction problem can be solved as in the case of RSA, pro-
vided ℓ < n/4. We thus have an efficient cie algorithm whose
running time tcie is bounded by tC(N,4) + tGCD(2).

We denote by Rabin-ZAEP the encryption scheme result-
ing from instantiating ZAEP with the function SQ[N ]. Since
this function operates only on elements in J<

N , the encryp-
tion algorithm may have to iterate:

Key Generation The algorithm KG generates two Blum
integers p and q of length n/2, and outputs (pk, sk),
where pk = N = pq and sk = (p, q);

Encryption Given a public key N and a message m ∈
{0, 1}ℓ, the encryption algorithm iteratively samples
a random value r ∈ {0, 1}k−1 and a bit b and sets
s = m ⊕G(b‖r), stopping when x = r × 2ℓ + s ∈ J<

N .
This requires on average one iteration only. The ci-
phertext c is computed as

SQ[N ](b‖r, s) = (−1)b × (r × 2ℓ + s)2 mod N ;

Decryption Given a secret key (p, q) and a ciphertext c, D
first inverts SQ[N ] using the prime factors (p, q) of N
and gets (x, b). It then parses x as r × 2ℓ + s mod N
and outputs m = s⊕G(b‖r).

5.3 Practical Considerations
For RSA-ZAEP, all the required properties to achieve IND-

CCA-security hold as long as e <
√

n/ℓ. For a practical
message size ℓ, e has to be small (e.g. e = 3). But for a
small exponent e, both sie and cie algorithms are efficient
operations on small polynomials, and thus the reduction is
efficient: from an adversary that achieves an IND-CCA ad-
vantage ε within time t, one can invert RSA with small expo-
nent with success probability essentially ε, within time close
to t. As a consequence, one can use classical RSA moduli:
for e = 3, a 1024-bit modulus allows to encrypt 112-bit mes-
sages, whereas a 1536-bit modulus allows to securely encrypt
messages of up to 170-bits.

For Rabin-ZAEP, encryption is reasonably efficient (an
evaluation of J (·) on average plus one modular square). The
IND-CCA-security of the scheme can be reduced to the inte-
ger factoring problem in the random oracle model, with an
efficient reduction (even better than for RSA exponent 3).
As a consequence, for n = 1024, one can securely encrypt
messages of up to 256-bits. This suffices, for instance, to
encrypt AES keys of all standard sizes.

5.4 Other Redundancy-Free Schemes
We compare our security result of Theorem 1 to the secu-

rity results for 3-round OAEP (see Fig. 1(b)) and the 4-round
scheme of Abe et al. [2], the only other two redundancy-free
schemes based on the integer factoring assumption.

The original result about the IND-CCA security of 3-round
RSA-OAEP [37] relies on an intermediate reduction to the
partial-domain one-wayness of RSA. Phan and Pointcheval
[38] improved on this result by showing a direct reduction
to the (full-domain) one-wayness of RSA, which avoids the
additional cost of reducing partial-domain one-wayness to
one-wayness. They show that given an adversary A against
the IND-CCA-security of 3-round OAEP that executes within
time tA and makes at most qG queries to its 3 hash oracles
and qD queries to its decryption oracle, it is possible to con-
struct an inverter I for RSA that executes within time tI ,



such that

tI ≤ tA + tRSA × ((qD + 1)q2G + q2D)

SuccOW
f (I) ≥ AdvCCA

OAEP3R(A) −
5qDqG + q2D + qD + qG

2k

The probability loss in the above reduction can be made
negligibly small with an appropriate choice of k, the length
of the random value used during encryption. However, even
while tRSA is small, the qDq2G factor in the time bound makes
the reduction for 3-round OAEP inefficient, because qG ≫ qD
can be large. This quadratic contribution in the number of
hash queries also appears in the OAEP security bound and
is the major reason for requiring larger moduli.

The 4-round scheme of Abe et al. [2] improves on the ef-
ficiency of 3-round OAEP at the cost of one extra Feistel
round. Given an adversary A against the IND-CCA-security
of the scheme that executes within time tA and makes at
most qG hash oracle queries and qD decryption queries, it is
possible to construct an inverter I for the underlying per-
mutation, say RSA, that executes within time tI , such that

tI ≤ tA + tRSA × q2G

SuccOW
f (I) ≥ AdvCCA

OAEP4R(A)−
4qG
2k
−

2q2D
22k
−

2qG(qD + 1)

23k

In contrast to 3-round OAEP, the leading term in the proba-
bility loss is O((qG+qD)/2k) because qG, qD must be bounded
by 2k to achieve semantic security. This allows to use smaller
moduli and to get an optimal ciphertext overhead for suffi-
ciently large messages.

In comparison to the above schemes, we show the following
bounds for ZAEP in Theorem 1:

tI ≤ tA + 2qGqD tsie + q2D tcie

SuccOW
f (I) ≥ AdvCCA

ZAEP(A)−
qD
2n

The probability loss in our reduction is negligible and the
leading term in the time bound is linear in qG, allowing the
use of standard RSA moduli.

6. RELATED WORK

Plaintext-awareness and Non-Redundancy. Plaintext
awareness is an intuitive concept, that has proved diffi-
cult to formalize. The concept was introduced by Bellare
and Rogaway for proving security of OAEP [11]. How-
ever, their work only dealt with a weak notion of plaintext-
awareness that provides a weaker, non-adaptive, notion of
chosen-ciphertext security [34] rather than the adaptive no-
tion of IND-CCA security considered in this paper. Subse-
quently, Bellare et al. [8] enhanced the plaintext-awareness
notion to guarantee IND-CCA security. In an effort to ac-
commodate it to the standard model, the definition was
further refined by Herzog, Liskov and Micali [31], Bellare
and Palacio [9], Dent [24], and Birket and Dent [14]. As
noted in the introduction, plaintext-awareness is an appeal-
ing concept: it is satisfied by most IND-CCA encryption
schemes, and the common way to transform an IND-CPA

scheme into an IND-CCA scheme is to introduce redundancy
that ensures plaintext-awareness. In fact, it has been ob-
served that existing schemes, such as OAEP, cease to guaran-
tee IND-CCA security—but still retain IND-CPA security—
whenever the redundancy is omitted. Nevertheless, sev-

eral works have shown that redundancy and plaintext-
awareness are not required to achieve chosen-ciphertext se-
curity. The initial results in this direction are due to Phan
and Pointcheval [37,38]; earlier work by Desai [25] achieves
a similar goal, but in the setting of symmetric encryption.
Libert and Quisquater [33] build a redundancy-free identity-
based encryption scheme that achieves adaptive IND-CCA

security. More recently, Boyen [20] proposes a compact
redundancy-free encryption scheme based on the Gap-Diffie-
Hellman problem [35]. Whereas Boyen’s scheme is definitely
optimal from the point of view of bandwidth, with a 160-bit
overhead only, it is not really efficient because many costly
full exponentiations must be computed for encryption and
decryption.

Formal proofs of cryptographic schemes. The applica-
tion of formal methods to cryptography has a long and rich
history. However, much of the the work in this area has
focused on the formal verification of cryptographic proto-
cols in the symbolic model, which assumes that the under-
lying primitives are perfectly secure. A seminal article by
Abadi and Rogaway [1] shows, for the case of encryption,
that symbolic methods are indeed sound for the computa-
tional model, and can thus be used to achieve cryptographi-
cally meaningful guarantees. The computational soundness
result of Abadi and Rogaway has been extended in many
directions; we refer the reader to [22] for a survey on com-
putational soundness.

In contrast, the application of formal proofs to crypto-
graphic schemes is more recent, and less developed. To our
best knowledge, Impagliazzo and Kapron [32] were the first
to propose a formal logic to reason about indistinguishabil-
ity. Using this logic, they prove that next-bit unpredictabil-
ity implies pseudo-randomness. However, the logic cannot
handle adaptive adversaries with oracle access. Computa-
tional Indistinguishability Logic [3] is a more recent logic
that overcomes these limitations. Both of these works pro-
vide logical foundations for reasoning about cryptographic
systems, but lack tool support.

In an inspiring article, Halevi [30] advocates that cryp-
tographic proofs should be computer-assisted, and outlines
the design of an automated tool to support cryptographic
proofs that follow the code-based game-playing approach.
CryptoVerif [15] is among the first tools to have provided
support for computer-aided cryptographic proofs. It allows
users to conduct, automatically or interactively, game-based
concrete security proofs of primitives or protocols. Games
in CryptoVerif are modeled as processes in the applied π-
calculus, and transitions are proved using a variety of meth-
ods, including process-algebraic (for instance bisimulations)
or purpose-built (for instance failure events) tools. To date,
CryptoVerif has been applied to prove the security of the
Full-Domain Hash signature scheme [17] and several pro-
tocols; we refer to [16] for a more detailed account of the
examples proved with CryptoVerif. The work we report in
this paper uses EasyCrypt [4], a more recent tool that takes
a programming language approach to cryptographic proofs.
EasyCrypt and its predecessor CertiCrypt have been used to
verify a number of emblematic cryptographic schemes, in-
cluding OAEP [5]. As CryptoVerif, EasyCrypt and CertiCrypt

aim to provide general frameworks that capture common
reasoning patterns in cryptography. An alternative is to de-
velop specialized logics, that are able to prove a particular



property for a given class of schemes. A relevant exam-
ple is the Hoare logic of Courant et al. [23], which allows
to prove automatically that an encryption scheme based on
trapdoor one-way functions, random oracles, concatenation
and exclusive-or is IND-CPA or IND-CCA secure. Their logic
(or a suitable extension) uses a syntactic form of plaintext-
awareness to conclude that an encryption scheme is IND-

CCA secure; hence it cannot be applied to conclude IND-CCA
security of ZAEP.

7. CONCLUSION
ZAEP is a surprisingly simple and efficient padding scheme

that achieves adaptive chosen-ciphertext security without
introducing any redundancy. Using the EasyCrypt tool, we
have built a machine-checked proof that ZAEP yields IND-

CCA security with a rather efficient reduction, whenever it is
instantiated with trapdoor permutations satisfying two in-
tuitive algebraic properties that hold for the Rabin function
and small exponent RSA. The proof is significant beyond
its intrinsic interest, as the first application of verified se-
curity to a novel construction. Pleasingly, starting from a
high-level intuition, we were able to build with reasonable
effort in less than a week and directly in EasyCrypt, the se-
quence of games for proving IND-CCA security. The time
needed to complete the proof stands in sharp contrast with
the six man-monthes that were reported needed to repro-
duce the proof of OAEP in CertiCrypt [5]. Thus, our work
provides further evidence that, as stated in [4], “EasyCrypt
makes a significant step towards the adoption of computer-
aided proofs by working cryptographers”.

The ZAEP proof opens exciting perspectives for future
work. On the one hand, it suggests that automation can
be significantly improved through user-defined and built-in
strategies that automatically generate a sequence of games.
More speculatively, we are currently investigating whether
strategies could provide an effective means to automate IND-
CPA and IND-CCA proofs for encryption schemes obtained
with methods of program synthesis. In a parallel thread of
work, we have implemented a synthesis tool that generates
encryption schemes based on trapdoor one-way permuta-
tions, random oracles, concatenation and exclusive-or. In
order to limit the set of candidate schemes to examine, we
have constrained the generation mechanism by Dolev-Yao
filters that eliminate obviously insecure schemes. Thus, the
synthesis algorithm generates a list of candidates that is ex-
haustive up to a given number of operations. Noticeably,
there are only two candidates with a minimal number (four)
of operations: the (redundant-free and IND-CPA) Bellare
and Rogaway encryption scheme [10], which is known since
1993, and ZAEP, which has not been studied before. The
case of ZAEP makes us hopeful that automated synthesis of
cryptographic schemes may lead to surprising discoveries.
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