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Provable security The goal of provable security is to verify rigorously the security
of cryptographic systems. A provable security argument proceeds in three steps:

1. Define a security goal and an adversarial model;

2. Define the cryptographic system and the security assumptions upon which
the security of the system hinges;

3. Show by reduction that any attack against the cryptographic system can be
used to build an efficient algorithm that breaks a security assumption.

The provable security paradigm originates from the work of Goldwasser and
Micali [10] and plays a central role in modern cryptography. Since its inception,
the focus of provable security has gradually shifted towards practice-oriented
provable security [4]. The central goal of practice-oriented provable security is to
develop and analyze efficient cryptographic systems that can be used for practical
purposes, and to provide concrete guarantees that quantify their strength as a
function of the values of their parameters (e.g. the key size of a public-key
encryption scheme).

The code-based approach [5] realizes the practice-oriented provable security
paradigm by means of programming-language techniques and of a systematic
way of organizing proofs. In the code-based approach, security hypotheses and
goals are cast in terms of the probability of events with respect to distributions
induced by probabilistic programs. Typically, proofs that follow the code-based
approach adopt some form of imperative pseudocode as a convenient and expres-
sive notation to represent programs (equivalently, games). The pWHILE language
is a procedural, probabilistic imperative programming language that provides a
precise formalism for programs. Commands in pWHILE are defined as follows:

C :=skip nop
| V«¢& assignment
| V& DE random sampling
| if € then C else C conditional
| while £ doC while loop
| V <— PE,...,E) procedure call
| C sequence

where £ is a set of expressions, DE is a set of distribution expressions, and
P is a set of procedures. pWHILE distinguishes between concrete procedures,



whose code is defined, and abstract procedures, whose code remains unspecified.
Quantification over adversaries in cryptographic proofs is achieved by represent-
ing them as abstract procedures parametrized by a set of oracles; these oracles
must be instantiated as other procedures in the program.

The meaning of games is defined by a denotational semantics: given an in-
terpretation of abstract procedures, the semantics [¢] of a game ¢ takes as input
an initial memory, i.e. a mapping from variable to values, and returns a sub-
distribution on memories. Since we typically consider discrete datatypes, the set
M of memories is discrete and sub-distributions on memories are simply maps
d: M — [0,1] such that > ., dm < 1. We let D(M) denote the set of
sub-distributions over M, and we use the notation Pr[c,m : E] to denote the
probability of the event E in the sub-distribution [c] m.

Proofs in provable security are by reduction. For simplicity, assume that the
system under consideration is proved secure under a single assumption. Let A be
an adversary against the security of the system. The goal of the reduction proof
is to show that there exists an adversary B such that the success probability of A
in the attack game is upper bounded by a function of the success probability of B
in breaking the security assumption. A recommended practice is that proofs be
constructive, in the sense that the adversary B is given explicitly as a program
that invokes A as a sub-procedure.

In addition to defining the security goal and hypotheses as probabilistic pro-
grams, the code-based approach recommends that proofs are structured as se-
quences, or trees, of games, so that transitions between two successive games
are easier to justify. A typical transition between two games ¢; and cg, requires
establishing an inequality of the form

Prlci,my : Al < Prlce,ma: B] +¢ (%)

where A and B are events whose probabilities are taken over the sub-distributions
[e1] m1 and [ea] meo respectively, and € is an arithmetic expression that may de-
pend on the resources allocated to the adversary or, when the transition involves
a failure event F, an expression of the form Pr[c;, m; : F]. The proof concludes
by combining the inequalities proven for each transition to bound the success
probability of the reduction.

Verified security Verified security [2, 1] is an emerging approach to security proofs
of cryptographic systems. It adheres to the same principles as (practice-oriented)
provable security, but revisits its realization from a formal verification perspec-
tive. When taking a verified security approach, proofs are mechanically built and
verified with the help of state-of-the-art verification tools. The idea of verified se-
curity appears in inspiring articles from Halevi [11] and Bellare and Rogaway [5],
and is realized by tools such that CertiCrypt [2] and EasyCrypt [1]. Both support
the code-based approach, and capture many common reasoning patterns in cryp-
tographic proofs. CertiCrypt and EasyCrypt have been used to verify examples of
prominent cryptographic constructions, including encryption schemes, signature
schemes, hash function designs, and zero-knowledge proofs. Although they rely



on the same foundations, the two tools have a complementary design: the Cer-
tiCrypt framework is entirely programmed and machine-checked in the Coq proof
assistant, from which it inherits expressiveness and strong guarantees. In con-
trast, EasyCrypt implements a verification condition generator that sends proof
obligations to SMT solvers, and inherits from them a high degree of automation.

Relational Hoare Logics and liftings It is important to note that inequalities of
the form (x) involve two programs, and hence go beyond program verification.
The common foundation of CertiCrypt and EasyCrypt is pRHL, a relational logic
to reason about probabilistic programs. Its starting point is relational Hoare
logic [6], a variant of Hoare logic that reasons about two programs. Judgments
of Benton’s relational Hoare logic are of the form:

):C]_NCQZW:>¢

where ¢; and co are WHILE programs and ¥ and ¢ are relations on memories,
respectively called the pre-condition and the post-condition. The above judgment
is valid if the post-condition is valid for all executions of ¢; and ¢y starting
from initial memories that satisfy the pre-condition, i.e. for every pair of initial
memories mq,mo such that mq ¥ meo, if the evaluations of ¢; in my and ¢ in
mz terminate with final memories m) and m/, respectively, then m} @ m/, holds.
Probabilistic relational Hoare logic (pRHL) considers similar judgments

):C]_NC2:W:>¢

except that ¢; and co are pWHILE programs. Since the evaluation of a pWHILE
program w.r.t. an initial memory yields a sub-distribution over memories, giv-
ing a meaning to a pRHL judgment requires interpreting post-conditions as
relations over sub-distributions. To this end, pRHL relies on a lifting operator
L which transforms a binary relation into a binary relation on the space of sub-
distributions over its underlying sets. Lifting can be used to define the validity
of a pRHL judgment: for any two pWHILE programs ¢; and ¢ and relations on
memories ¥ and @, the judgment = ¢ ~ co : ¥ = @ is valid if for every pair of
memories my and ma, my ¥ my implies ([e1] m1) L(P) ([c2] m2). The ability to
derive probability claims from valid pRHL judgments is essential to justify its
use as an intermediate tool to prove security of cryptographic systems. Formally,
if Eecr~ee: W= & and $= A(l)= B(2), then for all memories m; and ma,
m1 ¥ mgy implies Pr ey, mq : A] < Prles, mo : Bl.

The definition of lifting is adopted from probabilistic process algebra [12].
Let A and B be two discrete sets, and let R C A x B. The lifting £(R) of R is
the relation on D(A) x D(B) such that, for every sub-distribution dy over A and
dy over B, di L(R) dz if there exists d € D(A x B) such that:

1. for every (a,b) € A x B, if d(a,b) > 0 thena R b
2. for every a € A, di(a) = >, 5 d(a,b)

3. for every b € B, da(b) = >, d(a,Db)



The definition of lifting has close connections with the Kantorovich metric
(see e.g. [7] for a recent overview), and with flow networks. The relationship
with flow networks is best explained pictorially. Figure 1 represents two sub-
distributions d; (over some set A) and ds (over some set B) as a source and a sink
respectively. In both cases, the capacity of an edge between an element of the set
and the source/sink is the probability of this element; we let p; denote d; (a;) and
¢; denote da(b;). Then, let R be a relation between elements of A and elements of
B. We use dashed arrows to represent edges (a, b) such that a R b. The definition
of lifting requires exhibiting a sub-distribution d, called the witness, such that
for every (a,b), if d(a,b) > 0 then a R b. In the picture below, it amounts to
asserting that d is completely defined by the values of the probabilities r; ...
r¢ that are used to decorate the dashed arrows; more precisely, r¢ = d(as, bs),
rs = d(a5,b4), T4 = d(ag,b4), r3 = d(ag,bg), To = d(ag,bQ) and rn = d(al,bl).
The remaining constraints can be interpreted as an assertion that d is a maximal
flow. Consider that edges are oriented from left to right; then we can define the
incoming (resp. outgoing) flow of a node as the sum of the probabilities attached
to its incoming (resp. outgoing) edges. Then, constraints 2 and 3 assert that the
incoming flow is equal to the outcoming flow for each node; in other words,
dy L(R) dy can be reduced to a maximal flow problem in the network induced
by di, d2 and R. The constraints for the maximal flow problem are:

Ps =75 + 76 s =T¢

Qe =714+7T5
Pz =173+ T4 q3 =13
P2 =T2 q2 = T2
p1="n Q=T

Any sub-distribution that satisfies the constraints is a witness of the relationship
of di and dy w.r.t. the lifting of R. Interestingly, the connection between lift-
ing and flow networks opens the possibility of relying on existing flow network
algorithms to check whether two distributions are related by lifting.

While pRHL is sufficient for many purposes, a number of cryptographic no-
tions, such as statistical zero-knowledge proofs, require reasoning about approx-
imate equivalence. Recall that the statistical distance between two distributions
dy and ds is defined as

A(dl,dg) dZEf m2x|d1 A— d2 A|

One can define an extension of pRHL that supports approximate reasoning,
via judgments of the form | ¢z ~5 ¥ : ¢ = &, where § € [0,1]. Such a
judgment is valid if for every pair of memories m; and mo, m1 ¥ mso implies
([ea]] ma) L5(DP) ([ez] m2), where the approximate lifting £5(R) of R is defined
by the clause d; L5(R) dy if there exists d € D(A x B) such that:

1. for every (a,b) € A x B, if d(a,b) > 0 thena R b
2. 7r1(d)§d1 and A(dl,ﬂl(d))SCS
3. 7T2(d) S d2 and A(dg,ﬂg(d)) S 0
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Fig. 1. Lifting as a maximal flow problem

where the sub-distributions 71 (d) and m3(d) are defined by the clauses

m(d)=>_ d(a,b) mo(d) =Y d (a,b)

beB a€A

and < denotes the pointwise extension of inequality on the reals, i.e. d < d’
iff for every a € A, we have d a < d’ a. The definition of approximate lifting
was also considered in the context of probabilistic algebra [13,8], and admits a
characterization in terms of flow networks.

CertiCrypt and EasyCrypt implement apRHL [3], an extension of pRHL whose
judgments are of the form |= cg ~o,5 ¥ : ¢1 = @, where a > 1 and 6 € [0, 1]. Such
a judgment is valid if for every pair of memories m; and mso, m; ¥ mo implies
([ea] m1) La,5(P) ([e2] m2), where L, s(R) denotes the approximate lifting of
R. Formally, d; L, s(R) dz if there exists d € D(A x B) such that:

1. for every (a,b) € A x B, if d(a,b) > 0 thena R b
2. Fl(d)gdl and Aa(dl,ﬂ'l(d)) §5
3. 7T2(d) S d2 and Aa(dQ,ﬂ'Q(d)) S 1)

where

Aa(dl,dQ) d:Cf Hlle(m&X{dl A—a (d2 A),dQ A—« (dl A),O})

This definition coincides with J-lifting for the case @ = 1. The resulting logic
apRHL allows reasoning about statistical distance between programs and about
(computational) differential privacy [9].
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