
Verifiable Security of Merkle-Damgård

Michael Backes§‖, Gilles Barthe†, Matthias Berg§, Benjamin Grégoire‡,

César Kunz¶†, Malte Skoruppa§ and Santiago Zanella Béguelin∗

§Saarland University, Saarbrücken, Germany ‖Max Planck Institute for Software Systems, Germany

Email: {backes, berg, skoruppa}@cs.uni-saarland.de
¶Universidad Politécnica de Madrid, Spain †IMDEA Software Institute, Madrid, Spain

Email: {Gilles.Barthe, Cesar.Kunz}@imdea.org
‡INRIA Sophia Antipolis-Méditerranée, France

Email: Benjamin.Gregoire@inria.fr
∗Microsoft Research

Email: santiago@microsoft.com

Abstract—Cryptographic hash functions provide a basic data
authentication mechanism and are used pervasively as building
blocks to realize many cryptographic functionalities, including
block ciphers, message authentication codes, key exchange
protocols, and encryption and digital signature schemes. Since
weaknesses in hash functions may imply vulnerabilities in the
constructions that build upon them, ensuring their security
is essential. Unfortunately, many widely used hash functions,
including SHA-1 and MD5, are subject to practical attacks. The
search for a secure replacement is one of the most active topics
in the field of cryptography. In this paper we report on the
first machine-checked and independently-verifiable proofs of
collision-resistance and indifferentiability of Merkle-Damgård,
a construction that underlies many existing hash functions.
Our proofs are built and verified using an extension of
the EasyCrypt framework, which relies on state-of-the-art
verification tools such as automated theorem provers, SMT
solvers, and interactive proof assistants.

I. INTRODUCTION

Cryptographic hash functions provide a basic data authen-

tication mechanism and are routinely used as building blocks

in other cryptographic constructions. For a given input m,

a cryptographic hash function H outputs a digest H(m) of

some small fixed length. For most tasks, it is required that

finding distinct inputs with the same digest—a collision—

be difficult. However, recent research has demonstrated that

widely used hash functions, including SHA-1 and MD5, are

vulnerable to collision attacks [28], [36], [37]. In response

to these concerns, the U.S. National Institute of Standards

and Technology (NIST) started in November 2007 a public

competition to develop new cryptographic hash functions to

augment a set of standard functions that includes the SHA-1

and SHA-2 algorithms. This competition, commonly known

as the SHA-3 competition, motivated a growing interest in

developing cryptographic hash functions and in rigorously

scrutinizing their security.

Verified security [8], [10] is an emerging approach to

security proofs of cryptographic systems. It adheres to

the same principles as provable security, but revisits its

realization from a formal verification perspective. When

taking a verified security approach, proofs are mechanically

verified and built with the aid of state-of-the-art verification

tools, such as SMT solvers, automated theorem provers and

interactive proof assistants. EasyCrypt [8] is an automated

framework that aims to make verified security accessible

to cryptographers with a limited background in formal

methods; it has been successfully applied to verify exact

security bounds of several digital signature and encryption

schemes.

In this paper, we report on an extension of EasyCrypt and

its application to build and verify exact security proofs of the

Merkle-Damgård construction [23], [31], which underlies

the design of many cryptographic hash functions. In its sim-

plest formulation, Merkle-Damgård iterates a compression

function f : {0, 1}k × {0, 1}n → {0, 1}n over the blocks

of an input message padded to a block boundary. For a

fixed public initialization vector IV, the digest of a padded

message with blocks x1 ‖ · · · ‖ xℓ is computed as

f(xℓ, f(xℓ−1, . . . f(x1, IV) . . . ))

One way of arguing that iterated constructions like

Merkle-Damgård are secure is to show that they preserve

security properties of the underlying compression function.

The seminal works of Merkle [31] and Damgård [23] show

that if messages are padded in some specific way, finding

two colliding messages for the above iterated construction

is at least as hard as finding two colliding inputs for the

compression function f ; said otherwise, that the construction

preserves the collision resistance of the compression func-

tion. We present a proof of a generalization of this result in

EasyCrypt. Our proof applies when the padding function is

suffix-free, i.e. the padding of a message m is not a suffix

of the padding of any other message m′.

An alternative method for proving the security of a hash

function is to show that it behaves as a random oracle

when the compression function, or some other lower-level



building block, is assumed to be ideal. The indifferentia-

bility framework of Maurer et al. [30] provides a rigor-

ous simulation-based definition that captures this intuition

and implies a strong composability result. Glossing over

technical subtleties [33], a hash function H indifferentiable

from a random oracle can be plugged into a cryptosystem

proven secure in the random oracle model for H without

compromising the security of the cryptosystem. We present a

proof in EasyCrypt of the indifferentiability of the Merkle-

Damgård construction from a random oracle. Our proof,

which follows the proof of Coron et al. [22], applies when

the padding function is prefix-free, i.e. the padding of a

message m is not a prefix of the padding of any other

message m′.

Organization of the Paper: Section II overviews the

foundations and verification mechanisms implemented in our

extension to EasyCrypt; Section III describes the Merkle-

Damgård construction and its security properties; Section IV

describes a machine-checked proof that Merkle-Damgård

preserves collision resistance when used with a suffix-free

padding, while Section V describes a machine-checked proof

of its indifferentiability from a random oracle when the

padding is prefix-free; Section VI discusses the applicability

of our results to generalizations of the Merkle-Damgård

construction and the finalists of NIST SHA-3 competition.

We conclude in Section VII.

II. A PRIMER ON EASYCRYPT

Building a cryptographic proof in EasyCrypt is a process

that can be decomposed in the following steps:

• Defining a formal context, including types, constants

and operators, and giving it meaning by declaring

axioms and stating derived lemmas.

• Defining a number of games, each of them composed of

a collection of procedures (written in the probabilistic

imperative language described below) and adversaries

declared as abstract procedures with access to oracles.

• Proving logical judgments that establish equivalences

between games. This may be done fully automatically,

with the help of hints from the user in the form of

relational invariants, or interactively using basic tactics

and automated strategies.

• Deriving inequalities between probabilities of events

in games, either by using previously proven logical

judgments or by direct computation.

In the remainder of this section, we briefly overview some

key aspects of the process of building an EasyCrypt proof.

Note that the work reported in this article benefited from

several extensions of the tool with respect to [8]; these

extensions include:

1) Support for reasoning about programs with loops.

Loops were used to represent iteration in the Merkle-

Damgård construction.

2) Mechanization of the Failure Event Lemma of [11],

implemented in EasyCrypt as an extension to the

mechanism that directly computes probability bounds.

This was used to bound the success probability of

the distinguisher in the proof of indifferentiability pre-

sented in Sect. V.

3) Proof engineering mechanisms to manage the size of

proof obligations and the theories that external solvers

use. These mechanisms were essential for the success-

ful verification of the proofs presented in this paper.

A. Input Language

Probabilistic experiments are defined as programs in

pWHILE, a strongly-typed imperative probabilistic program-

ming language. The grammar of pWHILE commands is

defined as follows:

C ::= skip nop

| V ← E deterministic assignment

| V $← DE probabilistic assignment

| if E then C else C conditional

| while E do C loop

| V ← P(E , . . . , E) procedure call

| C; C sequence

The only non-standard feature of the language are proba-

bilistic assignments; an assignment x $← d evaluates the

expression d in the current state to a distribution µ on values,

samples a value according to µ and assigns it to variable x.

The key to the flexibility of EasyCrypt is that the base

language of expressions and distribution expressions can be

extended by the user to suit the needs of the verification

task. The rich base language includes expressions over

Booleans, integers, fixed-length bitstrings, lists, finite maps,

and option, product and sum types. User-defined operators

can be axiomatized or defined in terms of other operators. In

the following, we let {0, 1}ℓ denote the uniform distribution

on bitstrings of length ℓ.
A program (equivalently, a game) in EasyCrypt is repre-

sented as a set of global variables together with a collection

of procedures. Some of these procedures are concrete and

given a definition as a command c ∈ C, while some

others may be abstract and left undefined. Quantification

over adversaries in cryptographic proofs is achieved by

representing them as abstract procedures parametrized by

a set of oracles; these oracles must be instantiated as other

procedures in the program.

Commands operate on program memories, which map

local and global variables to values; we let M denote the

set of memories. The semantics of a command c ∈ C is

a function JcK : M → D(M) from program memories to

sub-distributions on program memories. Note that programs

that do not terminate with probability 1 generate sub-

distributions with total probability less than 1. We refer the

reader to [9] for a detailed description of the semantics



of pWHILE as it has been formalized in the Coq proof

assistant. In what follows, we denote by Pr [c,m : A] the

probability of event A w.r.t. to the distribution JcK m and

often omit the initial memory m when it is not relevant.

Although EasyCrypt is not tied to any particular cryp-

tographic model, it provides good support to reason about

proofs developed in the random oracle model. A random

oracle O : X → Y is modelled in EasyCrypt as a

stateful procedure that maps values in X into uniformly and

independently distributed values in Y . The state of a random

oracle can be represented as a global finite map L that is

initially empty. Queries are answered consistently so that

identical queries are given the same answer:

Oracle O(x) :
if x 6∈ dom(L) then L[x] $← Y
return L[x]

B. Probabilistic Relational Hoare Logic

The foundation of EasyCrypt is a probabilistic Relational

Hoare Logic (pRHL), whose judgments are quadruples of

the form:

⊢ c1 ∼ c2 : Ψ =⇒ Φ

where c1, c2 are programs and Ψ,Φ are first-order relational

formulae. Relational formulae are defined by the grammar:

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ⇒ Φ | ∀x. Φ | ∃x. Φ

where e stands for a Boolean expression over logical vari-

ables and program variables tagged with either 〈1〉 or 〈2〉
to denote their interpretation in the left or right-hand side

program; the only restriction is that logical variables must

not occur free. The special keyword res denotes the return

value of a procedure and can be used in the place of a

program variable. We write e〈i〉 for the expression e in

which all program variables are tagged with 〈i〉. A relational

formula is interpreted as a relation on program memories.

For example, the formula x〈1〉+ 1 ≤ y〈2〉 is interpreted as

the relation

R = {(m1,m2) | m1(x) + 1 ≤ m2(y)}

The validity of a pRHL judgment is defined in terms of

a lifting operator L : P(A × B) → P(D(A) × D(B)).
Concretely,

|= c1 ∼ c2 : Ψ⇒ Φ def
=

∀m1,m2. m1 Ψ m2 ⇒ (Jc1K m1) L(Φ) (Jc2K m2)

Formally, let µ1 be a probability distribution on a set A and

µ2 a probability distribution on a set B. We define the lifting

µ1 L(R)µ2 of a relation R ⊆ A × B to µ1 and µ2 by the

clause:

∃µ : D(A×B). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ supp(µ) ⊆ R

where π1(µ) (resp. π2(µ)) denotes the projection of µ on its

first (resp. second) component and supp(µ) is the support

of µ as a sub-probability measure—if µ is discrete, this is

just the set of pairs with positive probability.

Figure ?? shows some selected rules that can be used to

derive valid pRHL judgments. There are two kinds of rules:

two-sided rules, which require that the related programs

have the same syntactic form, and one-sided rules, which do

not impose this requirement. One-sided rules are symmetric

in nature and admit a left and a right variant. We briefly

comment on some rules. The two-sided rule [Rnd] for

random assignments requires the distributions from where

values are sampled be uniform on some set X ; to apply

the rule one must exhibit a function f : X → X that may

depend on the state and is 1-1 if the precondition holds.

The one-sided rule [Rand〈1〉] for random assignments simply

requires that the post-condition is established for all possible

outcomes; in effect, this rule treats random assignment as a

non-deterministic assignment.

Similarly to Hoare logic, the rules for while loops require

to exhibit an appropriate relational invariant Φ. The two-

sided rule [While] applies when the loops execute in lockstep

and thus requires proving that the guards are equivalent.

The one-sided rule [While〈1〉] further requires exhibiting a

decreasing variant v and a lower bound m. The premises

ensure that the loop is absolutely terminating, which is

crucial for the soundness of the rule.

The relational Hoare logic also allows capturing the well-

known cryptographic argument “x is uniformly distributed

and independent of the adversary’s view”, which is certainly

one of the most difficult to formalize. We formalize this

argument in EasyCrypt by proving that re-sampling x
preserves the semantics of the program. Suppose we want

to prove that in a program c, a variable x used in an

oracle O is uniformly distributed and independent of the

view of an adversary AO . Let O′ be the same as O except

that it re-samples x when needed. We identify a condition

used that holds whenever A obtained some information

about x (and thus, re-sampling would not preserve the

semantics). We then prove that the conditional statement

c′ def
= if ¬used then x $← X can swap with calls to O

and O′, i.e.

⊢ c′; y ← O(~e) ∼ y ← O′(~e); c′ : Φ =⇒ Φ

where Φ implies equality over all global variables. From

this, we can conclude that c′ can also swap with calls to

AO and AO
′

, and hence that the semantics of the program

c is preserved when O is replaced by O′. The advantage

of using such kind of reasoning is that it is generally much

easier to reason about a game where x is sampled lazily,

since its distribution is locally known.

We conclude with some observations on the mechaniza-

tion of reasoning in pRHL. We implement in EasyCrypt

several variants of two-sided and one-sided rules of pRHL

in the form of tactics that can be applied in a goal-oriented

fashion to prove the validity of judgments. For instance,



⊢ c1 ∼ c2 : Φ =⇒ Φ′ ⊢ c′1 ∼ c′2 : Φ′ =⇒ Φ′′

⊢ c1; c
′
1 ∼ c2; c

′
2 : Φ =⇒ Φ′′

[Seq]

⊢ x← e ∼ skip : Φ {e〈1〉/x〈1〉} =⇒ Φ [Asn〈1〉] ⊢ skip ∼ x← e : Φ {e〈2〉/x〈2〉} =⇒ Φ [Asn〈2〉]

Ψ⇒ bijective(f) Ψ⇒ ∀v ∈ X. Φ {v, f(v)/x〈1〉, y〈2〉}

⊢ x $← X ∼ y $← X : Ψ =⇒ Φ
[Rnd]

Ψ⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ x $← d ∼ skip : Ψ =⇒ Φ
[Rnd〈1〉]

⊢ c1 ∼ c2 : Ψ ∧ e〈1〉 =⇒ Φ ⊢ c′1 ∼ c2 : Ψ ∧ ¬e〈1〉 =⇒ Φ

⊢ if e then c1 else c′1 ∼ c2 : Ψ =⇒ Φ
[Cond〈1〉]

⊢ c1 ∼ c2 : Φ ∧ b1〈1〉 =⇒ Φ Φ⇒ b1〈1〉 = b2〈2〉

⊢ while b1 do c1 ∼ while b2 do c2 : Φ =⇒ Φ ∧ ¬b1〈1〉
[While]

⊢ c1 ∼ skip : Φ ∧ (b1 ∧ v = n)〈1〉 =⇒ Φ ∧ v〈1〉 < n Φ ∧ v〈1〉 ≤ m⇒ ¬b〈1〉

⊢ while b1 do c1 ∼ skip : Φ =⇒ Φ ∧ ¬b1〈1〉
[While〈1〉]

Ψ⇒ Ψ′ ⊢ c1 ∼ c2 : Ψ′ =⇒ Φ′ Φ′ ⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
[Sub]

⊢ c1 ∼ c2 : Ψ ∧Ψ′ =⇒ Φ ⊢ c1 ∼ c2 : Ψ ∧ ¬Ψ′ =⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
[Case]

Figure 1. Selected pRHL rules

instead of implementing rule [Rnd〈1〉], we combine it with

the [Seq] rule to obtain the following more easily applicable

rule:

⊢ c1 ∼ c2 : Ψ =⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ c1; x $← d ∼ c2 : Ψ =⇒ Φ

The application of a tactic may generate additional verifica-

tion subgoals, and logical side conditions that are checked

using SMT solvers, automated theorem provers and, as a

last recourse, interactive proof assistants. Depending on their

nature, application of the tactics can be fully automated or

require user input. For instance, applying the tactics that

mechanize the rules for while loops, requires the user to

provide an adequate invariant. In the case of the two-sided

rule, a new subgoal is generated to prove the correctness

of the user-provided invariant, whereas the equivalence of

the loop guards is checked automatically as a logical side-

condition.

In addition to tactics that mechanize basic rules of pRHL,

EasyCrypt implements automated strategies that combine

the application of a weakest precondition transformer wp

with heuristics to apply basic tactics. The wp transformer op-

erates on deterministic loop-free programs. These strategies

can often be used to deal automatically with large fragments

of proofs, letting the user focus in the parts that require

ingenuity.

C. Reasoning about Probabilities

Since cryptographic results are stated as inequalities on

probabilities rather than pRHL judgments, it is important to

derive probability claims from pRHL judgments. This can

be done mechanically by applying rules in the style of

m1 Ψm2 ⊢ c1 ∼ c2 : Ψ =⇒ Φ Φ⇒A〈1〉⇒B〈2〉

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]

Game-based proofs often argue that two programs c1 and

c2 behave identically unless a failure event F is triggered.

This is used to conclude that the difference in probability

of any event between the two programs is bounded by

the probability of F in one of them. Although a syntactic

characterization of this lemma is often used (in which failure

is represented by a Boolean flag), it can be conveniently

expressed and implemented in EasyCrypt in a more general

form using pRHL.

Lemma 1 (Fundamental Lemma). Let c1 and c2 be two

terminating commands and A,B, F events such that

⊢ c1∼c2 : Ψ =⇒F 〈1〉⇔F 〈2〉∧(¬F 〈1〉⇒A〈1〉⇔B〈2〉)

Then, if the initial memories of both games satisfy Ψ,

|Pr [c1 : A]− Pr [c2 : B] | ≤ Pr [G1 : F ] = Pr [G2 : F ]

In most applications of the above lemma, the failure

event F can only be triggered in oracle queries made

by an adversary. When the adversary can only make a

known bounded number of queries, the following lemma,

which we implemented in EasyCrypt, provides a means to

bound the probability of failure. (We describe its hypotheses

informally, but note that most of them can be captured by

pRHL judgments.)



Lemma 2 (Failure event lemma). Consider a program

c1; c2, an integer expression i, an event F , and u ∈ R.

Assume the following:

• Free variables in F and i are only modified by c1 or

oracles in some set O;

• After executing c1, F does not hold and 0 ≤ i;
• Oracles O ∈ O do not decrease i and strictly increase

i when F is triggered;

• For every oracle O in O, ¬F ⇒ Pr [O : F ] ≤ u
Then, Pr [c1; c2 : F ∧ i ≤ q] ≤ q · u.

Finally, EasyCrypt implements a simple mechanism to

directly compute bounds for the probability of an event

in a program. This mechanism can establish, for instance,

that the probability that a value uniformly chosen from a

set X equals an expression that does not depend on it is

exactly 1/|X |, or that the probability that the same uniformly

sampled value belongs to a list of n values that does not

depend on it is at most n/|X |.

III. THE MERKLE-DAMGÅRD CONSTRUCTION

Merkle-Damgård is a method for building a variable

input-length (VIL) hash function from a fixed input-length

(FIL) compression function. In its simplest form, the digest

of a message is computed by first padding it to a block

boundary and then iterating a compression function f over

the resulting blocks starting from an initial chaining value

IV. A compression function f maps a pair of bitstrings of

length k and n (equivalently, a bitstring of length k+ n) to

a bitstring of length n:

f : {0, 1}k × {0, 1}n → {0, 1}n

A padding function pad converts an arbitrary length message

into a list of bitstrings of block size (k is the block-size):

pad : {0, 1}∗ → ({0, 1}k)∗

Definition 3 (Merkle-Damgård). Let f be a compression

function and pad a padding function as above, and let IV ∈
{0, 1}n be a public value, known as the initialization vector.

The hash function MD is defined as follows:

MD : {0, 1}∗ → {0, 1}n

MD(m) def

= f∗(pad(m), IV)

where f∗ : ({0, 1}k)∗ × {0, 1}n → {0, 1}n is recursively

defined by the equations

f∗(nil, y) def

= y f∗(x::xs , y) def

= f∗(xs , f(x, y))

The security properties of the compression function pre-

served by the Merkle-Damgård construction greatly depend

on an adequate choice of padding to thwart certain types of

attacks. In the remainder, we consider prefix- and suffix-free

padding functions.

Definition 4 (Prefix- and suffix-free padding). A padding

function pad is prefix-free (resp. suffix-free) iff for any

distinct messages m,m′, there is no xs such that

pad(m′) = pad(m) ‖ xs (resp. pad(m′) = xs ‖ pad(m)).

Security properties of hash functions are stated as claims

about the difficulty of an attacker in achieving certain goals.

Collision resistance states that it is hard to find distinct a, b
such that H(a) = H(b). Pre-image resistance states that

given a digest h, it is hard to find a such that H(a) = h.

Second preimage resistance states that given a, it is hard

to find b 6= a such that H(a) = H(b). Finally, resistance

to length-extension attacks states that it is hard to compute

H(a ‖ b) from H(a). The precise formulation of these

notions and their relationship is addressed in detail in [34].

An established method for proving the security of domain

extenders, like MD above, is to show that they are property-

preserving: for instance, the seminal works of Merkle [31]

and Damgård [23] show that if the compression function f
is collision resistant, then the hash function MD with some

specific padding function is also collision resistant. Property

preservation also applies for other notions; a representative

panorama of property preservation for collision resistance,

preimage and second preimage resistance appears in [4].

In Section IV we use EasyCrypt to reduce the collision

resistance of suffix-free MD to the collision resistance of

the underlying compression function.

An alternative method for proving the security of domain

extenders is to show that they preserve ideal functionalities,

i.e. that when applied to ideal functionalities they yield

an ideal functionality. The notion of indifferentiability of

Maurer et al. [30] provides an appropriate framework.

Definition 5 (Indifferentiability). A procedure C with oracle

access to an ideal primitive G is (tS , q, ǫ)-indifferentiable

from F if there exists a simulator S with oracle access

to F and executing within time tS , such that for any

distinguisher D that makes at most q oracle queries, the

following inequality holds
∣
∣Pr

[
b← DC,G( ) : b

]
− Pr

[
b← DF ,S( ) : b

]∣
∣ ≤ ǫ

Intuitively, the distinguisher is either given access to CG

and G, or it is given access to F and SF (see Figure 1).

The probability that it succeeds in distinguishing the two

scenarios must be small.

C G F S

D

Figure 2. Indifferentiability of C from an ideal functionality F

In the application considered in this paper, C represents

the Merkle-Damgård construction, G represents the compres-



sion function and F represents an idealized hash function.

Thus, the role of S is to simulate the behavior of the

compression function, i.e. it should behave towards F like

G behaves towards the Merkle-Damgård construction. In

Section V, we use EasyCrypt to define a simulator S that

proves indifferentiability of MD from a VIL random oracle

when the compression function G is modeled as a FIL

random oracle—random oracles [13] are functions that map

values in the input domain into uniformly and independently

distributed values in the output domain; see Section II for a

precise definition.

We conclude this section with two observations about

proofs of indifferentiability and property preservation. First,

indifferentiability from a random oracle provides weaker

guarantees than initially anticipated—see [20] and [33]

respectively for discussions on the random oracle model

and on the notion of indifferentiability—but nevertheless

remains a useful heuristics in the design of hash functions.

Second, the two methods are complementary. On the one

hand, indifferentiability from a VIL random oracle entails

resistance against collision, preimage, second preimage,

and length-extension attacks. Thus, preservation of ideal

functionalities apparently yields stronger guarantees than

property preservation. On the other hand, however, property

preservation is typically established under weaker hypothe-

ses and exact security bounds derived from indifferentiability

proofs generally deliver looser bounds than direct proofs

based on property preservation.

IV. COLLISION RESISTANCE

We show that finding collisions for MD with a suffix-free

padding is at least as hard as finding collisions for f . A

collision for the compression function f is a pair of inputs

xy1, xy2 satisfying the predicate

coll(xy1, xy2)
def
= xy1 6= xy2 ∧ f(xy1) = f(xy2)

Theorem 6. Let MD be a Merkle-Damgård hash function

with compression function f and a suffix-free padding pad.

For any algorithm A finding collisions for MD of at most

length p, there exists an algorithm B that finds collisions

for f with the same probability and with an overhead of

O(p · tf ), where tf is a bound on the time needed for one

evaluation of f .

Consider the experiment CRMD below, in which an adver-

sary A performs a collision attack against MD:

Game CRMD :
(m1,m2)← A();
h1 ← F(m1);
h2 ← F(m2);
return (m1 6= m2 ∧ h1 = h2)

Oracle F(m) :
xs ← pad(m); y ← IV;
while xs 6= nil do
y ← f(hd(xs), y);
xs ← tl(xs);

return y

We prove in EasyCrypt that the algorithm B shown in Fig. 2

finds collisions for f in the experiment CRf with at least the

Game CRf :
(xy1, xy2)← B();
return coll(xy1, xy2)

Adversary B() :
(m1,m2)← A();
xs1 ← pad(m1); y1 ← IV;
xs2 ← pad(m2); y2 ← IV;
while |xs1| > |xs2| do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);

while |xs1| < |xs2| do
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

while ¬coll((hd(xs1), y1), (hd(xs2), y2)) ∧ xs1 6= nil do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

return ((hd(xs1), y1), (hd(xs2), y2))

Figure 3. A collision-finder B for the compression function f

same probability as A finds collisions for MD in CRMD, i.e.

Pr
[

CRMD : res
]

≤ Pr
[

CRf : res
]

(1)

(Recall that res is a keyword that stands for the value

returned by the main procedure of the games.) Algorithm

B obtains from A a pair of messages m1,m2, pads them,

and iterates the compression function over the first blocks of

the longer padded message until the remaining suffix is the

same length as the other padded message. It then performs

the remaining iterations needed to compute MD(m1) and

MD(m2) in parallel. If m1,m2 forms a collision for MD,

a collision for f must occur during one of these iterations.

Algorithm B stops as soon as it detects one such collision,

returning the colliding inputs as a result.

In order to show (1) it suffices to prove the relational

judgment:

⊢ CR
MD ∼ CR

f : true =⇒ res〈1〉 ⇒ res〈2〉 (2)

Proving this judgment involves non-trivial relational reason-

ing because equivalent computations in the related games

are not performed in lockstep. We begin by inlining the call

to B in CRf and showing that the relational post-condition

(m1,m2)〈1〉 = (m1,m2)〈2〉 ∧
(h1 = MD(m1) ∧ h2 = MD(m2))〈1〉

holds after the call to A in both programs and the two calls

to F in CR
MD. To show this, we prove that oracle F cor-

rectly implements function MD using the one-sided rule for

loops—the needed invariant is simply f∗(xs , y) = MD(m).
At this point, note that if m1 = m2, judgment (2) holds

trivially (we only have to check that B terminates). We

are left with the case m1 6= m2. Assume w.l.o.g. that

|pad(m2)| ≤ |pad(m1)|, in which case B never enters its

second loop and the following invariant holds for the first:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
m1 6= m2 ∧ |xs2| ≤ |xs1| ∧ xs2 = pad(m2) ∧
∃xs ′. xs ′ ‖ xs1 = pad(m1)

(3)



We prove that if the messages m1,m2 output by A collide,

the last loop necessarily exits because a collision is found.

This can be shown by means of the following loop invariant:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
|xs2| = |xs1| ∧
(xs1 = xs2 ⇒ y1 6= y2)

Note that (3) and the negation of the guard of the first loop

imply that the above invariant holds initially. In particular,

the last implication holds because if xs1 and xs2 were equal,

there would exist a prefix xs ′ such that xs ′ ‖ pad(m2) =
pad(m1), contradicting the fact that pad is suffix-free.

Finally, observe that the last loop can exit either because

a collision for f is found or because xs1 = nil. In this

latter case, it must be the case that xs2 = nil and therefore

y1 = MD(m1) = MD(m2) = y2. However, from the last

implication in the invariant we also have y1 6= y2, which

leads to a contradiction that renders this case trivial.

V. INDIFFERENTIABILITY

We prove the indifferentiability of the MD construction

from a random oracle in {0, 1}∗ → {0, 1}n when its

compression function f is modeled as a random oracle in

{0, 1}k × {0, 1}n → {0, 1}n and its padding function is

prefix-free. Our proof is based on [22].

Theorem 7 (Indifferentiability of MD). The Merkle-

Damgård construction MD with an ideal compression func-

tion f , prefix-free padding pad, and initialization vector IV

is (tS , qD, ǫ)-indifferentiable from a variable input-length

random oracle F : {0, 1}∗ → {0, 1}n, where

ǫ =
3ℓ2 q2D
2n

tS = O(ℓ q2D)

and ℓ is an upper bound on the block-length of pad(m) for

any message m appearing in a query of the distinguisher.

In what we call the real scenario, a distinguisherD has ac-

cess to an oracle Fq implementing the function MD and to a

random oracle fq : {0, 1}
k × {0, 1}n → {0, 1}n that models

the compression function. In contrast, in the ideal scenario,

D has access to a random oracle Fq : {0, 1}∗ → {0, 1}n and

fq is simulated. See Fig. 3 for a formulation of these two

scenarios as games. To prevent D from making more than

q oracle queries, we enforce a bound q = ℓ qD on the

counter qf , that counts the number of evaluations of the

compression function in game Greal. Note that this is more

permissive than the proof of Coron et al. [22], since it allows

the distinguisher to trade queries to Fq for queries to fq.

Indeed, if D makes nf queries to fq and nF queries to Fq ,

we require

qf ≤ nf + ℓ nF ≤ ℓ (nf + nF ) ≤ ℓ qD = q

We show that the simulator fq in Gideal behaves consistently

with a random oracle. Whenever the distinguisher makes a

query (x, y) to oracle fq , the simulator looks among all

previous queries for a sequence that could be the chain

of inputs to the compression function used to compute the

hash of some message m, for which x is the last block of

pad(m). We call such a sequence a complete chain, and we

define it formally below. When such a sequence is found,

the simulator queries F for the hash of m and forwards the

answer to the distinguisher. Otherwise, the simulator answers

with a uniformly distributed random value. Figure 4 shows

how this simulator would react to a sequence of queries

y2 ← fq(x1, IV); y3 ← fq(x2, y2); y4 ← fq(x3, y3)

where x1 ‖ x2 ‖ x3 = pad(m). The first two queries will be

answered with random values, while the third completes a

chain and is answered by forwarding pad−1(x1 ‖ x2 ‖ x3)
to F ; this maintains the consistency with the real scenario.

(x1, IV)
︸ ︷︷ ︸

T
′[x1,IV]←y2

incomplete chain

y2 $← {0, 1}
n

(x2, y2)
︸ ︷︷ ︸

T
′[x2,y2]←y3

incomplete chain

y3 $← {0, 1}
n

(x3, y3)
︸ ︷︷ ︸

T
′[x3,y3]←y4

complete chain

y4 ← F (m)

Figure 5. An example illustrating how the simulator works

Definition 8 (Complete chain). A complete chain in a

map T : {0, 1}k × {0, 1}n → {0, 1}n is a sequence

(x1, y1) . . . (xi, yi) such that y1 = IV and

1) ∀j = 1 . . . i− 1. (xj , yj) ∈ dom(T )∧T [xj, yj] = yj+1

2) x1 ‖ . . . ‖ xi is in the domain of pad−1

The function findseq((x, y),T ′) used by the simula-

tor searches in T
′ for a complete chain of the form

(x1, y1) . . . (xi, yi)(x, y) and returns x1‖ . . . ‖xi, or ⊥ if no

such chain is found.
To help SMT solvers and automated provers check logical

side-conditions arising in our proofs, we needed to derive

several auxiliary lemmas: e.g., if a finite map T is injective

and does not map any entry to the value IV, every complete

chain is determined by its last element—that is, for any

given (x, y), the value of findseq((x, y),T ′) is uniquely

determined. All of these lemmas have been mechanically

verified based solely on the axiomatization and definitions

of elementary operations. In many cases, EasyCrypt is able

to verify the validity of these lemmas automatically. The

more involved lemmas have been manually verified in the

Coq proof assistant.
The proof proceeds by stepwise transforming the game

Greal into the game Gideal, upper-bounding the probability

that the outcome of consecutive games differ. By summing

up over these probabilities, we obtain a concrete bound for

the advantage of the distinguisher in telling apart the initial

and final games. Specifically, we prove:

|Pr [Greal : b]− Pr [Gideal : b]| ≤
3q2

2n
(4)



Game Greal :
qf ← 0;
T ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while xs 6= nil do
y ← f(hd(xs), y);
xs ← tl(xs)

return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then
qf ← qf + 1
z ← f(x, y);

else z ← IV
return z

Game Gideal :
qf ← 0;
R,T ′ ← ∅;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
z ← F (m)

else z ← IV
return z

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← z

return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]← F (pad−1(xs)‖[x]))

else

T
′[x, y] $← {0, 1}

n

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 4. The games Greal and Gideal

Game Greal′ :
qf ← 0;
T ,T ′ ← ∅;
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1 do
y ← fbad(hd(xs), y);
xs ← tl(xs)

y ← fbad(hd(xs), y)
return y

Oracle f(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
Z ← z::Z; Y ← y::Y ;
T [x, y]← z

return T [x, y]

Oracle fbad(x, y) :
if (x, y) /∈ dom(T ) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [x, y]← z

return T [x, y]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]← fbad(x, y)

else

if set bad3(y,T ′,T ) then
bad3 ← true;
T

′[x, y]← f(x, y)
else

T
′[x, y]← fbad(x, y)

z ← T
′[x, y]; qf ← qf + 1

else z ← IV
return z

Figure 6. The game Greal′

We begin by considering the game Greal′ defined in Fig. 5.

We introduce events bad1, bad2, and bad3 that will be

needed later. First, we introduce a copy of oracle f , which

we call fbad. Both use the same map T to store previously

answered queries, the difference is that fbad may trigger

events bad1 and bad2. We also introduce the lists Y and

Z that allow us to appropriately detect when these events

occur. In addition, we modify the simulator fq to maintain

a map T
′ of queries known to the distinguisher. Observe

that T ′ ⊆ T , because queries to Fq result in entries being

added only to T , whereas queries to fq result in the same

entries being added to both T and T
′. Additionally, the

simulator fq behaves in two different ways depending on

whether findseq((x, y),T ′) 6= ⊥. If this condition holds,

there is a complete chain in map T
′ ending in (x, y). In this

case, in game Gideal the simulator should call oracle F to

maintain consistency with the random oracle; otherwise the

simulator could just sample a fresh random value. In this

game, oracle fq returns the same answer in both cases, but

sets bad{1,2,3} accordingly. Lastly, we also unroll the last

iteration of the loop in Fq .

Note that instrumenting the game with the additional map

T
′ and the failure events bad{1,2,3} does not change the

observable behavior. Therefore,

Pr [Greal : b] = Pr [Greal′ : b]

In game GrealRO, defined in Fig. 6, we introduce a random

oracle RO : {0, 1}∗ → {0, 1}n and replace every call

fbad(x, y) in game Greal′ where (x, y) ends a complete

chain in T with a call to RO(m, y) where m is the



unpadded message of the chain. I.e., in oracle fq we call

RO if findseq is successful and in oracle Fq we call RO
instead of the last call to fbad. We also introduce the map

I : N→ {0, 1}n×B which enumerates all sampled chaining

values and includes a tainted flag to keep track of values

known to the distinguisher. We introduce an indirection in

map T and T
′ through the use of map I . This allows us

to keep track of the order in which queries were made

and to know which answers we could re-sample without

introducing inconsistencies in the view of the distinguisher.

The failure events that were introduced in the last step

capture certain dependencies on previous queries that the

distinguisher may exploit to tell apart games Greal′ and

GrealRO. We prove that games Greal′ and GrealRO behave

the same provided these failure events do not occur.

1) bad1 is triggered whenever oracle fbad samples a

random value that is either IV or has already been

sampled for a distinct query before. The role of this

event is twofold: on the one hand, if IV is sampled

as a random value, then there could exist a complete

chain in T that is a suffix of another complete chain

in T as illustrated in the first example of Figure 7

(here T [x2, y2] = IV). The problem is that oracle Fq

in the game Greal will generate the same values for

the two messages corresponding to those two chains,

while Fq in the game Gideal most likely will not. On

the other hand, if a sampled value has been sampled

for another query before, then there could exist two

complete chains in T that collide at some point and are

identical from that point on as illustrated in the second

example of Figure 7. Again the two corresponding

messages would yield the same answer in Greal but

most likely not in Gideal on queries to Fq . By requiring

that event bad1 does not occur, we guarantee that in

game Greal′ the map T is injective and does not map

any value to IV.

2) bad2 is triggered whenever oracle fbad samples a

random value that has already been used as a chaining

value in a previous query. This means that this query

may be part of a chain of which the distinguisher has

already queried later points in the chain, which should

not be possible. The event also captures that no fixed-

points (i.e. entries of the form T [x, y] = y) should be

sampled.

3) bad3 is triggered whenever a chaining value y in a

query has already been sampled as a random value and

is in the range of T for some previous query (x′, y′),
but (x′, y′) does not appear in the domain of T

′ and

(x′, y′) is not the last element of a complete chain in

T . Intuitively, this means that y was never returned by

fq or Fq and hence the distinguisher managed to guess

a random value.

In order to relate games Greal′ and GrealRO in case that

(x1, IV) (x2, y2) (x3, IV) (x4, y4) (x5, y5)

(x3, IV) (x4, y4) (x5, y5)

(x1, IV) (x2, y2) (x3, y3)

(x′1, IV) (x′2, y
′
2) (x′3, y

′
3)

(x4, y4) (x5, y5)

Figure 8. Two examples illustrating the necessity of event bad1

findseq((x, y),T ′) in fq succeeds in both games, we need

to show that the call fbad(x, y) in Greal′ and the call

RO(m, y) in GrealRO behave similarly. For this we show

that the following invariant is preserved in both games: for

all complete chains c in the map T of game Greal′ with

last(c) ∈ dom(T ), it holds that c’s associated message is in

dom(R) of game GrealRO and, vice versa, every message

in dom(R) of game GrealRO has a corresponding complete

chain c in the map T of game Greal′ with last(c) ∈ dom(T ).
This invariant allows EasyCrypt to prove this case by

inferring that (x, y) ∈ dom(T ) in game Greal′ if and only if

m ∈ dom(R) in game GrealRO.

Proving that the aforementioned invariant is preserved in

the games requires several other invariants. Most of them

merely relate the representation of maps in both games; we

omit these technical details. The essential invariant is that

the distinguisher queries fq for points in a chain only if it

has already queried the preceding part of the chain. This is

important as it implies that each chain will be completed by

a query for its last element, in which case findseq will detect

this query and the corresponding message will be added

to R. In game Greal′ , the predicate set bad3 enforces this

ordering by triggering event bad3. The probability of this

event is negligible, because it means that y was never output

by fq or Fq and hence is not known to the distinguisher. In

game GrealRO, we use the map I to iterate over all chaining

values in order to check for the ordering mentioned above.

In oracle Fq of game GrealRO, the computation of the

Merkle-Damgård construction is split into three stages due

to the different usage of the maps T
′, T ′

i
, and T . The first

loop computes the construction for values that were already

queried by the distinguisher and are therefore in dom(T ′).
The restriction that the distinguisher may only query chains

in order implies that such values occur only in the prefix of

a chain. The second loop handles values that were already

used before by oracle Fq , and the third loop samples fresh

chaining values. Relating the final call to fbad in game

Greal′ and the final call to RO in game GrealRO is similar

to this case in oracle fq. We prove that the advantage in

differentiating between games Greal′ and GrealRO is upper

bounded by the probability of any of bad1,bad2,bad3

occurring in game GrealRO.

|Pr [Greal′ : b]− Pr [GrealRO : b]| ≤

Pr [GrealRO : bad1 ∨ bad2 ∨ bad3]



Game GrealRO :
qf ← 0;
q′

f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq ,fq ();
return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if qf + |xs | ≤ q then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
y ← fst(I[i]);
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [hd(xs), i]← q′

f ;
I[q′

f ]← (z, true);
i← q′

f ;
y ← z;
q′

f ← q′

f + 1;
xs ← tl(xs)

y ← fst(RO(m, y))
return y

Oracle RO(m, y) :
if m /∈ dom(R) then
z $← {0, 1}

n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
R[m]← (z,q′

f )
I[q′

f ]← (z, false)
q′

f ← q′

f + 1
return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad−1(xs)) ‖ [x]);
(z, j)← RO(m, y);
T

′[x, y]← z; T
′

i [x, y]← j;
else
found , found bad3 ← false;
j, k′ ← 0;
while k′ < q′

f do

if snd(I[k′]) then
found bad3 ← (fst(I[k′]) = y);

else if ¬found ∧ fst(I[k′]) = y∧
(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]]) then

found ← true; j ← T [x, k′];
k′ ← k′ + 1;

if found then
z ← fst(I[j]); I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

if found bad3 then
bad3 ← true;
z $← {0, 1}

n;
I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1;
else

z $← {0, 1}
n;

bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1
z ← T

′[x, y]; qf ← qf + 1
else z ← IV
return z

Figure 7. The game GrealRO

To finish the proof, we have to relate Pr [GrealRO : b] with

Pr [Gideal : b] and bound the probability of the failure events

in game GrealRO. We first focus on the probability of bad1

and bad2. Event bad1 (resp. bad2) is set when a freshly

sampled value z is in the list Z (resp. Y ); since the size of

both lists is bounded by q, this occurs with probability at

most q 2−n, for each of the possible q queries.

Note that oracles Fq , RO , and fq in game GrealRO use

the same code to detect the failure events bad1 and bad2

when sampling a fresh value z. We can wrap this code in a

new oracle that meets the conditions of Lemma 2: we take

u = q 2−n and i = |Z| (resp. |Y |). We get

Pr [GrealRO : bad1] ≤
q2

2n
Pr [GrealRO : bad2] ≤

q2

2n

We are left to bound the probability of bad3 and relate

the game Pr [GrealRO : b] with Pr [Gideal : b]. Note that in

game GrealRO chaining values are sampled eagerly, i.e. for

a query m, oracle Fq samples chaining values z that are

independent of the distinguisher’s view (their associated flag

is set to true). These values might later on become known

to the distinguisher if it recomputes the Merkle-Damgård

construction for m using oracle fq (we identify this case

setting found = true). We want to transform the game so

that chaining values are sampled lazily (as in game Gideal).



Game GidealEager :

Game GidealLazy :

qf ← 0;
q′

f ← 1;
T ,T ′,T ′

i ,R, I ← ∅;
I[0]← (IV, false);
Y ← nil;
bad4 ← false;

l ← 0;
while l < q′

f do
if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);

l← l + 1;

b← DFq ,fq ();

l ← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}

n;
I[l]← (z, true);

l← l + 1;

return b

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if (0 < q′

f∧
qf + |xs | ≤ q) then
qf ← qf + |xs |;
while |xs | > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i [hd(xs), y];
y ← T

′[hd(xs), y];
xs ← tl(xs);

while |xs | > 1∧
(hd(xs), i) ∈ dom(T ) do
i← T [hd(xs), i];
xs ← tl(xs);

while |xs | > 1 do
z $← {0, 1}

n;
T [hd(xs), i]← q′

f ;
I[q′

f ]← (z, true);
i← q′

f ;
q′

f ← q′

f + 1;
xs ← tl(xs);

y ← fst(RO(m));
return y

Oracle RO(m) :
if m /∈ dom(R) then
z $← {0, 1}

n;
R[m]← (z,q′

f )
I[q′

f ]← (z, false)
q′

f ← q′

f + 1;
return R[m]

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (0 < q′

f∧
(x, y) /∈ dom(T ′)) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad−1(xs ‖ [x]);
(z, j)← RO(m);
T

′[x, y]← z; T
′

i [x, y]← j;
else

found ← false; j, k′ ← 0;
while (k′ < q′

f ∧ ¬found) do
if (I[k′] = (y, false)∧

(x, k′) ∈ dom(T )∧
snd(I[T [x, k′]])∧
k′ < T [x, k′]∧
T [x, k′] < q′

f ) then
found ← true; j ← T [x, k′];

else

k′ ← k′ + 1;
if found then

z ← fst(I[j]); z $← {0, 1}
n;

bad4 ← bad4 ∨ z ∈ Y ;
I[j]← (z, false);
T

′[x, y]← z; T
′

i [x, y]← j;
else

z $← {0, 1}
n;

I[q′

f ]← (z, false);
T

′[x, y]← z;
T

′

i [x, y]← q′

f ;
q′

f ← q′

f + 1;
Y ← y::Y ;

z ← T
′[x, y]; qf ← qf + 1;

else
z ← IV;

return z

Figure 9. The games GidealEager and GidealLazy

The same kind of argument can be used for bad3. This event

is set whenever the distinguisher makes a query (x, y) to fq
with y coinciding with a value uniformly and independently

distributed w.r.t. its view.

We modify game GrealRO in order to prepare for the

transition from eager to lazily sampled chaining values: the

body of game GidealEager (see Figure 8) contains a loop

which re-samples all chaining values that are unknown to the

adversary, i.e., the values for which the second component

in map I is set to true. Furthermore, game GidealEager drops

the failure events bad{1,2,3}, but introduces a new failure

event bad4. We show that if bad3 is triggered in game

GrealRO, then in GidealEager bad4 is set to true or there

exists an i such that I[i] = (v, true) and v ∈ Y . We get

Pr [GrealRO : b] = Pr [GidealEager : b]
Pr [GrealRO : bad3] ≤ Pr [GidealEager : bad4 ∨ I∃]

where I∃ = ∃i. 0 ≤ i ≤ q′f ∧ snd(I[i]) ∧ fst(I[i]) ∈ Y .

In game GidealLazy (see Figure 8), the loop we introduced

in the last game is swapped with the call to the distinguisher

and oracle fq samples the chaining values lazily (the branch

found re-samples the value of z). In order to prove the

equivalence with the previous game, we need to show that

the loop that resamples the values unknown to the adversary

swaps with calls to oracles Fq and fq in games GidealEager

and GidealLazy. We obtain

Pr [GidealEager : b] = Pr [GidealLazy : b]
Pr [GidealEager : bad4 ∨ I∃] = Pr [GidealLazy : bad4 ∨ I∃]

It is easy to see that games GidealLazy and Gideal are

equivalent w.r.t. b; the global variable qf and the maps R

and T
′ are equivalent in both games. The other variables in

game GidealLazy and its loops do not influence the behavior

of its oracles. We show that

Pr [GidealLazy : b] = Pr [Gideal : b] .



We still have to bound the probability of bad4 ∨ I∃ in

game GidealLazy. To do this, we simply modify the while

loop in the code of the game by replacing the instruction

z $← {0, 1}n with

z $← {0, 1}
n;bad4 ← bad4 ∨ z ∈ Y

This leads to a game GidealLazy′ , for which we show

Pr [GidealLazy : bad4 ∨ I∃] ≤ Pr [GidealLazy′ : bad4]

We finally use the same technique as for bad1 to bound the

probability of bad4 in game GidealLazy′ , and obtain

Pr [GidealLazy′ : bad4] ≤
q2

2n

Putting the (in-)equalities proved above together we prove

(4), which completes the proof of Theorem 8.

VI. SECURITY PROOFS OF GENERALIZED

MERKLE-DAMGÅRD

To avoid inheriting structural weaknesses in the original

Merkle-Damgård construction, existing hash functions em-

ploy instead slight variants of it. One well-known variant

is the wide-pipe design, which uses an internal state larger

than the final output [22], [27]. Many variants are subsumed

by the following Generalized Merkle-Damgård construction.

Definition 9 (Generalized Merkle-Damgård). Let IV ∈
{0, 1}n be a public initialization vector and f, g be two

compression functions of type

f, g : {0, 1}k × {0, 1}n → {0, 1}n

Consider a function pad : {0, 1}∗ → ({0, 1}k)∗ × {0, 1}k

that converts an arbitrary length message into a non-empty

list of blocks of length k, singling out the last block. The

hash function GMD is defined as follows:

GMD : {0, 1}∗ → {0, 1}ℓ

GMD(m) def

= let (x, y) = pad(m) in [g(y, f∗(x, IV))]ℓ

where f∗ is defined as in Def. 4 and [x]ℓ chops off the n− ℓ
least significant bits from x, i.e. discards all but the leading

ℓ bits.

The NIST SHA-3 competition started in November 2007

with the objective of selecting new cryptographic hash

functions to augment the set specified by the U.S. Federal

Information Processing Standard (FIPS) 180-3, which in-

cludes the SHA-1 and SHA-2 algorithms. After receiving

64 entries, NIST selected 51 candidates for the first round,

further narrowed down the list to just 14 candidates for

the second round, and announced 5 finalists in December

2010: BLAKE [6], Grøstl [25], JH [38], Keccak [14], and

Skein [24]. A public comment period has started after this

announcement and the winner is expected to be selected

before the end of 2012.

The security of all SHA-3 finalists, and of many second

round candidates, has been thoroughly scrutinized. Two

survey articles summarize known results [2], [3]. While

the algorithmic descriptions of the finalists and their exact

security bounds fit in one page (see [3]), the corresponding

security proofs are technically involved and need to be

cautiously adapted to account for the specificities of each

function. As a consequence, it is difficult to assess the

validity of security claims for individual candidates and

machine checking their proofs is an appealing perspective.

In the remainder of this section we discuss the applicability

of the proofs presented in Sections IV and V to SHA-3

finalists.

The five SHA-3 finalists are based on the iterated hash

function design that underlies the Merkle-Damgård con-

struction, but incorporate some variations such as round-

dependent tweaks, counters, final transformations, and chop-

ping. We observe that, in a more or less contrived way, all

the finalists can be considered as variants of the Generalized

Merkle-Damgård (Definition 5). The compression functions

of the finalists are either block-cipher based (BLAKE,

Skein) or permutation-based (Grøstl, JH, Keccak). More-

over, all finalists use suffix-free padding rules, while the

padding rules of BLAKE and Skein are additionally prefix-

free [3].

Our formalization models compression functions as func-

tions of two arguments: a message block and a chaining

value. This represents a deviation with respect to the com-

pression functions of BLAKE and Skein. The compression

function of BLAKE additionally takes a counter and a

random salt value, whereas the compression function of

Skein builds on a tweakable block cipher and takes as

additional input a round-specific tweak. The additional ar-

guments of the compression functions of BLAKE and Skein

could be formalized as an integral part of the padding rule;

the padding function can compute the appropriate round-

specific values and append them to the message blocks.

This alternative description would have the advantage of

matching the model that we use in our results about the

MD hash function. However, all finalists except BLAKE

use chopping or a final transformation, which are formalized

neither in our proof of collision resistance nor in our proof of

indifferentiability. This rules out a direct application of our

results, with the exception of BLAKE, for which Theorem 7

does apply. We leave it for future work to formalize this

instantiation in EasyCrypt.
NIST requirements for the SHA-3 competition include

collision resistance, preimage resistance and second preim-

age resistance. All the candidates selected as finalists satisfy

these properties and (in most cases) even achieve optimal

bounds for them when the underlying block-ciphers or

permutations used to build their compression functions are

assumed to be ideal [3]. Although the original NIST require-

ments did not include the property of indifferentiability from



a random oracle, this notion has also been considered in the

literature and is achieved by all five finalists [1], [5], [12],

[15], [16], [21]. These indifferentiability proofs hold in an

idealized model for some of the building blocks of the hash

function: the ideal-cipher model for block-cipher based hash

functions, or the ideal-permutation model for permutation-

based hash functions. Indifferentiability seems to be an

excellent target for security proofs because it ensures that

the high-level design of the hash function has no structural

weaknesses, but also because it implies bounds for all of

the classical properties enumerated above. Unfortunately,

the assumption that some underlying primitive is ideal is

at best unrealistic and at worst plainly wrong. Proofs of

indifferentiability should be taken only as an indication for

the security and as a palliative for the lack of security proofs

in the standard model.

Compared to our result of Theorem 8, which assumes

that the compression function is ideal, the indifferentiability

of all the finalists has been proved in an ideal model for

lower building blocks. We point out that assuming ideality

of a lower building block is weaker than assuming ideality

of the entire compression function and thus these results

are stronger. Indeed, assuming ideality of the compression

function seems to be inappropriate for all the finalists:

• The compression functions of JH and Keccak are

trivially non-random, as collisions and preimages can

be found in only one query to the underlying permuta-

tion [3], [18];

• Finding fixed-points for the compression function of

Grøstl is trivial [25];

• The compression function of BLAKE has been recently

shown to exhibit non-random behavior [1], [21];

• Non-randomness has been shown for reduced-round

versions of Threefish, the underlying block-cipher of

Skein [26].

The only two finalists that use a prefix-free padding rule,

and for which our proof of indifferentiability can apply, are

BLAKE and Skein. However, our proof of indifferentiability

of prefix-free Merkle-Damgård relies on the assumption

that the underlying compression function behaves like an

ideal primitive. Thus, it cannot be applied to BLAKE, as

this assumption has been invalidated. As for Skein, the

assumption that its compression function is ideal is seriously

weakened by the attacks on Threefish mentioned above.

Although Theorem 8 cannot be directly applied to any of

the SHA-3 finalists, it constitutes a non-trivial result about

the Merkle-Damgård construction and a good starting point

for formalizing more complex proofs. Indeed, indifferen-

tiability proofs based on weaker assumptions and general

enough to apply to SHA-3 finalists are no significantly dif-

ferent from the proof we have formalized and use essentially

the same techniques. We see no impediment to formalizing

them in EasyCrypt.

VII. CONCLUSION

Despite their widespread use, the formal verification of

hash functions has received little attention. To our best

knowledge, Toma and Borrione [35] were the first to use

theorem provers to formally verify properties of SHA-1, but

their focus is on functional properties, rather than security

properties. The first machine-checked proof of security for

a hash design appears in [7], where the authors use the

CertiCrypt framework to verify that the construction from

Brier et al. [19] yields a hash function indifferentiable

from a random oracle into ordinary elliptic curves. More

recently, Daubignard et al. [?] develop a method to permute

dependencies between oracles in a game, and apply their

method to prove indifferentiability of hash functions from

random oracles. Their method is not implemented, although

the underlying framework has been machine-checked [?].

The prevailing method for building hash functions is to

iterate a compression function on a pre-processed input

message. In this paper, we have considered the Merkle-

Damgård construction, which pioneered this design, and

proved that the resulting hash function preserves collision

resistance and is indifferentiable from a random oracle. Our

results demonstrate that state-of-the-art verification tools can

be used for proving the security of hash designs, and not only

for cryptanalysis [32]. We will further this line of research by

exploring the formalization of more general security proofs

that apply to a wider range of hash functions, including

finalists of the SHA-3 competition.

ACKNOWLEDGEMENTS

The authors want to thank Martı́n Abadi and the anony-

mous CSF reviewers for insightful feedback on the paper.

REFERENCES

[1] E. Andreeva, A. Luykx, and B. Mennink, “Provable security
of BLAKE with non-ideal compression function,” Cryptology
ePrint Archive, Report 2011/620, 2011.

[2] E. Andreeva, B. Mennink, and B. Preneel, “Security reduc-
tions of the second round SHA-3 candidates,” in 13th Inter-
national Conference on Information Security, ISC 2010, ser.
Lecture Notes in Computer Science. Heidelberg: Springer,
2011.

[3] E. Andreeva, B. Mennink, B. Preneel, and M. Škrobot,
“Security analysis and comparison of the SHA-3 finalists
BLAKE, Grøstl, JH, Keccak, and Skein,” in NIST 3rd SHA-3
Conference, 2012.

[4] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton, “Seven-
property-preserving iterated hashing: ROX,” in Advances in
Cryptology – ASIACRYPT 2007, ser. Lecture Notes in Com-
puter Science, no. 4833. Heidelberg: Springer, 2007, pp.
130–146.

[5] E. Andreeva, B. Mennink, and B. Preneel, “On the indif-
ferentiability of the Grøstl hash function,” Cryptology ePrint
Archive, Report 2010/298, 2010.



[6] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan,
“SHA-3 proposal BLAKE,” December 2010.

[7] G. Barthe, B. Grégoire, S. Heraud, F. Olmedo, and S. Zanella
Béguelin, “Verified indifferentiable hashing into elliptic
curves,” in 1st Conference on Principles of Security and
Trust – POST 2012, ser. Lecture Notes in Computer Science.
Heidelberg: Springer, 2012.

[8] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin,
“Computer-aided security proofs for the working cryptog-
rapher,” in Advances in Cryptology – CRYPTO 2011, ser.
Lecture Notes in Computer Science, vol. 6841. Heidelberg:
Springer, 2011, pp. 71–90.

[9] G. Barthe, B. Grégoire, Y. Lakhnech, and S. Zanella Béguelin,
“Beyond provable security. Verifiable IND-CCA security of
OAEP,” in Topics in Cryptology – CT-RSA 2011, ser. Lecture
Notes in Computer Science, vol. 6558. Heidelberg: Springer,
2011, pp. 180–196.

[10] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal cer-
tification of code-based cryptographic proofs,” in 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009. New York: ACM, 2009, pp. 90–
101.

[11] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Program-
ming language techniques for cryptographic proofs,” in 1st
International Conference on Interactive Theorem Proving,
ITP 2010, ser. Lecture Notes in Computer Science, vol. 6172.
Heidelberg: Springer, 2010, pp. 115–130.

[12] M. Bellare, T. Kohno, S. Lucks, N. Ferguson, B. Schneier,
D. Whiting, J. Callas, and J. Walker, “Provable security
support for the Skein hash family,” April 2009.

[13] M. Bellare and P. Rogaway, “Random oracles are practical:
a paradigm for designing efficient protocols,” in 1st ACM
Conference on Computer and Communications Security, CCS
1993. New York: ACM, 1993, pp. 62–73.

[14] G. Bertoni, J. Daemen, M. Peeters, Assche, and G. Van, “The
KECCAK reference,” January 2011.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
“On the indifferentiability of the sponge construction,” in
Advances in Cryptology – EUROCRYPT 2008, ser. Lecture
Notes in Computer Science, vol. 4965. Heidelberg: Springer,
2008, pp. 181–197.

[16] R. Bhattacharyya, A. Mandal, and M. Nandi, “Security anal-
ysis of the mode of JH hash function,” in 17th International
Workshop on Fast Software Encryption, FSE 2010, ser. Lec-
ture Notes in Computer Science, vol. 6147. Springer, 2010,
pp. 168–191.

[17] E. Biham and O. Dunkelman, “A framework for iterative
hash functions – HAIFA,” Cryptology ePrint Archive, Report
2007/278, 2007.

[18] J. Black, M. Cochran, and T. Shrimpton, “On the impossi-
bility of highly-efficient blockcipher-based hash functions,”
Journal of Cryptology, vol. 22, pp. 311–329, 2009.

[19] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and
M. Tibouchi, “Efficient indifferentiable hashing into ordinary
elliptic curves,” in Advances in Cryptology – CRYPTO 2010,
ser. Lecture Notes in Computer Science, vol. 6223. Springer,
2010, pp. 237–254.

[20] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” J. ACM, vol. 51, no. 4, pp. 557–594,
2004.

[21] D. Chang, M. Nandi, and M. Yung, “Indifferentiability of the
hash algorithm BLAKE,” Cryptology ePrint Archive, Report
2011/623, 2011.

[22] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-
Damgård revisited: How to construct a hash function,” in
Advances in Cryptology – CRYPTO 2005, ser. Lecture Notes
in Computer Science, vol. 3621. Heidelberg: Springer, 2005,
pp. 430–448.

[23] I. Damgård, “A design principle for hash functions,” in
Advances in Cryptology – CRYPTO 1989, ser. Lecture Notes
in Computer Science, vol. 435. Heidelberg: Springer, 1990,
pp. 416–427.

[24] N. Ferguson, S. Lucks, B. Schneier, D. Whithing, M. Bellare,
T. Kohno, J. Callas, and J. Walker, “The Skein hash function
family,” November 2008.

[25] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schläffer, and S. S. Thomsen, “Grøstl
– a SHA-3 candidate,” March 2011.

[26] D. Khovratovich, I. Nikolić, and C. Rechberger, “Rotational
rebound attacks on reduced Skein,” in Advances in Cryptology
– ASIACRYPT 2010, ser. Lecture Notes in Computer Science,
vol. 6477. Heidelberg: Springer, 2010, pp. 1–19.

[27] S. Lucks, “A failure-friendly design principle for hash func-
tions,” in Advances in Cryptology – ASIACRYPT 2005, ser.
Lecture Notes in Computer Science, vol. 3788. Heidelberg:
Springer, 2005, pp. 474–494.

[28] S. Manuel, “Classification and generation of disturbance
vectors for collision attacks against SHA-1,” Designs, Codes
and Cryptography, vol. 59, pp. 247–263, 2011.

[29] F. Massacci and L. Marraro, “Logical cryptanalysis as a SAT
problem,” Journal of Automated Reasoning, vol. 24, no. 1,
pp. 165–203, 2000.

[30] U. Maurer, R. Renner, and C. Holenstein, “Indifferentiability,
impossibility results on reductions, and applications to the
random oracle methodology,” in 1st Theory of Cryptography
Conference, TCC 2004, ser. Lecture Notes in Computer
Science, vol. 2951. Heidelberg: Springer, 2004, pp. 21–39.

[31] R. Merkle, “One way hash functions and DES,” in Advances
in Cryptology – CRYPTO 1989, ser. Lecture Notes in Com-
puter Science, vol. 435. Heidelberg: Springer, 1990, pp.
428–446.

[32] I. Mironov and L. Zhang, “Applications of SAT solvers to
cryptanalysis of hash functions,” in Theory and Applications
of Satisfiability Testing - SAT 2006, ser. Lecture Notes in
Computer Science, vol. 4121. Heidelberg: Springer, 2006,
pp. 102–115.



[33] T. Ristenpart, H. Shacham, and T. Shrimpton, “Careful with
composition: Limitations of the indifferentiability frame-
work,” in Advances in Cryptology – EUROCRYPT 2011, ser.
Lecture Notes in Computer Science, vol. 6632. Heidelberg:
Springer, 2011, pp. 487–506.

[34] P. Rogaway and T. Shrimpton, “Cryptographic hash-function
basics: Definitions, implications, and separations for preimage
resistance, second-preimage resistance, and collision resis-
tance,” in 11th International Workshop on Fast Software En-
cryption, FSE 2004, ser. Lecture Notes in Computer Science,
no. 3017. Heidelberg: Springer, 2004, pp. 371–388.

[35] D. Toma and D. Borrione, “Formal verification of a SHA-1
circuit core using ACL2,” in 18th international Conference on
Theorem Proving in Higher Order Logics, TPHOLs 2005, ser.

Lecture Notes in Computer Science, vol. 3603. Heidelberg:
Springer, 2005, pp. 326–341.

[36] X. Wang, Y. Yin, and H. Yu, “Finding collisions in the full
SHA-1,” in Advances in Cryptology — CRYPTO 2005, ser.
Lecture Notes in Computer Science, vol. 3621. Heidelberg:
Springer, 2005, pp. 17–36.

[37] X. Wang and H. Yu, “How to break MD5 and other hash func-
tions,” in Advances in Cryptology — EUROCRYPT 2005, ser.
Lecture Notes in Computer Science, vol. 3494. Heidelberg:
Springer, 2005, pp. 561–561.

[38] H. Wu, “The hash function JH,” January 2011.


