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Abstract—We proposed compressive data gathering (CDG)
that leverages compressive sampling (CS) principle to efficiently
reduce communication cost and prolong network lifetime for
large scale monitoring sensor networks. The network capacity
has been proven to increase proportionally to the sparsity of
sensor readings. In this paper, we further address two key
problems in the CDG framework. First, we investigate how to
generate RIP (restricted isometry property) preserving measure-
ments of sensor readings by taking multi-hop communication
cost into account. Excitingly, we discover that a simple form of
measurement matrix [𝐼 𝑅] has good RIP, and the data gathering
scheme that realizes this measurement matrix can further reduce
the communication cost of CDG for both chain-type and tree-
type topology. Second, although the sparsity of sensor readings is
pervasive, it might be rather complicated to fully exploit it. Owing
to the inherent flexibility of CS principle, the proposed CDG
framework is able to utilize various sparsity patterns despite
of a simple and unified data gathering process. In particular,
we present approaches for adapting CS decoder to utilize cross-
domain sparsity (e.g. temporal-frequency and spatial-frequency).
We carry out simulation experiments over both synthesized and
real sensor data. The results confirm that CDG can preserve
sensor data fidelity at a reduced communication cost.

Index Terms—Compressive sensing, restricted isometry prop-
erty (RIP), wireless sensor networks.

I. INTRODUCTION

CLIMATE, habitat, and infrastructure monitoring [13][36]
are among the most important applications of wireless

sensor networks. In these monitoring networks, sensor nodes
follow the routine to periodically collect readings and transmit
them to the data sink. The successful deployment of such net-
works is facing two main challenges. First, monitoring sensor
networks are typically composed of hundreds to thousands
of sensors, generating tremendous amount of sensor readings
to be delivered to data sink. Second, data transmissions
are generally accomplished through multi-hop routing from
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(a) Basic CDG

(b) Baseline data gathering

Fig. 1. Comparing CDG and baseline data gathering in a chain-type topology.

individual sensor nodes to the data sink. Nodes close to the
sink will transmit more data and consume more energy than
those at the peripheral of the network. The unbalanced energy
consumption has a major impact on network lifetime, as it is
most commonly defined as the time to the first node failure.

We have proposed CDG [30] for efficient data gathering
in large scale monitoring sensor networks. By applying com-
pressive sampling theory [20][4][12] to sensor data gathering,
CDG achieves substantial communication cost reduction with-
out introducing excessive computation or control overheads.
Moreover, CDG elegantly disperses both communication and
computation costs to all sensor nodes, which results in a
natural load balancing. CDG has thus been shown to efficiently
extend the lifetime of monitoring sensor networks, and to
increase the network capacity.

The data gathering process of CDG is depicted in Fig.
1(a) through a simple chain-type topology. Comparing with
the baseline data gathering scheme (Fig. 1(b)), CDG delivers
weighted sums (or measurements) of sensor readings, instead
of individual readings, to the data sink. To transmit the 𝑖𝑡ℎ

measurement to the sink, 𝑠1 multiplies its reading 𝑑1 with a
random coefficient 𝜙𝑖1 and sends the product to 𝑠2. Then 𝑠2
multiplies its reading 𝑑2 with a random coefficient 𝜙𝑖2 and
sends the sum 𝜙𝑖1𝑑1 + 𝜙𝑖2𝑑2 to 𝑠3. Similarly, each node
𝑠𝑗 contributes to the relayed message by adding its own
product. Finally, the sink receives

∑𝑁
𝑗=1 𝜙𝑖𝑗𝑑𝑗 , a weighted

sum of all the readings. This process is repeated using
𝑀 sets of different weights so that the sink will receive
𝑀 measurements. According to the compressive sampling
theory, when the sensor readings are compressible, the sink
will be able to recover 𝑁 sensor readings from 𝑀 random
measurements even when 𝑀 < 𝑁 . Let us consider the global
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and bottleneck communication costs for one round of data
gathering and quantify them with the num-messages metric
[38]. The global communication cost is defined as the total
number of message transmissions in the network, and the
bottleneck communication cost is defined as the maximum
number of message transmissions of any single node. It is
clear from Fig. 1 that when 𝑀 << 𝑁 , CDG can significantly
reduce both global and bottleneck communication cost.

The success of CDG framework depends on how we tackle
two critical problems, namely how to efficiently collect mea-
surements and how to recover data from the least number of
measurements. The first problem arises from the following
observation. In the basic CDG scheme, nodes 𝑠1, 𝑠2...𝑠𝑀−1

transmit redundant messages, and their energy consumption is
even higher than in baseline data gathering. As a result, when
the data are not highly compressible, and the required number
of measurements (i.e. 𝑀 ) is large, a great deal of redundant
messages will waste sensors’ precious energy resources and
unnecessarily occupy the shared wireless medium.

Second, successful decoding of 𝑁 sensor readings from 𝑀
(𝑀 < 𝑁 ) random measurements is based on the assumption
that sensor readings are 𝐾-sparse in a certain domain, and
the size of 𝑀 is proportional to the sparsity index 𝐾 . An
𝑁 -dimensional signal d is called a 𝐾-sparse signal if there
exists a known domain Ψ in which d can be represented by
d = Ψx and x contains only 𝐾 non-zero entries. Although
sparsity is pervasive in sensor readings, it is sometimes hard
to find the most proper domain Ψ in which sensor readings
have the sparsest representation. The difficulties are three-fold.
First, although a large portion of monitoring sensor networks
capture natural signals which should be sparse in frequency
domain, the sparsity index varies greatly when different repre-
sentation bases are used. Second, sensor networks may collect
compound signals, part of which is sparse in one domain and
the rest of which is sparse in another domain. Last but not
least, it is often assumed that sensor readings have strong
correlations in adjacent neighborhood, or adjacent correlation
as we name it. However, this assumption is not always true in
reality.

This paper extends the original CDG framework and
successfully addresses the two challenges outlined above.
First, we design effective measurement generation matrix to
avoid redundant message transmission. The matrix should
also comply with the restricted isometry property (RIP) in
order for successful CS recovery. Excitingly, we discover a
simple form of measurement generation matrix [𝐼 𝑅] that
satisfies both requirements. Second, although CDG generates
random measurements regardless of data correlation patterns,
we demonstrate how CDG is able to exploit data sparsity
during the decoding process. In particular, we present CS
decoding approaches that exploit cross-domain data sparsity,
including spatial-frequency and temporal-frequency sparsity.

The rest of this paper is organized as follows: Section II
reviews related work on sensor data gathering. Section III
briefs the background on compressive sampling theory and its
applications in wireless sensor networks. Section IV presents
the design of efficient measurement generation matrix and the
corresponding transmission scheme. Section V demonstrates
how CDG is able to exploit data sparsity across domains. Sec-

tion VI presents the experimental results on both synthesized
data and real sensor data. Section VII concludes this paper
with some discussions.

II. RELATED WORK

In sensor data gathering, in-network data suppression and
compression are the primary means to reduce communication
cost and prolong network lifetime. The fundamental assump-
tion is that sensor readings have spatial or spatial-temporal
correlations.

A. Spatial Correlation

Since sensors are usually densely deployed in the region
of interest, it is commonly assumed that sensor readings have
spatial correlations or adjacent correlations. We may classify
existing in-network data compression techniques into two
categories, according to where the correlation information is
utilized.

1) Conventional Compression: Conventional compression
techniques utilize the correlation at the encoding side and
require explicit data communication among sensors. The sim-
plest form of conventional data compression is quantization
and sampling. The clustered aggregation (CAG) technique [40]
forms clusters based on sensing values. By grouping sensors
with similar readings, CAG only transmits one reading per
group to achieve a predefined error threshold. Gupta et al.
[24] propose to sample only a subset of sensor nodes in each
round of data gathering, and the sink is believed to be able to
reconstruct data from partial readings.

More complex compression techniques involve all the sen-
sor nodes at the encoder side and adopt entropy coding or
transform coding to reduce data redundancy. Cristescu et al.
[18] propose a joint entropy coding approach, where nodes
use relayed data as side information to encode their readings.
It is obvious that jointly encoded messages cost fewer bits
than independently encoded messages. However, this approach
utilizes correlations only unidirectionally. If data are allowed
to be communicated back and forth during encoding, nodes
may cooperatively perform transform to better utilize the
correlation. Ciancio et al. [16] and Aćimović et al. [2] propose
to compress sensor data through distributed wavelet transform.
After the transform, nodes transmit significant coefficients to
the sink and discard the small ones. Dang et al. [19] propose
to exchange data within a cluster before transform coding so
that correlations can be better utilized even if they are not
observed between neighboring nodes. However, this work still
has a basic assumption that sensors with correlated readings
can communicate with each other within one hop.

The limitations of conventional compression are two-fold.
First, most processing is performed at energy constrained
sensor nodes. The computation complexity of entropy coding
is pretty high, and transform based compression requires large
amount of data exchange. Second, the correlation pattern
needs to be known a priori by all sensor nodes and to be
jointly considered with data routing. If the correlation pattern
changes or there are abnormal readings, the compression
efficiency, transmission efficiency and data fidelity will be
largely affected.
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2) Distributed Source Coding: Distributed source coding
techniques [14][17][26] intend to reduce complexity at sensor
nodes and utilize correlation at the sink. The theoretical
foundation is the Slepian-Wolf coding theory [34], which
claims that compression of correlated readings, when sepa-
rately encoded, can achieve same efficiency as if they are
jointly encoded, provided that messages are jointly decoded.
This important conclusion allows sensor nodes to encode their
correlated readings independently without data exchanges, and
decouples data compression from routing. After encoding,
each node simply sends the compressed message along the
shortest path to the sink.

A prerequisite of Slepian-Wolf coding is that the global
correlation structure needs to be known in order to allocate
appropriate number of bits to be used by each node. This is
hard to fulfill in a large-scale wireless sensor network. Yuen et
al. [41] then proposes a localized Slepian-Wolf coding scheme
based on the assumption of adjacent correlation. The scheme
determines message size for each node based on its data
correlation with one-hop neighbors. However, both global and
localized distributed source coding schemes deal with static
correlation patterns and are not effective in dynamic settings.

B. Spatial-Temporal Correlation

In continuous monitoring applications, sensors report their
readings at short intervals. Therefore, temporal correlations
can be utilized to reduce communication cost in data gathering.
Some techniques suppress data based on simple comparison,
and some others are aided by prediction models. Silberstein et
al. [33] form the spatial-temporal suppression problem as one
of monitoring node and edge constraints. A monitored node
triggers a report if its value changes. A monitored edge triggers
a report if the difference between its nodes’ values changes.
Actually, these two constraints correspond to temporal and
spatial correlations respectively.

Goel and Imielinski [23] make an analogy between evolving
sensor readings and MPEG videos. They create predictions for
sensor nodes based on their past and surrounding readings.
These predictions are represented as a prediction-model and
sent to the sensor. The sensor suppresses its transmission
unless its reading differs from the prediction by more than a
pre-specified threshold. Chu et al. [15] adopt a joint approach.
They build prediction models only based on temporal correla-
tions. A sensor node triggers transmission if it has anomalous
reading which is not correctly predicted. Spatial correlation is
utilized to further suppress data when nodes in a neighborhood
have similar anomalous readings.

Techniques in this category do not deal with complex
correlation models. Similar to conventional compression tech-
niques, they all assume adjacent correlation both temporally
and spatially. If strongly correlated readings are not collected
in consequent time slots and in immediate neighborhood, most
of them cannot achieve effective data reduction.

III. COMPRESSIVE SAMPLING BACKGROUND

A. Compressive sampling theory

Compressive sampling (CS) [20][7] is an emerging research
field in digital data acquisition and processing. In the conven-

tional paradigm, natural signals are first acquired at Nyquist-
Shannon sampling rate, and then compressed for efficient
storage or transmission. CS shifts this paradigm by combining
the two processes into a single compressive sampling process,
greatly reducing the complexities in data acquisition. The key
concept in CS theory is sparse signals, and the core subject
matters of CS research are efficient representation and loyal
recovery of sparse signals.

Definition 1 (Sparse signal): Let d = (𝑑1, 𝑑2, ...𝑑𝑁 )𝑇 be
an 𝑁 -dimensional signal. We say d is a 𝐾-sparse signal if
there are only 𝐾 (𝐾 ≪ 𝑁 ) non-zero entries in 𝑑𝑖s’. Further,
we say d is a 𝐾-sparse signal in Ψ domain, if there exists a set
of orthonormal basis, denote as Ψ = [𝜓1𝜓2...𝜓𝑛], 𝜓𝑖 ∈ ℝ

𝑛,
in which d can be represented by a 𝐾-sparse vector x:

d =

𝑛∑
𝑖=1

𝑥𝑖𝜓𝑖, or d = Ψx (1)

Compressive sampling theory states that an 𝑁 -dimensional
𝐾-sparse signal can be efficiently represented by 𝑀 (𝑀 < 𝑁 )
linearly projected measurements. In particular, let Φ be an
𝑀 ×𝑁 (𝑀 < 𝑁 ) matrix, then the measurements of d can be
obtained by:

y = Φd (2)

where y = (𝑦1, 𝑦2, ...𝑦𝑀 )𝑇 , and 𝑦𝑖s’ are called measurements.
Matrix Φ is referred to as projection matrix or measurement
matrix in CS theory.

A question to be answered is whether it is possible and
how to recover the 𝑁 -dimensional signal d from the 𝑀 -
dimensional measurements y. Candès et al. [7] have shown
that when 𝐾 ≤ 1

2𝑀 , exact recovery of d can be achieved
through solving a combinatorial optimization problem:

(𝑃0) min
x∈ℝ𝑁

∥x∥𝑙0 𝑠.𝑡. y = Φd, d = Ψx (3)

This is an NP-complete problem, and numerically unsta-
ble to solve. Fortunately, 𝑃0 is equivalent to the following
𝑙1-minimization problem 𝑃1 under certain conditions. It is
known that 𝑙1-minimization problem is more tractable, and can
be solved with linear programming (LP) techniques [9][20].

(𝑃1) min
x∈ℝ𝑁

∥x∥𝑙1 𝑠.𝑡. y = Φd, d = Ψx (4)

The equivalence between problems 𝑃0 and 𝑃1, a.k.a. 𝑙1/𝑙0
equivalence [22], relies on the incoherence property [12]
between Φ and Ψ, or the restricted isometry property (RIP)
[9] [8] of matrix 𝐴 = ΦΨ.

Definition 2 (Restricted isometry property): Let 𝐴 be an
𝑀 × 𝑁 matrix and let 𝐾 < 𝑁 be an integer. Define the 𝐾-
restricted isometry constant 𝛿𝐾 for matrix 𝐴 as the smallest
constant that satisfies:

(1− 𝛿𝐾)∥𝑓∥2𝑙2 ≤ ∥𝐴𝑓∥2𝑙2 ≤ (1 + 𝛿𝐾)∥𝑓∥2𝑙2 (5)

for any sparse vector 𝑓 with support size no larger than 𝐾 .
Matrix 𝐴 is said to satisfy the 𝐾-restricted isometry property
with 𝛿𝐾 .

It is obvious that an orthonormal matrix has RIP constant
𝛿𝐾 = 0 for all 𝐾 ≤ 𝑁 , since ∥𝐴𝑓∥2𝑙2 = ∥𝑓∥2𝑙2 when 𝐴 is
orthonormal. However, when 𝑀 < 𝑁 , 𝛿𝐾 will be greater than
zero. A small 𝛿𝐾 indicates that matrix 𝐴 is almost orthogonal,
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and suggests a good chance that the original signal can be
exactly recovered. E. J. Candès [10] [8] has established several
theorems about the relationship between RIP and CS recovery.

Theorem 1: [10] Assume that the restricted isometry con-
stants of matrix 𝐴 = ΦΨ satisfy

𝛿2𝐾 <
√
2− 1 (6)

then solving problem 𝑃1 (4) recovers any sparse signal d with
support size no larger than 𝐾 .

Theorem 2: [10] Consider the situation where measure-
ments are contaminated with noise, and 𝜖 be the noise level.
Assume that the restricted isometry constants of matrix 𝐴 =
ΦΨ satisfy

𝛿2𝐾 <
√
2− 1 (7)

then the solution to the following relaxed 𝑙1-minimization
problem recovers the original signal with an error at most
proportional to the noise level:

min
x∈ℝ𝑁

∥x∥𝑙1 𝑠.𝑡. ∥y− Φd∥𝑙2 < 𝜖, d = Ψx (8)

It is clear that the RIP of matrix 𝐴 is crucial to CS
recovery. When Ψ is an orthonormal matrix, as it generally
is, the restricted isometry constants of 𝐴 and Φ are the same.
Therefore, CS requires the measurement matrix Φ to have
good RIP. It has been shown that a random matrix whose
entries are i.i.d. Gaussian variables complying to 𝒩 (1, 1/𝑀)
has good RIP [11]. This is indeed a convenient choice in
distributed systems, such as monitoring sensor networks.

B. CS applications in wireless sensor networks

The emergence of CS theory has opened up a new research
avenue to distributed data compression. Compared with the
conventional paradigm, CS based data compression shifts most
computations from the encoder to the decoder, making it a
perfect fit for in-network data processing in wireless sensor
networks (WSNs). Recently, CS based methods have been
developed to address two classical problems in WSNs, namely
data persistence and data gathering.

Data persistence problem studies how to preserve cached
data in a wireless sensor network consisting of unreliable
sensors. Rabbat et al. [32] leverage CS principle and use
random gossiping to achieve decentralized data compression
and distribution. Wang et al. [39] exploit the use of sparse
measurement matrices in generating CS measurements and
show that they can also achieve reliable and refinable access
to data approximations.

Data gathering problem studies immediate data transmission
from sensor nodes to a distant base station after each round of
data collection. In a single-hop network, compressive wireless
sensing (CWS) [3] is shown to be able to reduce the latency
of data gathering by delivering linear projections of sensor
readings through synchronized amplitude-modulated analog
transmissions. Baron et al. [6] study joint sparsity models
and joint data recovery algorithms of CS without considering
multi-hop communication and in-network data processing. In
an overview paper, Haupt et al. [25] speculate the potential
of using CS principle for data aggregation in a multi-hop
sensor network. Recently, Lee et al. [29][28] and Quer et

al. [31] investigate CS based data gathering in a multi-hop
wireless sensor network and attempt to minimize the energy
consumption by jointly designing routing and sparse random
projection. However, the optimization is highly dependent on
the data correlation pattern and is application specific. Only a
centralized greedy algorithm is presented by Lee et al. [29].

The proposed CDG framework considers dense CS projec-
tions. Although using dense CS measurement matrices may
not achieve as much energy reduction as using its sparse
counterparts, it allows the routing selection to be decoupled
from CS projection. As a result, CDG framework can achieve
CS based data gathering without centralized control or com-
plicated routing design. With the introduction of CS theory
in Section III-A, the two core problems of CDG that we
shall address become very clear. First, at the encoder side,
or the sensor nodes, how to design the measurement matrix
Φ by taking both communication cost and matrix RIP into
consideration. Second, at the decoder side, or the data sink,
how to choose or design the representation basis Ψ so that
sensor readings could be recovered from the least number of
measurements.

IV. EFFICIENT MEASUREMENT GENERATION FOR CDG

This section studies efficient measurement generation in the
CDG framework. We will first define the target communication
cost for data gathering in a chain-type topology, and then
introduce two candidate measurement generation schemes
which both achieve this target cost. However, by analyzing
their corresponding measurement matrices, we find that one
matrix has more favorable RIP than the other. Excitingly, this
RIP-preserving matrix has a simply form, and can be easily
extended to more complex topologies.

A. CDG in chain-type topology

Figure 1 has illustrated the baseline transmission scheme
and the basic CDG scheme in a chain-type topology. The
schematic drawing in Fig. 2 compares the communication
costs of the two schemes. The 𝑥-axis is sensors’ distances to
the sink counted by number of hops, and the 𝑦-axis indicates
the number of messages sent by each node. It is obvious that
the basic CDG scheme always has a smaller bottleneck load
than the baseline transmission because 𝑀 is smaller than
𝑁 . However, when the required number of measurements
increases (e.g. from 𝑀 to 𝑀 ′), the global communication
cost of the basic CDG scheme could be even higher than
that of the baseline transmission. This drawback motivates us
to design more efficient measurement generation schemes. In
our design, the target communication cost of each sensor node
is the smaller number of message transmissions in the basic
CDG scheme and in the baseline scheme. It is indicated by
solid black curve in Fig. 2.

In the basic CDG scheme, the measurement matrix Φ is
a full random matrix, with its entries being i.i.d. Gaussian
random numbers drawn according to 𝒩 (0, 1/𝑀). It has been
shown that a full random matrix, denoted by 𝑅 in the rest of
this paper, has sufficiently good RIP for CS recovery [5]. The
proof of matrix 𝑅’s RIP is based on a well-known property
about the concentration of its extreme singular values. Let
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Fig. 2. Sensor transmission loads in a chain-type topology.

𝜎𝑚𝑎𝑥(𝑅) and 𝜎𝑚𝑖𝑛(𝑅) be the largest and smallest singular
values of an 𝑀 ×𝑁 (𝑀 < 𝑁 ) matrix 𝑅, it has been proved
by Szarek [35] that:

𝑃 (𝜎𝑚𝑎𝑥(𝑅) > 1 +
√

𝑀/𝑁 + 𝜏) < 𝑒−
𝑁𝜏2

2 (9)

𝑃 (𝜎𝑚𝑖𝑛(𝑅) < 1−
√

𝑀/𝑁 − 𝜏) < 𝑒−
𝑁𝜏2

2 (10)

Since the following inequality holds for any matrix 𝐴 and
vector 𝑓 of matching dimension, the RIP of a full random
matrix 𝑅 can be easily deduced.

(𝜎𝑚𝑖𝑛(𝐴))2∥𝑓∥2𝑙2 ≤ ∥𝐴𝑓∥2𝑙2 ≤ (𝜎𝑚𝑎𝑥(𝐴))2∥𝑓∥2𝑙2 (11)

However, in order to achieve the target communication cost,
a full random measurement matrix cannot be used. For the
sake of simple notation, we split Φ into two parts, denoted
as Φ = [Φ1 Φ2], where Φ1 is an 𝑀 × 𝑀 sub-matrix, and
Φ2 is an 𝑀 × (𝑁 − 𝑀) sub-matrix. The entries in Φ2 can
still be drawn according to 𝒩 (0, 1/𝑀), i.e. Φ2 = 𝑅, but the
entries in Φ1 need to be re-designed. Next, we provide two
candidates of Φ1 matrix, analyze their RIP, and decide which
one is better for sensor data gathering.

1) TR-CDG: A natural choice of Φ1 is an upper triangular
matrix whose entries are i.i.d. Gaussian random numbers. The
measurement matrix Φ = [𝑇 𝑅] can be written as:

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜙11 𝜙12 ⋅ ⋅ ⋅ 𝜙1𝑀 𝜙1𝑀+1 ⋅ ⋅ ⋅ 𝜙1𝑁

𝜙22 ⋅ ⋅ ⋅ 𝜙2𝑀

𝜙3𝑀

...
...

...

0
. . .

...
𝜙𝑀 𝑀 𝜙𝑀 𝑀+1 ⋅ ⋅ ⋅ 𝜙𝑀 𝑁

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)
The transmission process to generate [𝑇 𝑅] matrix is

straightforward. Node 𝑠1 transmits 𝜙11𝑑1 to 𝑠2, and 𝑠2 adds
its own product to generate measurement 𝑦21 = 𝜙11𝑑1+𝜙12𝑑2.
Node 𝑠2 also produces measurement 𝑦22 = 𝜙22𝑑2, and trans-
mits both measurements to 𝑠3. Obviously, TR-CDG achieves
the target transmission load for all sensor nodes.

When analyzing the RIP of [𝑇 𝑅], let us also split an 𝑁 -
dimensional signal 𝑓 into two vectors 𝑓1 and 𝑓2 of dimension

𝑀 and 𝑁−𝑀 respectively. Then ∥Φ𝑓∥2𝑙2 can be written into:

∥Φ𝑓∥2𝑙2 =

∥∥∥∥[𝑇 𝑅]

[
𝑓1
𝑓2

]∥∥∥∥
2

𝑙2

= ∥𝑇𝑓1 +𝑅𝑓2∥2𝑙2
= ∥𝑇𝑓1∥2𝑙2 + ∥𝑅𝑓2∥2𝑙2 + 2⟨𝑇𝑓1, 𝑅𝑓2⟩ (13)

According to the properties of full random matrices, the
second term on the right hand side of (13) is bounded by
(1− 𝛿𝑅)∥𝑓2∥2𝑙2 and (1 + 𝛿𝑅)∥𝑓2∥2𝑙2 with high probability [5].
Unfortunately, we are not able to find a reasonable restricted
isometry constant for a triangular random matrix 𝑇 , and as a
result, leaving the first term unbounded.

Lemma 3: Denote 𝑇𝑀 as an 𝑀 × 𝑀 upper triangular
matrix with non-zero entries drawn from 𝒩 (0, 1/𝑀). Denote
𝜎𝑚𝑎𝑥(𝑇𝑀 ) and 𝜎𝑚𝑖𝑛(𝑇𝑀 ) as the largest and smallest singular
values of 𝑇𝑀 . Then, the 2-norm condition number of 𝑇𝑀 ,
denoted by 𝜅𝑀 (𝑇𝑀 ) = 𝜎𝑚𝑎𝑥(𝑇𝑀 )

𝜎𝑚𝑖𝑛(𝑇𝑀 ) , goes to 2𝑀 almost surely
as 𝑀 → ∞.

Proof: Matrix 𝑇𝑀 has the same set of singular values
as its transpose 𝑇 ′

𝑀 , which is a lower triangular matrix. In
addition, matrix 𝑇 ′

𝑀 has the same condition number as 𝑀 ⋅𝑇 ′
𝑀 ,

whose non-zero entries are drawn from 𝒩 (0, 1). Viswanath
and Trefethen [37] have proved that for a lower triangular
matrix whose non-zero entries drawn from 𝒩 (0, 1), its 2-norm
condition number goes to 2𝑀 almost surely as 𝑀 → ∞.

This exponential growth of 𝜅𝑀 with 𝑀 is in striking
contrast to the linear growth of the condition numbers of a full
random Gaussian matrix with 𝑀 . Consequently, a triangular
random matrix does not satisfy RIP.

Theorem 4: Let 𝑇 be an 𝑀 ×𝑀 (𝑀 > 2) upper triangular
matrix with non-zero entries drawn according to 𝒩 (0, 1/𝑀),
and let 𝑓 be an 𝑀 -dimensional sparse vector with support size
no larger than 𝐾 . Matrix 𝑇 does not satisfy the 𝐾-restricted
isometry property with 𝛿𝐾 ∈ [0, 1− 𝜖] for any 𝜖 > 0.

Proof: This theorem can be proved by contradiction.
Suppose there exists a 𝛿𝐾 ∈ [0, 1 − 𝜖] with which matrix 𝑇
satisfies the 𝐾-restricted isometry property. Then, according
to the RIP definition, we have:

(1− 𝛿𝐾)∥𝑓∥2𝑙2 ≤ ∥𝑇𝑓∥2𝑙2 ≤ (1 + 𝛿𝐾)∥𝑓∥2𝑙2 (14)

It is equivalent to:

(1− 𝛿𝐾)∥𝑓∥2𝑙2 ≤ (𝜎min(𝑇 ))2∥𝑓∥2𝑙2 ≤ (𝜎max(𝑇 ))2∥𝑓∥2𝑙2
≤ (1 + 𝛿𝐾)∥𝑓∥2𝑙2 (15)

This suggests that:

𝜅𝑀 =
𝜎max(𝑇 )

𝜎min(𝑇 )
≤

√
1 + 𝛿𝐾
1− 𝛿𝐾

≤
√

2− 𝜖

𝜖
(16)

which contradicts with Lemma 3 when 𝑀 is sufficiently large.

The unfavorable RIP of matrix 𝑇 casts a shadow over
the RIP of the [𝑇 𝑅] matrix. Later, we will see from the
experimental results that such a matrix has poor CS recovery
performance indeed.
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2) IR-CDG: The second choice for Φ1 is the identity
matrix. Let us denote Φ = [𝐼 𝑅], and name the transmission
scheme as IR-CDG. The Φ matrix can be written as:

Φ =

⎛
⎜⎜⎜⎝

1 0 ⋅ ⋅ ⋅ 0 𝜙1𝑀+1 ⋅ ⋅ ⋅ 𝜙1𝑁

0 1 ⋅ ⋅ ⋅ 0 𝜙2𝑀+1 ⋅ ⋅ ⋅ 𝜙2𝑁

. . .
...

...
...

0 0 ⋅ ⋅ ⋅ 1 𝜙𝑀 𝑀+1 ⋅ ⋅ ⋅ 𝜙𝑀 𝑁

⎞
⎟⎟⎟⎠ (17)

By using [𝐼 𝑅] as the measurement matrix, the first 𝑀
sensor nodes simply transmit their original sensor readings to
node 𝑠𝑀+1. Upon receiving the reading from sensor 𝑠𝑖, 𝑠𝑀+1

computes the 𝑖𝑡ℎ product and transmits 𝑑𝑖 + 𝜙𝑖𝑀+1𝑑𝑀+1 to
the next node. In IR-CDG, the first 𝑀 nodes do not have
any computation load, and the rest of nodes have the same
computation and communication load as in the basic CDG
scheme.

Intuitively, matrix [𝐼 𝑅] does not carry as much information
as matrix [𝑇 𝑅]. However, matrix [𝐼 𝑅] does have a good
RIP and is a better choice than [𝑇 𝑅] for CS projection.
The experiments in Section VI-A will show that using matrix
[𝐼 𝑅] as the measurement matrix can achieve similar CS
reconstruction performance as using a full random matrix.

Theorem 5: Let 𝑅 be an 𝑀 × (𝑁 − 𝑀) matrix with
elements drawn according to 𝒩 (0, 1/𝑀) and let 𝐼 be an
𝑀 ×𝑀 identity matrix. If

𝑀 ≥ 𝐶1𝐾 log

(
𝑁

𝐾

)
(18)

then [𝐼 𝑅] satisfies the RIP of order 𝐾 with probability
exceeding 1 − 3𝑒−𝐶2𝑀 , where 𝐶1 and 𝐶2 are constants that
depend only on the desired RIP constant 𝛿.

The proof of this theorem is included in Appendix. In order
to conceptually understand this theorem, recall that RIP is a
metric that describes how close to orthogonal a matrix is. It is
obvious that the columns in the identity matrix 𝐼 is orthogonal
to each other. Adding these orthogonal columns does not affect
the RIP of full random matrix.

B. Extension to tree-type topology

In many wireless sensor networks, sensors spread out in a
two-dimensional area, and the shortest paths from sensors to
the data sink present a tree structure. In our previous work
[30], we have discussed how to apply the basic CDG scheme
to homogeneous networks with tree-type routing structure. In
particular, CDG is performed based on subtrees, each of which
is led by a direct neighbor of the sink. Figure 3 shows a subtree
led by node 𝑠1. The sink solves the set of linear equations
from each subtree separately. Assume the 𝑖𝑡ℎ subtree contains
𝑁𝑖 sensor nodes, and the readings can be recovered from 𝑀𝑖

measurements. Then in the basic CDG scheme, every node in
this subtree transmits 𝑀𝑖 messages.

Similar to the chain-type topology, matrix [𝐼 𝑅] can be used
for measurement generation in subtrees. In the 𝑖𝑡ℎ subtree,
at most 𝑀𝑖 nodes can send one original reading instead of
𝑀𝑖 weighted sums. In the example given in Fig. 3, assume
𝑀𝑖 = 4, then nodes 𝑠2, 𝑠6, 𝑠7 and 𝑠8 can transmit their
original readings. The measurements received by the sink can

Sink

s1

s8s7s6

s5s4

s3s2

Fig. 3. A subtree led by 𝑠1 for compressive data gathering.

be represented by:

⎛
⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

𝜙11 1 𝜙13 𝜙14 𝜙15 0 0 0
𝜙21 0 𝜙23 𝜙24 𝜙25 1 0 0
𝜙31 0 𝜙33 𝜙34 𝜙35 0 1 0
𝜙41 0 𝜙43 𝜙44 𝜙45 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑑1
𝑑2
...
...
𝑑8

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)
Different from chain-type topology, the nodes which send

original readings do not have to be the first 𝑀𝑖 nodes in vector
d. Since shuffling the columns of the measurement matrix
does not change its RIP, we can freely choose these nodes,
and assign them with a different sequence number between
1 to 𝑀𝑖. For the sake of communication cost reduction, it
is preferred that these nodes are leaf nodes or close to the
peripheral of the routing tree. Ideally, IR-CDG can reduce up
to 𝑀𝑖(𝑀𝑖−1) transmissions in the 𝑖𝑡ℎ subtree when compared
to the basic CDG scheme.

V. EXPLOITING PERVASIVE SPARSITY

This section studies how to exploit various sparsity of
sensor readings in the CDG framework. Compressive sampling
performs the same random projection operation for any sparse
signal. Correlation information is utilized only at the decoder,
and reflected in the representation basis Ψ. As we know, the
number of measurements needed for CS recovery is propor-
tional to the sparsity index of the signal. Therefore, if we are
able to find the most proper Ψ, on which d is represented by
the sparsest vector x, the number of measurements being sent
to the sink can be minimized.

For spatially smooth sensor readings, performing wavelet
transform can generate a sparse representation. Usually, multi-
level wavelet de-correlation can generate a sparser represen-
tation than single level de-correlation. The CDG framework
allows us to exploit the data sparsity after multi-level wavelet
de-correlation without additional cost. The sink can pre-
compute the representation basis Ψ for any reasonable level of
wavelet de-correlation and pick a proper one for each round
of data collection.

In addition, the CDG framework offers great flexibility in
exploiting cross-domain sparsity patterns, some of which are
hard to be utilized by conventional in-network compression
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schemes such as random sampling or transform based com-
pression. Next, we will present the approaches to utilize three
typical types of cross-domain sparsity that are observed in
monitoring sensor networks.

A. Temporal-Frequency Sparsity

In continuous monitoring applications, sensor readings have
spatial-temporal correlations, i.e. the change of sensor readings
does not vary much in a close neighborhood. Let 𝑑𝑡𝑖 and 𝑑𝑡+1

𝑖

be two continuous readings obtained by node 𝑖 at time instance
𝑡 and 𝑡+1. Let Δ𝑑𝑡𝑖 = 𝑑𝑡+1

𝑖 − 𝑑𝑡𝑖 be the difference of the two
values. If two nodes 𝑖 and 𝑗 are adjacent to each other, then
Δ𝑑𝑡𝑖 and Δ𝑑𝑡𝑗 should have similar values. In another word, if
Δ𝑑𝑡𝑖s’ are properly ordered into vector Δd𝑡, Δd𝑡 should be
sparse in frequency domain. This is why we name this type
of sparsity as temporal-frequency sparsity. Let d𝑡 and d𝑡+1

be the vector of all sensor readings collected at time instance
𝑡 and 𝑡+ 1, then we have:

Δd𝑡 = d𝑡+1 − d𝑡 (20)

Δd𝑡 = Ψx, x is sparse (21)

Assume that d𝑡 has been recovered by the sink. At time
instance 𝑡+1, the sink collects measurements y𝑡+1 for d𝑡+1.
With y𝑡+1 and d𝑡, we can compute the measurements for
Δd𝑡.

y𝑡+1 = Φd𝑡+1 (22)

Δy𝑡 = y𝑡+1 − Φd𝑡 = ΦΔd𝑡 (23)

Δd𝑡 can be solved by 𝑙1-minimization with (21) and (23) as
constraints. The sensor readings at time instance 𝑡 + 1 can
then be computed as d𝑡+1 = d𝑡 + Ψx. Please be noted that
the number of measurements needed is determined not by the
sparsity of d𝑡, but by the sparsity of Δd𝑡.

B. Spatial-Frequency Sparsity

Under normal circumstances, sensor readings are spatially
smooth and sparse in frequency domain. However, one of the
main purposes of sensor network is to detect abnormal events.
When abnormal events are captured, sensor data sparsity in
frequency domain will be compromised. In CDG, we tackle
this problem by designing an overcomplete representation
basis. In compressive sampling theory, Donoho et al. [21] have
shown the possibility of stable recovery under a combination
of sufficient sparsity and favorable structure of the overcom-
plete system.

In this case, since the appearance of abnormal readings is
usually sporadic, sensor data with abnormal readings can be
viewed as a sparse signal in spatial-frequency domain. The
vector of sensor readings d can be conceptually decomposed
into two vectors:

d = df + ds (24)

where df contains the normal part of sensor readings which
are sparse in a frequency domain, and ds contains the deviated
values of abnormal readings which is sparse in spatial domain.

Let Ψ be a proper transform matrix for frequency analysis, e.g.
a wavelet transform matrix, then (24) can be rewritten into:

d = Ψxf + 𝐼xs = [Ψ 𝐼]

[
xf

xs

]
= Ψ′x′ (25)

where 𝐼 is the identity matrix. Since both xf and xs are sparse
vectors, the 2𝑁 -dimensional vector x′ is sparse too. Now d
has a sparse representation in Ψ′ domain, so it can be recon-
structed through 𝑙1-minimization. Suppose x̃ is the solution
to x′, then the original sensor readings can be computed by
d̃ = Ψ′x̃. x′ can also be written into x′ = [x̃f x̃s]

𝑇 . The
large non-zero values in x̃s indicate the positions of abnormal
readings.

The technique of designing overcomplete representation
basis can be used to handle other types of cross-domain
sparsity. It can also be jointly adopted with the substitution
technique presented in the previous subsection. For exam-
ple, when the change of sensor readings is similar in close
neighborhood except for a few outliers, the combination of
the two techniques can deal with the sparsity in temporal-
spatial-frequency domain.

C. Sparsity at Reshuffled Ordering and Beyond

In chain-type topology, it is straightforward to compose
sensor readings into signal d according to their hop distances
to the sink. When sensors spread in a two-dimensional area,
it is not so obvious how to organize all sensor readings into
the d vector. When sensor readings have spatial correlations,
they can be organized by certain spatial traversing rules in
the sensing area. As a matter of fact, there are many choices
to organize 𝑑′𝑖𝑠, and one of them will result in the sparsest
representation in a certain transform domain.

The CDG framework offers the flexibility to exploit data
sparsity at reshuffled ordering. Again, this ordering does not
need to be known by sensor nodes during the data gathering
process. Consider a set of smoothly changing sensor readings
which are sparse in wavelet domain. The best ordering for
wavelet de-correlation would be the ascending (or descending)
order. Suppose the measurements y are collected for vector d
in which 𝑑𝑖s’ are in an arbitrary order. Denote 𝑂𝑖𝑗 as the
element operator to shuffle the 𝑖𝑡ℎ and 𝑗𝑡ℎ elements in vector
d. This operator can be achieved by left-multiplying matrix
𝐼𝑖𝑗 as following.

𝑂𝑖𝑗(d) = 𝐼𝑖𝑗d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋅ ⋅ ⋅ 0
0 1

1
...

. . .
...

1
1 0

0 ⋅ ⋅ ⋅ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑1
𝑑2

...

...

𝑑𝑁

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)
𝑑𝑖s’ can be sort into ascending order through a series of

such element operators. Let us denote the new vector as d′.
d′ can be represented by:

d′ = 𝑇𝑃 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑇2 ⋅ 𝑇1 ⋅ d (27)

d′ = Ψx, x is sparse (28)
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Fig. 4. Data recovery with different measurement matrix.

where 𝑇𝑖 is a general representation for the transform matrix
of an element operator, including but not limited to order
shuffling. The measurements can be rewritten into:

y = Φd = Φ
(
𝑇−1
1 ⋅ 𝑇−1

2 ⋅ ⋅ ⋅𝑇−1
𝑃 ⋅ d′)

=
(
Φ ⋅ 𝑇−1

1 ⋅ 𝑇−1
2 ⋅ ⋅ ⋅𝑇−1

𝑃

)
d′ (29)

This means if we reshuffle the columns of the measurement
matrix Φ according to the order of 𝑑𝑖’s, then x can be
solved from the 𝑙1-minimization problem with (28) and (29)
as constraints.

Sparsity at reshuffled ordering is useful when the ordering
is known a priori or can be learned at low cost. In data
gathering sensor networks, if sensor readings have strong
temporal correlations, we may reorder 𝑑′𝑖𝑠 according to their
values at time instance 𝑡0. Then, sensor readings collected at
time 𝑡0 +Δ𝑡 (where Δ𝑡 is a small interval), when organized
in the same order, can be assumed to be a sparse signal in
frequency domain. In next section, we will show how the
sparsity at reshuffled ordering is used in a set of real sensor
data.

We would like to point out that, among the existing works,
only the CDG framework is able to exploit this type of sparsity
at very low cost. As a matter of fact, when the data have good
spatial correlations, it has been reported that CS based data
gathering can hardly outperform randomized downsampling
[29][31][28]. However, when data sparsity exhibit a compound
pattern, CS based data gathering may still achieve notable cost
reduction while other simple mechanisms fail completely.

VI. EXPERIMENTAL RESULTS

We first evaluate the efficient measurement matrices with
synthesized data, and then present the results on exploiting
pervasive sparsity over real sensor data. Through two sets of
real sensor data, we will show that sensor data are indeed
sparse in reality. Further, data reconstruction is highly robust
and efficient although real data are contaminated with noise.

A. Measurement Matrix

We have proved in Section IV that matrix [𝐼 𝑅] satisfies
RIP, and matrix [𝑇 𝑅] does not. We verify the results with a
set of synthesized data. The dimension of the signal is 500
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Fig. 5. Temperature data from the Pacific Sea.

(𝑁 = 500), and the non-zero entries in the signal are drawn
from uniform distribution 𝑈(10, 20). We experimented with
two sparsity settings (𝐾/𝑁 ): 0.05 and 0.1. For each sparsity
setting, we tried to recover the signal from different numbers
of measurements.

Figure 4 shows the mean absolute error (MAE) of CS
recovery (in logarithmic scale) when three types of measure-
ment matrices are used. The 𝑥-axis is the ratio of the number
of measurements to the number of non-zero entries in the
signal. Each indicated value in the figure is averaged over
1000 test runs to avoid fluctuations. When 𝐾/𝑁 = 0.1, there
is subtle difference between the reconstruction performance of
the full random matrix and the [𝐼 𝑅] matrix. When the number
of measurements is sufficient (𝑀/𝐾 > 4.2), using [𝐼 𝑅]
measurement matrix even has a slightly better performance.
When the signal is very sparse (𝐾/𝑁 = 0.05), using [𝐼 𝑅]
as the measurement matrix demands a slight larger number
of measurements to achieve perfect reconstruction than using
a full random matrix. Besides, it is clear from the figure
that using [𝑇 𝑅] measurement matrix results in much larger
reconstruction error.

B. Representation Basis

We use two sets of real sensor data to show how CDG
framework exploits pervasive sparsity.

1) CTD data: The set of CTD (Conductivity, Temperature,
and Depth) data come from National Oceanic and Atmo-
spheric Administration’s (NOAA) National Data Buoy Center
(NDBC). Figure 5 shows the temperature data collected in the
Pacific Sea at (7.0N, 180W) on March 29, 2008 [1]. The data
set contains 1000 readings obtained at different depth of sea,
ranging from 4.579∘C to 27.875∘C.

It is clear that the readings are piece-wise smooth, and
should be sparse in wavelet domain. However, using different
layers of wavelet transform matrices in CS recovery will result
in dramatically different performance. Figure 6 shows the
recovery performance when different Ψ matrices are used. The
performance metric is the peak signal-to-noise ratio (PSNR),
which is defined as

𝑃𝑆𝑁𝑅 = 10 ⋅ log10
(
(𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑅𝑎𝑛𝑔𝑒)2

𝑀𝑆𝐸

)
(30)
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Fig. 6. Data recovery with different representation basis.

where MSE is the mean squared error. When 2-level wavelet
transform matrix is used, we cannot get satisfactory results
even when we have 400 (𝑀/𝑁 = 0.4) measurements. In
contrast, when 6-level wavelet transform matrix is used, the
reconstruction precision is pretty high when there are only 50
(𝑀/𝑁 = 0.05) measurements, and the precision gradually
increases when more measurements are available. The red
dotted line in Fig. 5 plots the reconstruction error at 𝑀 = 100.
When 𝑀 = 100, CDG reduces the global communication cost
by five times and reduces the bottleneck cost by ten times.

The reason why using 2-layer and 4-layer wavelet rep-
resentation basis cannot achieve satisfactory recovery per-
formance becomes apparent if we check the data sparsity
after different levels of wavelet transform. If we consider a
non-zero coefficient as one whose absolute value is larger
than 0.1, then the temperature data are 263-sparse after 2-
layer wavelet transform, 90-sparse after 4-layer transform,
and 51-sparse after 6-layer wavelet transform. We would like
to point out that, the proposed CDG can utilize the data
sparsity after multi-level de-correlation without any additional
communication or control cost. The only thing that needs to
take care is to use a proper Ψ matrix during CS decoding
at the sink. In contrast, conventional in-network compression
techniques, such as the one proposed by Ciancio et al. [16],
incur additional data exchange costs for every additional level
of wavelet de-correlation. Due to this overhead, Ciancio et
al. [16] only perform one to two level wavelet de-correlation
for sensor readings, although multi-level de-correlation would
have reduced more redundancy and produced fewer coeffi-
cients.

2) Temperature in Data Center: A contemporary practical
application of WSNs is to monitor server temperatures in data
centers. The sensor data used in this research are collected
from a fraction of a data center, where three sensors are
placed at the top, middle, and bottom of each computer
rack. There are 498 sensors in total, and the temperature are
measured every 30 seconds. We analyze these data offline to
see how much traffic would be reduced if CDG was used. For
simplicity, we assume that all 498 sensors form one subtree
to the sink, and each node only communicates with adjacent
nodes.

An important observation on this set of data is that sensor
readings exhibit little spatial correlations. Although racks
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Fig. 7. Comparing reconstruction PSNR of CDG and the anchor scheme at
𝑡0 + 30.

are physically close to each other, temperature readings are
dominated by server loads instead of ambient temperature. If
we stack up the sensor readings in spatial order, the resulting
vector is not sparse in any intuitively known domain. In
this case, conventional in-network compression schemes will
fail completely. However, CDG can effectively reduce the
traffic at bottleneck nodes (by a ratio of two to five) through
the flexibility that the framework offers. We observe that
temperature readings do not change abruptly within short time
intervals. Such temporal correlations can be converted into
frequency sparsity at reshuffled ordering. In particular, at time
instance 𝑡0, the sink obtains exact values of all 𝑑𝑖’s through
either naive multi-hop forwarding or acquiring 𝑀 = 𝑁
random measurements. Then, 𝑑𝑖’s can be sorted in ascending
order to form signal d. This reordered signal is piece-wise
smooth. Because of the temporal correlation, sensor readings
collected at 𝑡0+Δ𝑡 can also be regarded as piece-wise smooth
when organized in the same order. To cope with the situation
that temporal correlation becomes weak when the time interval
increases, we can refresh the ordering of 𝑑𝑖 periodically (e.g.
every one or two hours).

The proposed CDG allows the sink to reconstruct such
reordered sparse signals from 𝑀(𝑀 < 𝑁) random mea-
surements without changing the data gathering process. In
the following experiments, we compare the reconstruction
performance of CDG with an anchor scheme based on random
sampling and interpolation. A round of data gathering at
time 𝑡0 + 30, i.e., 30 minutes after the reordering moment,
is considered. Figure 7 compares the reconstruction PSNR
(peak signal-to-noise ratio) of the two methods at different 𝑀 .
To avoid fluctuation, the MSE (mean squared error) of each
setting is averaged over 100 test runs. Results show that CDG
significantly outperforms the anchor scheme in most cases,
and the performance gain is around 4dB when 𝑀 = 250,
which corresponds to a compression ratio of two.

Figure 8 shows the original sensor readings and the re-
constructed readings by the two methods when 𝑀 = 250.
The sequences shown are representative ones whose MSE is
the closest to the average MSE of each method. For easy
observation of the differences, the reconstructed readings by
CDG and the anchor scheme are shifted by 10 and 20 degrees
centigrade respectively. It can be seen that the original sensor
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Fig. 8. Comparing reconstructed readings by CDG and the anchor scheme
when 𝑀 ≈ 0.5𝑁 .

readings are generally in ascending order. However, there
are two conspicuous spikes in the curve indicating abrupt
temperature changes. CS based data reconstruction is capable
of capturing all the spikes in all the test runs while random
sampling method only opportunistically captures them. It can
be concluded that while both methods have similar perfor-
mance when the target signal is smooth, CDG has significant
advantage over random sampling when the sensor data contain
large fluctuations or abnormal readings.

VII. CONCLUSION AND FUTURE WORK

We have successfully applied CS theory to wireless sensor
networks to address the large-scale data gathering problem.
When CS theory is used to solve communication problems,
we need to consider the design of Φ and Ψ matrices, from
both CS and communication perspectives. In this paper, we
have discovered that measurement matrices of form [𝐼 𝑅]
not only preserve the restricted isometry property but incur
the minimum communication cost in multi-hop networks,
making it a favorable choice for data gathering applications.
We have also demonstrated through three typical cases how
CDG exploits cross-domain sparsity of sensor readings. By
choosing the proper Ψ matrix, the data sink is able to recover
sensor readings with the minimum number of measurements
which are collected by a unified data gathering process.
Simulation results based on real sensor data have demonstrated
the efficiency of CDG in exploiting the pervasive sparsity.

Although the measurement generation based on [𝐼 𝑅] matrix
extends the application of CDG to smaller scale WSNs,
we would like to mention that CDG is more suitable for
large scale sensor networks. CDG is also more effective for
networks with stable routing structure. The extension of CDG
to more challenging networking scenarios will be our future
work.

APPENDIX A
PROOF OF THEOREM 5

Proof: Theorem 5 can be proved similarly as Theorem 1
in Laska et al. [27]. Let Φ be an 𝑀×𝑁 matrix with form [𝐼 𝑅],
where elements in 𝑅 are drawn according to 𝒩 (0, 1/𝑀). Let
𝑓 be an 𝑁 -dimensional signal. Write 𝑓 into 𝑓 = [𝑓𝑇

1 𝑓𝑇
2 ]𝑇 ,

where 𝑓1 has length 𝑀 and 𝑓2 has length 𝑁 − 𝑀 . Then we
have:

∥Φ𝑓∥2𝑙2 = ∥[𝐼 𝑅]𝑓∥2𝑙2 = ∥𝑓1∥2𝑙2 +∥𝑅𝑓2∥2𝑙2 +2⟨𝑓1, 𝑅𝑓2⟩ (31)

According to previous results on the RIP of a random matrix
[27], the second term on the right-hand side of (31) is bounded
by:

(1 − 𝛿)∥𝑓2∥2𝑙2 ≤ ∥𝑅𝑓2∥2𝑙2 ≤ (1 + 𝛿)∥𝑓2∥2𝑙2 (32)

with probability exceeding 1 − 2𝑒−𝑀𝛿2/8. The third term on
the right-hand side of (31) can be written as:

2⟨𝑓1, 𝑅𝑓2⟩ = 2𝑓𝑇
1 𝑅𝑓2 (33)

Since the elements in 𝑅 are drawn according to
𝒩 (0, 1/𝑀), it is not hard to deduce that 2𝑓𝑇

1 𝑅𝑓2
∼ 𝒩 (0, 4∥𝑓1∥2𝑙2∥𝑓2∥2𝑙2/𝑀). According to the property
of Gaussian variable, the absolute value of this term is
bounded by:

∣2𝑓𝑇
1 𝑅𝑓2∣ ≤ 𝛿∥𝑓1∥𝑙2∥𝑓2∥𝑙2 ≤ 𝛿∥𝑓∥2𝑙2 (34)

with probability exceeding 1− 𝑒−𝑀𝛿2/8. Combining (32) and
(34) into (31), we have the following bound

(1− 2𝛿)∥𝑓∥2𝑙2 ≤ ∥Φ𝑓∥2𝑙2 ≤ (1 + 2𝛿)∥𝑓∥2𝑙2 (35)

with probability exceeding 1− 3𝑒−𝑀𝛿2/8
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