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Abstract—Emerging wireless multicast applications simultane-
ously impose two requirements to the underlying communication
networks: to provide sufficient bandwidth and to support a
variety of quality-of-service (QoS) sensitivities. For the first
requirement, network coding has been proposed recently as
an effective way of improving bandwidth utilization. However,
almost all previous works about network coding focus on the
throughput gain without considering the QoS requirements.
Optimal network code construction in wireless multicast under
different QoS constraints remains as a significant challenge. In
this research, we study the QoS-driven network coding problem.
We use large deviation principle to establish the relationship
among source rate, link condition, QoS requirement, and network
code. Using this relationship, under given QoS requirements,
we solve the optimal network code construction problem. The
proposed network code supports maximal source rate without
violating the QoS requirements. These results constitute the
foundations for future designing and implementing network
coding based wireless multicast protocols.

Index Terms—Large deviations, multicast, network coding,
queueing networks, quality of service (QoS), wireless.

1. INTRODUCTION

S broadband wireless access becomes increasingly per-

vasive, the demand for multicast protocol to support
one-to-many wireless applications such as video conferencing
and multimedia streaming intensifies rapidly. Compared with
traditional voice services, these new applications are not only
bandwidth consuming but also QoS sensitive. Due to the
time varying wireless fading channels, the heterogeneous link
conditions, and the QoS requirements, it is a challenging task
to design a wireless multicast protocol that scales well to client
number, adapts to channel variation and link heterogeneity,
and efficiently utilizes the bandwidth resources.

Recently, network coding [1][2][3] is introduced to wire-
less multicast [4][5]. Network coding makes full use of
the broadcast nature of wireless channels. By algebraically
combining the packets, network coding scheme can serve
different clients simultaneously, which results in significant
network throughput gain. However, almost all of the existing
works about wireless network coding are studied under the
framework of information theory, linear programming, abstract
algebra, or combinatorics. With different emphases, these
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Fig. 1. System model.

frameworks focus on designing optimal network code under
certain metrics such as achievable network throughput or
encoding/decoding complexity. These pioneer results provide
us with fundamental insights to the achievable performance of
network coding. However, these theoretical results implicitly
assume unbounded decoding delay and unlimited buffer size.
In contrast, practical applications usually have a variety of
QoS requirements and finite buffer sizes. Studying network
coding’s performance and designing optimal network code un-
der these constraints are important tasks for practical protocol
design.

In this paper, we present our research results on QoS-driven
network coding for downlink wireless multicast with one ac-
cess point (AP) broadcasting to multiple clients. We focus on
two kinds of QoS requirements: the buffer overflow constraint
and the delay violation constraint. The main contributions of
this research include:

« We formulate QoS-driven network coding as a stochastic
optimization problem. Our result indicates that as the
code length increases, the maximal source rate that the
network code can support increases and the QoS expo-
nents corresponding to the maximal source rate decreases.
By translating the QoS requirements to the constrains of
the minimal QoS exponents, we establish the relationship
among QoS exponents, network code length, multicast
client number, and clients’ link conditions using large
deviations principle (LDP) [6].

« Given the client number and their average packet error
rates (PERs), we propose a practical algorithm to calcu-
late the optimal network code length that supports the
maximal source rate while satisfying QoS constraints. In
another word, the algorithm decides the effective capacity
[7] of wireless broadcast channels when network coding
is employed.
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The rest of this paper is organized as follows. Section
II summarizes related work. In Section III, we define the
system model and formulate QoS-driven network coding as a
stochastic optimization problem. In Section IV, we adopt LDP
to establish the relationship among link condition, network
code, client number, and QoS requirements, and propose
a practical algorithm to solve the optimization problem. In
Section V, we present numerical results which verify our
analytical results. Section VI concludes the paper.

II. RELATED WORK

Driven by the demands of contemporary new applications,
both network coding and downlink multicast scheduling are
hot topics in recent wireless networking research. In the
following, we summarize existing research results in these two
topics that are related to our work.

In the research of downlink multicast, Lee et al [8] establish
several strong laws of large number to characterize asymptotic
throughput in a wireless multicast system using incremen-
tal redundant packets for forward error correction (FEC).
This work provides deep insights into how channel error,
client number, and network throughput interact with each
other. However, their emphasis is to characterize asymptotic
throughput region and the corresponding optimal FEC code
rate without considering delay and buffer constraints. In this
research, network coding, instead of FEC, is adopted. Network
coding’s rateless nature avoids the process of determining
optimal code rate. We focus on constructing optimal network
codes under different QoS constraints.

In [9], the authors propose a dynamic rate adaptation
algorithm to optimize the average throughput subject to the
statistical QoS constraints in wireless multicast using feed-
backs of channel state information from the receivers. They
apply the results from link layer effective capacity to establish
the impact of the delay requirements on multimedia data
rate. However, no packet level diversity coding scheme, such
as network coding is introduced in their work to mitigate
independent random packet transmission errors.

In [10], the authors formulate wireless multicast as a restless
bandit problem, which is PSPACE-complete. They simplify
the problem using Whittle relaxation and show that there exists
an index policy to solve the relaxed problem. Their solution
requires each client’s state information at each transmission
time. In wireless multicast, acquiring full state information
costs significant overhead and makes the system ill scaled,
although an estimation mechanism is proposed to reduce
feedback cost. In [11][12], the authors use LDP to analyze
the behavior of stochastic networks with different scheduling
algorithms for downlink unicast. In [13], the authors propose
greedy algorithms for real-time video multicast in WiMAX
networks. They adopt layer video coding and adaptive mod-
ulation and coding (AMC). They aim at fair allocation of
resources to maximize utility function which is defined to
reflect video quality. They assume that link layer can provide
static bandwidth resources according to different physical layer
mode without considering link layer issues such as queueing
delay and queueing stability. In contrast, the theme of this
research is to provide guaranteed link layer bandwidth to upper
layer application.

In [2], the authors prove that random linear network coding,
can asymptotically approach network capacity, and discuss its
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application in wired and wireless networks. Random network
coding avoids complex scheduling algorithm [14] and central-
ized network code construction process by translating them
into local addition and multiplication routines over Galois field
F,. In contrast to scheduling algorithms, the coding approach
scales well to client number. It does not require clients to feed
back their instantaneous link conditions and state information,
i. e. whether a packet has been received by a client or not, at
each transmission time to achieve optimal throughput. These
properties enable random network coding to be widely used
in various practical systems [15][16]. In this research, we also
adopt random network coding as the cornerstone of our work.

Recently, rateless digital fountain codes such as LT codes
and Raptor codes [17] are introduced in wireless communi-
cation. In fact, fountain codes can be seen as a special form
of network code over Galois field F,, which is optimized to
achieve linear encoding and decoding complexity. Fountain
codes are particularly suitable for bulk data distribution. In
[18], the author propose a rate adaptation scheme to maximize
multicast throughput with the help of fountain codes. However,
to achieve good performance, fountain codes’ code length are
usually large, which makes them unsuitable for applications
with stringent QoS requirements. In [4], the authors report
that throughput and delay improvements of network coding in
wireless multicast as compared with scheduling approaches.
In [19], the authors propose a heuristic algorithm to calculate
check nodes’ degree distribution that can improve network
throughput while meeting packet loss rate requirements.

These existing coding approaches propose different algo-
rithms to maximize network throughput. Generally speaking,
unlike channel aware scheduling, coding based approaches do
not require each client’s state at the transmitter. This feature
avoids the ACK explosion problem and makes the system
simple and well scaled. However, in practice, it is equal
important to support a variety of QoS levels as to achieve
network capacity. To the best of our knowledge, no existing
work has been reported on how network coding can affect
the dynamic behavior of wireless networks and how much
network coding gain we can expect to achieve when QoS
requirements are imposed. In this paper, we answer these two
questions in the scenario of wireless downlink multicast with
one access point (AP) broadcasting to a group of clients. The
main results obtained in this research provide a foundation
for future network coding based multicast protocol design and
research on QoS-driven network coding in multihop wireless
networks.

III. System MobpEL AND PrROBLEM ForRMULATION
A. System Model

We study downlink multicast in a slotted time division
multiplexed wireless LAN consisting of one wireless AP and
N clients, as illustrated in Fig. 1. The AP continuously broad-
casts packets to the N clients. We focus on a single multicast
group, so multicasting and broadcasting mean the same, and
will be used interchangeably. The set of clients is denoted
by N ={Ry, Ry, ---, Ry}. The input traffic is assumed to be
deterministic with constant rate a packet per time slot (pps).
We model the communication channel as Bernoulli ON-OFF
channel. When the channel is ON, packets can be received
without error. When the channel is OFF, packets cannot be
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Fig. 2. Traffic characterization.

successfully received. Whether the channel is ON or OFF is
independent across different clients and transmission slots. The
OFF probability from the AP to R; is denoted by ¢;, 1 <i < N,
which is assumed to be available at the AP. This simple
yet practical ON-OFF channel model has been widely used
in theoretic analysis [10]. The AP only knows each client’s
average packet error rate c;, but is not able to predict the
channel condition of the next time slot. This assumption comes
from practical consideration in multicast scenario because
obtaining each receiver’s channel side information before each
transmission time costs significant overhead. Results obtained
under this model are ready to be extended to more general
finite-state Markov channel model [20][21].

Packets are denoted by P;, i € N, where N = {0, 1, 2, ---}.
We assume that all packets have the same length of Lp bits, so
that they can be combined together by random network coding
without padding. Certain number of successive packets starting
from the head of AP’s queue are treated as a generation. Each
generation contains L packets. The AP’s queue is managed
with first-come-first-serve policy, in which packets within the
same generation are batch served. The AP is blocked when
its buffer size is smaller than L and will advance to the
next generation when all clients have successfully decoded all
packets in the current generation. In other words, a generation
of packets will be removed together from the AP’s buffer when
they have been successfully decoded by all clients. Packets
within the m™ generation are sent using random network
coding. The transmitted packet at slot # can be expressed as:

Lem

P()= > anP (1)

k=L

where t+ € N is time slot index, ai(f) is network coding
coefficient, chosen uniformly from Galois field with size g,
denoted as F,. Ly, and L.,,, 0 < Lp,, < L., are minimum
and maximum packet indices of the m"”" generation. Therefore,
network code length L = L,,, — Ly, + 1. A client does not
acknowledge every single packet, rather, it sends an ACK
immediately after it has successfully decoded all the L packets
in current generation. Note that choosing field size g will
introduce [Llog, q] bits overhead in each packet due to the
space needed for storing the L coefficients a;(¢) in the packet
head.

B. Problem Formulation

Definition 1 (Backlog and Delay [22]): Let AP’s input
process be A(f) and output process be B(t), t € N. A(¢) is the
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total number of packets arrived at AP from time slot O to ¢,
and B(?) is the accumulated number of packets departed from
AP’s buffer from time slot O to # — 1. The backlog seen by
the i”* packet is defined as:

q(i) = A(t = 1) = B(1) 2

where ¢ is the i packet’s arrival time. The backlog includes
the packets that are currently being served but does not include
the currently arrived packets themselves. The delay of the i
packet is defined as:

d(i) = inf{r — ; : B(t+ 1) — A(t) > 0} 3)

where d(i) is the queueing time of the i”* packet who enters
the queue at time ¢, and y; is its service time. Note that from
the above definition, the delay does not include the service
time. These two concepts are illustrated in Fig. 2.

Delay and backlog are two important metrics for queueing
system. They are widely used to evaluate communication
quality. In networking protocol design, besides the average
delay and average backlog, we are also interested in system’s
deviation behavior, which is related to QoS constraints. We use
(dmax» pa) and (Gmax, pg) to parameterize QoS requirements.
dmax and g, are given positive constants, representing the
maximum tolerable delay and backlog. ps,p, € [0, 1] are
given parameters. The QoS-driven network coding problem is
to select optimal code length L that maximize the supported
source rate a under backlog and delay constraints. Using
notations defined above, the problem is formulated as follows:

Find L* = argmax; . {a}
Subject to Py(q(0) > Gmax) < py and/or (€Y)
Pr(d(oo) > dmax) < Pa

where N* = N\{0}, g(o0) and d(c0) are random variables
denoting the steady-state backlog and delay, incurred by a
typical customer. AP’s buffer overflow constraint P(g(c0) >
qmax) < pg means that the probability of the steady-state
backlog exceeding @ is no larger than p,. The delay
violation constraint P (d(e0) > dyu.) < pa guarantees that the
probability of the steady-state waiting time longer than d,,,, is
upper bounded by p,. Note that even though it is not explicitly
expressed, the maximal supported source rate a is related to
the packet size Lp, network code length L, the client number
N, and their link conditions c;.

IV. TaroucHPUT, Q0S, AND NETWORK CODE
A. QoS and LDP

Strictly speaking, it is impossible to achieve QoS guarantee
under time varying wireless channels. There is always a
nonzero probability that queue overflow and delay violation
happen. To overcome this difficulty, the concept of statistical
QoS is proposed for wireless networks [7][23][24][25][26][9].
The idea behind statistical QoS is to bound the delay violation
and queue overflow probability within a given threshold.
However, the complexity of wireless channels and communi-
cation protocols often prevent the approach of tracking delay
violation or queue overflow probabilities. LDP is proposed as
an effective technology to obtain an approximated solution.
In [26], the author proves under mild assumptions that both
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TABLE I
NETWORK CODE OVERHEAD

P(®L>1L) || q=2* | q=2° | ¢=2° | g=2"
L=10 0.0676 | 0.0164 | 0.0039 | 0.0003
L=20 0.0676 | 0.0177 | 0.0041 | 0.0002
L=40 0.0662 | 0.0166 | 0.0028 | 0.0001
L =280 0.0679 | 0.0159 | 0.0038 | 0.0003
q! 0.0625 | 0.0156 | 0.0039 | 0.0002

backlog and delay satisfies LDP. They can be approximated
as:
P/ (g(c0) > x) ~ e %~ for sufficiently large x 5)

and
P/(d(co) > y) ~ 7, for sufficiently large y (6)

where 6p and 6p can be determined by the input process
and the service process using LDP. These two parameters
characterize the asymptotic deviation behavior of g(co) and
d(c0). When 6 is large, the decaying rate of buffer over-
flow probability is high, which means that a good QoS is
guaranteed. For extreme case, when 6y — oo, the statistical
QoS approaches to the traditional QoS with deterministic
sharp backlog bound. When 6y — 0, no QoS requirement is
imposed. We can draw similar conclusion for delay violation.
Following the term in [7], 6 and ) are called QoS exponents.

B. QoS Driven Network Coding

In this section, we establish the relationship among client
number, link conditions, network code and QoS exponents.
First, we formally define QoS exponents as a function of code
length L:

6o(L) = — lim % log Py(g(c0) > x) (7
Op(L) £ — lim %log Pi(d(o0) > x) (8)

Before calculating the QoS exponents, let us first charac-
terize the overhead of random network coding coming from
the inequality between L and ®;, where @ is the number of
coded packets required to decode the L source packets. Due
to the randomized encoding process, @, is a random variable.
However, the following lemma reveals that for practical field
size, this number is highly concentrated on L. This result
suggests that it is safe to assume that a client can decode
the source packets with L network coded packets.

Lemma 1: Let ®; denote the packet number required to
successfully decode L source packets. Assume that each
transmitted packet’s network coding coefficients are never all
zero. @y converges to L in probability:

Pr
O, > L, asq— C))
The rate of the convergence can be determined as follows:
Pi(®L > L) = 0(g7) (10)

The proof is given in Appendix A. Table I gives simulation
results for typical field size and network code length. They
verifies Lemma 1 in that the random network coding overhead
due to singularity is approximately independent with the code
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length L and the probability that decoder requires more than
L packets approximately equals to ¢~!. In practical network
coding based multicast protocols, ¢ is usually chosen to be 28
or 2'2. For these two typical field size settings, the overhead
is less than 0.1%, which can be safely neglected. Based on
this result, we simplify the problem (4) by assuming that
®; = L. Note the portion of the packet head storing the
networking coding coefficient is %. If the packet size
Lp is sufficiently large, this overhead can be small. However,
for some applications such as VoIP, whose typical packet size
is around 40 — 60 bytes, such overhead can be significant.
Therefore, we have to take into account these overhead bits
in network code optimization.

Equipped with these assumptions, the following theorem
determines QoS exponents.

Theorem 1: The code length L, client number N, link
condition ¢;, 1 <i < N, and QoS exponents 6y, 0p satisfy:

bola,L) = 6" (11)

Op(a, L) = ab* (12)

where a is the source’s arrival rate and 6* > 0O is the largest
solution to the following equation:

00

N N
2 ek D= [ [ heg ik = 00 (13)
k=0 i=1 i=1
I,(p, q) is regularized incomplete beta function (see Appendix
B). Note that (13) having no positive solution means the
system cannot support source rate a.

Proof: We denote by T(i),i € N the interarrival time of
the i packet, i. e. the time interval between the arrival epochs
of the i packet and the (i— 1) packet. We denote by D’(i),i €
N the service time of the i generation. Define

(i+1)L-1
T'(i) = Z ()

=il

(14)

then 7”(i) can be seen as the interarrival time of a batch arrival
process in which every L packets are batched and arrived
together. As we assume that the BS is blocked when it has
less then L packets, the batch arrival process and the original
arrival process sends the same packets from the BS at any time
slot. If we treat a generation of packets as a single element,
and denote by ¢’(i) and d’(i) the backlog and delay of the ™
element in the batched arrival process. Recall that g(i) and
d(i) are the backlog and delay of the i packet in the original
process. The interval between the arrival time of packet i and
packet j = LI_%J + L — 1 is upper bounded [5]. From the
definition, the arrival time of packet j is the same as the arrival
time of the | +]” element in the batched arrival process. We

o)) sa0= 0 ) [

L
During the interval {%], at most {u} generations can be

]

L

15)

served. We have
s ao s [ 2)
cuag)-[4) -

+ L

(16)
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Assume that batched arrival process’s steady-state backlog
and delay, incurred by a typical element is denoted by ¢’(c0)
and d’(co). Then from (16)(15), the stationary distribution of
the original process’s backlog g(co) and delay d(oo) satisfies:

L
Lq'(0) < g(o0) < Lg'(c0) + [Z] +2L (17)
L
d'(00) < d(o0) < d'(0) + H (18)

From the left inequality of (17),

1 1
lim —log Pi(g(o0) > x) < lim —log P(Lg’(c0) > x)
x—o0 X xX—00 X
1 1
= — lim —log Py(¢'(0) > x) (19)
L x> x

From the right inequality of (17),

lim 1 log Pr(g(e0) > x)
x—00 X

v

a

1 L
lim = log Py(Lg/ (o) + [ } +2L> %)
x>0 X

v

1 1 1
— lim = log P(¢q/(c0) > x — — — 2)
L X—o0 X a

1
log Pr(q/(0) > x = = = 2)
2 a

X—00 X X — % —
1. 1 ,
= — lim — logP,(¢'(c0) > x) 20)
L x>0 x
From (19)(20),
1 1. 1 ,
lim — log P((g(o0) > x) = I lim —log Py (g'(e0) > x) (21)
xX—00 X x>0 X

Starting from (18), using the similar derivation as (19)(20),
we have,

1 1
lim —log P(d(c0) > x) = lim — log P(d’(c0) > x)  (22)
x—0co X x—00 X

From [27, Theorem 4.1], 6p(a, L) is the largest solution that

satisfies the following equation:
Ar(=6) + Ap(6) =0 (23)

where the asymptotic logarithmic moment generating function
A7:(6) is

1 n— e
Ar(0) = lim = log Ee/Xio T'®
n—oo n

= log E¢"T'® = log ¢’ = gg (24)
and Ap(6) is:
Ap () = ,}LI?Q % log EefZi D'()
= log Ee’”” = log Ee"™ 25)

where K y is defined in Appendix B. From (23)(24)(25)(33),
we have:

&% = EefKiy = Z P(Kpy = ke
k=L

00 N N
= > U ek + D= [ [ 1oL k) 26)
k=0

i=1 i=1
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Fig. 3. Approximation of the backlog distribution.
From [27, Theorem 4.3] and (21), we have
1 1 L 0Op(a,L)
Op(a, L) = —~Ar(0p(a, L)) = ~Op(a, L)~ = === (27)
L L a a

From (27)(26), we prove that (12)(11)(13) hold. Note that the
symbol definition in [27] is different from ours, so a translation
is needed when applying their results. [ ]
Theorem 1 characterizes the large deviation behavior of the
QoS-driven network coding scheme. The QoS exponent 6* can
be numerically calculated using standard nonlinear optimiza-
tion algorithms.

C. Approximation Algorithm

Although (13) gives the condition that 6* should satisfy,
the exponential bound (5)(6) is only accurate when deviations
approach to infinite. In practical wireless communication
system, we are particular interested in moderate deviation
values. Depending on different applications, different modi-
fication schemes are proposed[9][7] to to compensate for the
gap between LDP bound and the real queueing tail. These
approaches can be generally expressed as multiplying the
exponential expression with a modification term. For example,
the backlog deviation (5) can be approximated as:

Pi(g(c0) > x) ~ B(Bg)e"*

However, the batch service character of network coding
differentiates itself from existing approaches. From queueing
theory’s perspective, determining the exact expression of 5(-)
is mathematically intractable. To approximate the deviation
behavior of QoS-driven network coding, we propose to use
the following empirical equations:

Pr(g(o0) > x)
1 x < aEKj y;

vl - R GEK y < x < aBEKpy + L— 6,5 (28)
e to=h0), x> aEKpy+ L -6,
and
l-xal™', 0<x<a'L-6;;
Pr(d(c0) > y) = { e0n(=0) e>alL— 01—)1{) (29)

where EK; y is the expectation of the random variable Kj y
defined in Appendix B. First, we show how (28) is developed
and explain the meaning of the parameters in it. As illus-
trated in Fig. 3, the curve of the complementary cumulative
distribution (CCDF) of the backlog can be approximately
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separated into three regions. In the first region, i. e. x € [0, A],
the backlog is smaller than its average, the curve can be
approximated as a horizontal line. In the second region, i. e.
x € [A, B], the curve descends approximately linearly due to
the batch processing character of network coding. In the third
region, i. e. x € [B, ), the curve conforms LDP bounds. Our
task is to determine the turning points A and B. Point A can
be heuristically calculated as

A = aEKLy (30)

which is approximately equal to the number of packets arrived
at the BS when it is serving the L current generation packets.
When x € [A, B], the CCDF curve can be approximated with a
linear function whose slope equals to L~!. For the tail region,
we use the LDP exponential formula as an approximation. To
determine the turning point B, we impose first order derivative
continuity constraint, i. e. the linear and exponential curve
have both the same CCDF value and the same first order
derivative at point B. We have

B=aEK,y+L-6, (31)

Then the parameter A can be determined according to the
position of point B as

Ag = B -6 log(6pL) (32)

Expression (29) is derived similarly, except that the curve of
the CCDF of delay only contains the linear drop region and
the LDP region. By forcing one order derivative continuity
at the turning point, the turning point’s position can be
calculated as a™'L — 6;;'. And the parameter Ap = a”'L -
05! — 65! log(OpLa™).

Now, we are ready to solve the code optimization problem
(4). Due to the overhead of the network coding coefficients,
the effective length of one transmitted packet is Lp—[Llog, g1
bits. From (33) in Appendix B, the average service rate L(1 —
%) /EK} y at first increases due to the benefits of network
coding and then decrease due to the overhead with respect
to L. Further, if code length L can support source rate a, it
must be able to support any source rate smaller than a. These
facts suggest that the optimal L that maximizes a in (4) can
be derived using two steps. The first step is to determine the
maximal supported source rate a,, without considering the QoS
requirements. The second step is to find the maximal source
rate a € [a;, a,] and the corresponding code length L under
QoS requirements. We summarize QoS-driven network coding
in Algorithm 1.
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Algorithm 1 QoS-driven network coding
1: procedure QOS_NC((Cls €yt CN)s (dmu)m Pd), (Qmaxs pq))

2: Lmux <~ Gmax, A| < 1/EI<1N

3 @y Lyg(1 - 2209y ER > Initialization
4 L = Lnax — A > Constant A is the step size
S, Ly (1 - BB K,

6: while a, > a, do > Within descending region
7 ay — Ay, Lygy < Ly, /

8 Lt/nax = Lyax—A, (1; A Lt/nax(l_w)/EK maxN
9: if L, <1 then

10: L « 1, a < a;, goto line 30

11: end if

12: end while

13: Lo~ 1, L « Ly,

14: while a, — a; > € do »> € is a small positive constant
15: a < 0.5(a +a,), L— Ly

16: Calculate fp(a/(1 — =524, 1) > Using (12)
17: Calculate fp(a/(1 — =524 1) > Using (11)

, o Pr(@(0) > Gmax) > pyl

18: while PH(d(c) > dyar) > Pa && L < qyax do
19: > Using (28)(29)
20: L—L+A
21 Calculate fp(a/(1 - E5224) 1)
2: Calculate fg(a/(1 — E524) )

23: end while

24: if L > g, then > Update a,, a;, Lo
25: a, < a

26: else

27: a<—a, Lo — L

28: end if

29: end while

30: return L, a > Code length and maximal rate

31: end procedure

V. PERFORMANCE EVALUATION

In this section, we numerically evaluate QoS-driven network
coding scheme under different client number, link conditions,
and QoS requirements. All of the experiments use finite field
size 28.

First, we investigate the effectiveness of using LDP to
approximate the backlog and delay distribution. We study
both homogeneous and heterogeneous link conditions. In
the homogeneous case, the curves are indexed by 4-tuple
(L,N, c,a), where ¢ is the common PER of the clients. In
the heterogeneous case, links” PER are generated according
to uniform distribution with range [0.1,0.4] and therefore the
curves are indexed by triple (L, N,a). Fig. 4 illustrates the
CCDF of the backlog and Fig. 5 illustrates the CCDF of
the delay. The curves with legend numerical are obtained by
LDP (28)(29). The curves with legend simulation are obtained
by Monte Carlo simulations. These experiment results show
that the LDP approach can approximate backlog and delay
distribution with high accuracy. Therefore, it is reasonable to
use LDP approximation to determine the optimal network code
length.

The second group of experiments present the results of net-
work code optimization, obtained by the QoS-driven network
coding algorithm (Algorithm 1). The network code length
is updated with step size 5. The results are summarized in
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Fig. 4. CCDF of the backlog in homogeneous networks with common link
PER c (a) and in heterogeneous networks with link PER uniformly distributed
with range [0.1,0.4] (b).

Table II. As the packet size can affect the optimal network
code length, we study two typical packet length settings, i. e.
Lp = 2 x 10° bits and Lp = 400 bits. The first packet length
setting represents the scenarios that can support long packet
while the second one presents the scenarios with restricted
packet length, such as VoIP. In Table II, each line corresponds
to a typical topology and link configuration, including receiver
number N, link error rate c if the links are homogeneous. If the
links are heterogenous, link error rates are generated according
to uniform distribution with range [0.1,0.4]. Each column
corresponds to a typical set of QoS constraints (guax, pq) and
(dimaxs pa)- The results are presented as (a, L), where a is the
maximal supportable source rate, L is the optimal network
code length.

From Table II, comparing the results under the same topol-
ogy and different source packet length, we can see that short
packet length can significantly reduce the maximal supportable
source rate. When Lp = 2 x 10° bits, there is a trade off
between QoS constraints and maximal supportable throughput.
When we require more stringent QoS guarantee, the average
throughput decreases. However, when Lp = 400 bits, in the
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Fig. 5. CCDF of the delay in homogeneous networks with common link
PER c (a) and in heterogeneous networks with link PER uniformly distributed
with range [0.1, 0.4] (b).

first three network configurations, the maximal throughput
does not change when QoS becomes more stringent. The
reason is that when the packet length is small, as illustrated
before, due to the overhead of storing the network coding
coeflicients, there is a peak of the throughput when L becomes
large. If the throughput corresponding to the peak can support
the QoS requirements, both the maximal supportable source
rate and the optimal network code length will stay on that
point. When the packet is long enough, such impact is not
significant. Note that we adjust the code length with step
size 5, the optimal code length is not changed if the optimal
code length has only very small change. Further, due to the
nonlinear relationship among client number, link conditions,
maximal throughput, and QoS requirements, there is no di-
rectly sequential relationship of the code length under different
network configurations (different rows in Table II).

VI. CoNcLUSION

For modern network protocol design, providing QoS guar-
antee is as important as maximizing throughput. Network cod-
ing has been proved to be an efficient technology to improve
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TABLE II
PERFORMANCE OF Q0S DRIVEN NETWORK CODING.

Lp =2 % 10° bits

Lp =400 bits

a,L (qmax» Pg) = (200,107%)

(dma)ca pd) = (180, 1074)

(Qma)ca Pq) = (200, 1076)
(dmax’pd) = (180, 1076)

(@maxs Pg) = (200,107%)
(dma)capd) = (180, 1074)

(@maxs Pg) = (200,107%)
(dmax’pd) = (180, 1076)

N =100, ¢ = 0.4, homogeneous 0.49, 71 0.48, 66 0.29, 11 0.29, 11
N =40, c = 0.2, homogeneous 0.71, 76 0.70, 66 0.46, 6 0.46, 6
N = 60, heterogeneous 0.46, 46 0.45, 41 0.31, 6 0.31, 6
N = 120, heterogenous 0.45, 51 0.44, 41 0.29, 6 0.28, 6

throughput. To put network coding theory into practice, in this
paper, we addressed the network coding problem in down-
link wireless multicast under stochastic QoS constraints. We
identified the relationship among network throughput, network
code length, client number, and link conditions. Using this
relationship, we proposed a practical algorithm to calculate the
optimal network code length, with which maximal source rate
can be supported. Although we have assumed that the source
rate is constant, our results are ready to be extended to more
general stochastic source traffic models. QoS-driven network
coding does not require frequent measurement of physical
layer information. Only links’ average PERs are required for
determining the optimal code length. This feature makes it
easy to be integrated into existing protocol stack.

In this research, we focus on intra session network coding
in single session multicast. When there are multiple multicast
sessions, the optimal policy to perform QoS-driven inter
session network coding is still an open problem. Furthermore,
if AP can explore certain degree of channel side information,
designing optimal QoS-driven network code under advanced
physical layer technologies such as AMC to enhance commu-
nication quality is left to the future work.

APPENDIX A
Proor or LEMmaA 1

In this appendix, we prove Lemma 1. As we focus on one
particular generation, (1) can be simplified as:

L-1

P() = ) an)Py

k=0

Let random variable ®;(q) be the number of coded packets
required to successfully decode the L source packets. We use
the term knowledge space at time ¢ to denote the linear space
spanned by {P(i), 0 < i < ¢}. Let Nir be the number of
packets required to make the knowledge space’s dimension
grow from k£ — 1 to k. From the channel model, Ny, is
geometric distributed. As we forbid all zero code word, i. e.,
[1i ax(t) # 0, Nio’s distribution is:

Lii=1p, k=1;

L_ k=1 k-1 i-1
q—q g -1
=} (qu) , l<k<L.

Pi(Ner = i) = Vie N*.

where 1y is the indicator function that takes value 1 when
condition X is satisfied and O otherwise. Because ®@r(q) =
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Zé:l Ny and Ny > 1, we have the following relation:

L L
P(®r(q) > L) < ) PNz > 1) = > (1= PNz = 1)
k=1 k=1
L-1 L-1 L
-1
= <=
k=0 q k=0 q k=1

And:

Pi(®r(g) > L) > PNy > D) =1-P(NL = 1)
g -1 1 1

q" -1
>q'-q"

q_q+q2+...+qL

From the above two bounds, we get:

lim Py(®@.(q) # L) = 0
q—)OO

Pr .. .
i. e. ®r(g) — L and the deviation satisfies:

P(®1(q) > L) = O(g™")

AprpPENDIX B

In this appendix, we establish some auxiliary results that
will be used in the main content. Assume that there are L
packets P, 0 < k < L — 1 to be transmitted to N clients. Let
random variable Ki, 1 < i < N denote the number of coded
packet transmitted from the AP for client i to decode the L
source packets. Let K n £ max{Kz,l < i < N} denote the
number of coded packet the AP needs to send for all clients
to decode the source packets. From Lemma 1, we assume that
each client needs to successfully receive L packets. According
to our ON-OFF channel model, Ki is the sum of L identical
independent geometric distributed random variables. Using X;
to denote any of these random variables, we have

PXi=p=c'd-c) j=1

As the sum of geometric distributed variables conforms neg-
ative binomial distribution. The probability mass function of
K! is:

L

k-1

Pr(Ki:k):(L_1

)C{FL(l -t k>L
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The probability mass function of Ky can be expressed as:
Pr(Kpn = k) = Pi( max K; =k)
=P(K} <k, 1<i<N)-P(K, <k-1,1<i<N)

N N
=]_[ P(K! < k) — ]—[ P(Ki <k-1)
i=1 i=1

N N
=]_[ Ioe(Lk—L+1)- ﬂ Ii_o(L.k—L)), k>L(33)
i=1 i=1
A Jeta-ntla
where I,(a,b) = Ty

function. In the above induction, we use the fact that Ki are
independent.

is regularized incomplete beta
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