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Abstract—While many successful spoken dialog systems have
been deployed over telephone networks in recent years, the high
cost of developing such applications has led to limited adoption.
Despite large research efforts in user-initiative and mixed-ini-
tiative systems, most commercial applications follow a system
initiative approach because they are simpler to design and are
found to work adequately. Yet, even designing such system-initia-
tive spoken dialog systems has proven costly when compared with
simpler touchtone systems. To address this issue, we describe in
this paper our efforts in building diagnostics tools to let nonexpe-
rienced speech developers write usable applications without the
need for transcribing calls. Our approach consists of two steps.
In the first step, we cluster calls based on Question/Answer (QA)
states and transitions, analyze the success rates associated with
each QA state and transition, and identify the most problematic
QA states and transitions based on a criterion we call Arc Cut
Gain in Success Rate (ACGSR). In the second step, we cluster calls
associated with problematic QA transitions through an approach
we term Interactive Clustering (IC). The purpose of this step is
to automatically cluster calls that are similar to those already
labeled by the developers to maximize productivity. Experiments
on an internal auto-attendant application show that our approach
can significantly reduce the time and effort needed to identify
problems in spoken dialog applications.

Index Terms—Automatic analysis, call transition diagram,
data mining, model-based clustering, semi-supervised clustering,
speech recognition.

I. INTRODUCTION

I NTERACTIVE VOICE response (IVR) systems [6] allow
users to call a phone number and interact with a machine.

IVR systems are commonly used these days as a front-end to
reach a customer service center, a particular department within
an enterprise, or to serve as a voice portal, among other uses.
Traditionally, IVR systems have used recorded prompts for
system output and accepted touchtone keys from the user as
input. Over the past decade, we have seen a proliferation of IVR
systems that accept not only touchtone keys but the callers’
speech as well.

The number of ports an IVR system has indicates how many
simultaneous calls it can take. The number of speech ports,
which measures the number of telephone channels serviced by
an automatic speech recognizer, has undergone a rapid increase
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Fig. 1. Typical development cycle of speech applications. The evaluation and
tuning phase is usually the most costly part.

in the 1990s. However, growth in speech ports has slowed con-
siderably recently. The main barrier to wider adoption stems
from the cost incurred in developing spoken dialog applications
[25].

A typical spoken dialog application includes application
logic, dialogs, grammars, a speech recognition engine, etc.
Since it is unlikely that the system performs adequately right at
the very beginning, building a quality spoken dialog application
usually involves the four steps depicted in Fig. 1, namely,
design, prototyping, evaluation and tuning, and deployment.
Among all these four steps, evaluation and tuning is one of
the most important phases and usually the most costly since
it typically involves running the system for several weeks,
manually transcribing the recordings, manually analyzing them
to determine the system performance, and making changes to
the application to get ready for another iteration.

The tuning phase happens both during the test and pilot
stages as well as after the deployment, although it is usually
more important to tune the system after the system has been
deployed since more real data are available at that stage. In the
evaluation and tuning phase, developers identify areas that can
be improved and adjust the system accordingly. For example,
developers can tune the confidence threshold, language model
weights, and prompts, in order to boost performance. Devel-
opers may want to rephrase a given prompt if they find that
many callers do not say anything since this often means the
prompt was confusing. Developers may also want to rephrase
the prompt to increase the odds that callers will say things
within the grammar (e.g., “Who do you want to contact?”
versus “Please say the first and last name of the person you
want to contact”). Alternatively. they may also want to change
the grammar to better cover callers’ responses (i.e., even a
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simple yes/no grammar has been observed to fail miserably in
some regions, where callers tend to say “yes ma’m” instead). In
the latter case, they may decide to also augment the grammar.
The tuning phase can take many months and requires a team of
developers, testers, and speech technology experts.

A lot of effort has been put on reducing the total cost needed
to develop and deploy spoken dialog applications. For example,
Microsoft, Nuance, Scansoft, Philips, and several other com-
panies offer a number of development tools, but we noticed
that important functionality is not available in such tools. For
instance, spoken dialog application developers usually do not
know how to further increase customer satisfaction for their
application, even though they have access to a large number
of application logs such as those automatically provided by
Microsoft Speech Server. It is thus very valuable to have a
tool that automatically (or semi-automatically) determines with
what callers are struggling or which parts of their application
need the most work. This is exactly what we wish to achieve
with our approach.

In this paper, we report our recent work in the spoken dialog
application problem identification through performance anal-
ysis and clustering. We aim to reduce the time and effort needed
by developers to identify problems in their system-initiative
spoken dialog applications at the evaluation and tuning phase.
Despite a large body of research in user initiative and mixed
initiative systems [2], most commercial applications follow
a system-initiative (also called system-directed) approach
because they are simpler to design and are found to work
adequately. Yet, even designing such system-initiative spoken
dialog systems has proven costly when compared to simpler
touchtone systems. To address this issue, we describe in this
paper our efforts in diagnostics tools to let nonexperienced
speech developers write solid applications without the need to
transcribe calls.

We assume that developers have access to the spoken dialog
application logs since logging is nowadays a standard facility
in most spoken dialog application platforms (such as Microsoft
Speech Server). We also assume the dialog is built as a state
machine, where each state is a dialog turn or Question/Answer
state. Our approach thus helps developers mine and analyze the
log data and consists of two steps. In the first step, we cluster
calls based on QA states and transitions. We then identify the
most problematic QA states and transitions based on a criterion
we term Arc Cut Gain in Success Rate (ACGSR.) We devise an
algorithm to estimate the ACGSR by analyzing the Call Tran-
sition Diagram (CTD) that is automatically inferred from the
spoken dialog application log data. In the second step, we cluster
calls associated with problematic QA transitions through an ap-
proach we call Interactive Clustering (IC). The purpose of IC is
to automatically cluster calls that are similar to those labeled by
the developers so that developers can focus on analyzing those
unlabeled calls and identifying new problems and, thus, maxi-
mize productivity. Experiments on an auto-attendant application
show that our approaches can significantly reduce the time and
effort needed to identify problems in spoken dialog applications.

The rest of the paper is organized as follows: In Section II,
we describe the call clustering method based on QA states and
transitions using the concept of ACGSR to measure the impor-
tance of the QA transitions. In Section III, we describe how to
identify problems in the calls associated with those problematic

QA transitions using the concept of IC. In Section IV, we report
the performance evaluation of our algorithms on our internal
auto-attendant application. We show that our approach does sig-
nificantly reduce the time and effort needed by the developers
to identify problems. We present related work in Section V and
conclusions in Section VI.

II. STEP ONE: CLUSTER AND RANK QA TRANSITIONS

In this section, we describe the call clustering algorithm based
on QA states and transitions as well as the ranking algorithm of
QA transitions based on ACGSR. We first introduce the concept
of CTD and the way to automatically build it from spoken dialog
application logs.

The ultimate goal of performance evaluation and tuning is to
improve the caller satisfaction. Because this is not an objective
measure that we can directly optimize, we will focus instead on
maximizing the success rate of the spoken dialog application.

Definition 1: The success rate is defined as the percentage
of successful calls , i.e., calls that fulfilled their tasks, over all
calls placed and is given by .

Fulfillment of task is defined by the spoken dialog applica-
tions and means that the call was successfully transferred to the
right person in an auto-attendant application or that the user ob-
tained the desired information in a banking application. For sim-
plicity, we consider a call placed for two tasks as two separate
calls. The start and end of a task are determined by the devel-
opers of the application and automatically marked in the logs.
In this paper, we will use the success/failure markings for an
auto-attendant application, but for some applications, defining
success/failure may not be so straightforward. It is up to the ap-
plication developer to add events to the call log that mark such
success or failures.

A. Call Transition Diagram and Its Construction

Definition 2: A CTD is a 3-tuple CTD , where
we have the following.

• is a finite set of states .
• is a finite set of arcs where .
• is the set of calls passing through the arcs ,

where represents all the calls associated with the arc
.

A call can be represented as a sequence of QA states
traversed and the associated parameters. In other words,

, where is the start state, and
is the end state.

Note that the CTD differentiates itself from the traditional
Call Flow Diagram (CFD) in that the CTD contains the set of
calls passing through each arc. The CTD is also different from
the traditional Markov model description of the call states. In
the traditional Markov model description, the number of times
a state and/or arc is visited determines the model parameters,
while in the CTD, we measure the number of unique calls vis-
iting each arc. No matter how many times the same call has vis-
ited the same arc, it is counted as one call in the CTD. The reason
for this difference is that we are more interested in successful
calls rather than the events.
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TABLE I
CTD CONSTRUCTION ALGORITHM

TABLE II
SAMPLE LOG

Let represent the set of calls associated with arc , and
let represent the number of calls in the set. Similarly,
we use to represent the set of successful calls associated with
arc , and to represent the number of successful
calls associated with the arc.

The construction of the CTD from the application logs is
straightforward. Table I summarizes the algorithm. Here, a log
contains the information on QA states visited by a call. A sample
QA in a call log provided by Microsoft Speech Server is shown
in Table II. Note that during the CTD construction process, calls
are grouped together based on the QA states and transitions they
have visited.

B. ACGSR

After we construct the CTD, we need to identify those QA
states and transitions that need the most attention from devel-
opers. An obvious way is to sort the QA states and transitions
based on the local unsuccessful rate (the failure rate against all
calls visiting the QA state). This approach, however, is not op-
timal since the improvement in the local success rate does not
necessarily translate into the improvement in the overall success
rate. For example, it may not be worth paying attention to a QA
state with high unsuccessful rate if that QA state is buried down
in a voice menu since the total gain might be very limited. An-
other approach is to sort QA states based on the overall failure
rate (the failure rate against all calls placed). This approach may

Fig. 2. Example of using overall success rate to sort QA states and transitions.
Two numbers are associated with each transition. The first number is the total
number of eventually failed calls that went through the transition. The second
number is the total number of calls that visited the transition.

also be suboptimal. In the example shown in Fig. 2, each transi-
tion is associated with two numbers: the total number of even-
tually failed calls that went through the transition and the total
number of calls that visited the transition. If we sort the tran-
sitions based on the total number of failed calls (or the overall
failure rate), should be listed first. However, fixing all the
problems associated with that transition (so that all calls flowing
through that transition originally now go through ) does not
give us the best possible gain in the success rate since transition

also has a high failure rate. This suggests that a good crite-
rion is critical to the effectiveness of the ranking. Therefore, we
propose a criterion named ACGSR.

Definition 3: The ACGSR is the change of overall success
rate if all calls originally passing through the arc were to be
distributed to other arcs with the same start state (as if the arc
were cut from the CTD), given that all other system parameters
are unchanged.

Note that ACGSR measures the change of overall success rate
when a transition is changed. In other words, it measures the dif-
ference of the success rate before and after the transition change.
It is not a measurement of the success rate itself, which is avail-
able from the logs and CTD directly. There is an ACGSR score
for each transition. ACGSR essentially measures how important
it is to reduce the number of calls passing through a specific arc.
The higher the ACGSR score, the more important it is.

Unfortunately, ACGSR is not directly available from the CTD
(or logs) and needs to be estimated. To estimate ACGSR, we
assume that calls redirected to other arcs have the same success
rate as the calls originally passing through those arcs. Although
it does not hold strictly, this assumption is valid most of the time.
Because when a call passes through a transition, it is the dialog
construction under that transition that determines whether the
call will fail. We will show the result of a two-sample proportion
hypothesis test to support this in Section IV. If the CTD is a tree
with no loop and no merge, as depicted in Fig. 3, the ACGSR
of arc can be estimated using

ACGSR (1)
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Fig. 3. Estimation of ACGSR in a tree-type CTD. Calls originally passing
through the arc a are now redirected to other arcs, whose start state is q .

where is the destination of an arc. Let us define as the
total number of calls passing through state and as the total
number of successful calls passing through state , i.e.,

(2)

(3)

Equation (1) thus becomes

ACGSR

(4)

When the CTD is not a tree, however, (4) no longer holds due
to the fact that the same call may flow out of a state several times
through different arcs. Let us use the states and arcs in Fig. 4 as
an example. Assume that calls 1, 2, and 3 are failed and that calls
4 and 5 are successful. It is obvious that the success rate does not
change if arc is cut since all calls passing through have
already been counted in arcs and . However, if arc
is cut, all calls originally failed are now turned into successful
calls, and we have a big gain in the success rate.

The example illustrated in Fig. 4 suggests that only the calls
flowing out of the start state (no looping back) through the arc
should be considered when one estimates ACGSR.

Definition 4: A call loops back to the start state of arc
from the end state if there is a list of arcs

such that , , and , and the
call passes through them sequentially.

Definition 5: A sunken call of arc is a call that eventually
passes through arc and does not loop back to the start state

again.
Theorem 1: Call passing through the nonstop state is a

sunken call of one and only one arc whose start state is .
Proof: Since the state is a nonstop state, the call must go

out of state and end at another state. This means that is a
sunken call of at least one arc whose start state is . For the
same reason, the call cannot be a sunken call of multiple arcs
with the same start state.

Fig. 4. Estimation of ACGSR in a CTD with loops and merges. In this
example, calls 1, 2, and 3 failed, and calls 4 and 5 were successful. The success
rate does not change if arc a is cut since all calls passing through a have
already been counted in arcs a and a . However, if arc a is cut, we have a
big gain in the success rate.

Definition 6: A timestamp is a number associated with each
event. Later events have a higher timestamp than the earlier
ones. A timestamp can be real time or any number (e.g., event
ID) that increases over time. We use to indicate
the timestamps of the event that call passes through arc .
Since each call may pass through the same arc several times,

is used to indicate the latest time passes
through .

Theorem 2: Call associated with arc is a sunken call of
if and only if

Proof:
If call is a sunken call, the call eventually flows out through

arc and does not loop back again. This means that later
events (with a higher timestamp) associated with call do not
occur in all arcs whose end state is .

We prove this with a counter example. If call is not a sunken
call, there is a list of arcs such that
, , and , and the call passes through them

sequentially. This means that

(5)

The final algorithm of ACGSR estimation can be obtained by
redefining as the set of sunken calls of arc in (5).

C. QA Ranking

To present the results to the developers, we sort arcs on the
estimated ACGSR in descending order. Besides this, we need to
consider the following two issues.

First, developers are interested in knowing how to improve the
system. For this reason, those arcs with negative ACGSR are not
informative to them and should not be displayed since a negative
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ACGSR indicates that reducing the calls flowing through the arc
will reduce the success rate.

Second, developers might not be able to reduce the number
of calls passing through some arcs, even though those arcs may
have large ACGSR values. For example, an application may
have a menu from which to select the callers. Transitions to any
state associated with an item in the menu should not be cut. To
solve this problem, developers can either mark these arcs in the
CTD before running the tool or select to hide the transition in
the displayed report.

The ACGSR estimation algorithm is useful not only in de-
termining the most important QA states and/or transitions for
developers to work on but in many other areas as well. For ex-
ample, by changing the grammar used in a QA state, some calls
may be diverged to a different path than the original one. The
ACGSR estimation algorithm can be used to estimate the total
success rate gain after the grammar change without running the
updated application.

III. STEP TWO: IDENTIFY QA PROBLEMS THROUGH

INTERACTIVE CLUSTERING

After the most problematic QA states and/or transitions are
identified, it is desirable to group calls passing through these
arcs into clusters based on the cause of problems such as se-
mantic coverage, grammar overgeneralization, channel echo, in-
correct barge-in, bad prompt, and programming errors. Ideally,
the whole process should be automatic. However, several diffi-
culties exist in doing so. First, it is difficult to know all possible
causes of the problems and, therefore, train classifiers for them
before hand. Second, different applications may log different
information, and it is the additional information that separates
one type of problem from another. Third, each application has
its own dialog flow, and therefore, it is difficult to generate a set
of universal classifiers.

For this reason, we tackle the problem from a different angle
and aim to reduce the time and effort needed for developers to
identify problems through IC.

Definition 7: IC is a clustering process based on semi-super-
vised clustering. During initialization, IC clusters calls based on
prior knowledge such as pretrained classifiers. If no prior knowl-
edge is available, IC keeps all calls in one cluster or groups
them with unsupervised clustering. The developer listens to un-
labeled calls and labels them (with the cause of the problem,
for example). The developer’s interaction is used as supervi-
sion and/or feedback for IC to adjust and label other calls. This
process goes on until all calls are labeled and the developer is
satisfied with the labels.

The essence of the IC is similar to co-training, which com-
bines a small amount of seed-labeled data with an unlimited
amount of unlabeled data to bootstrap a classifier [8], [18].

With a brute force approach, the developer needs to check all
the calls associated with a special QA transition to identify most
of the problems. During this process, the developer is usually
frustrated since he/she is listening to calls with the same causes
again and again. Traditionally, the calls are sent for manual tran-
scription, but this is costly and results in a significant delay. A
slightly better approach is random sampling, but it is hard to

Fig. 5. Example of IC. After six calls are labeled, calls are clustered into
three classes, two of which are labeled. The developer needs to check only the
unlabeled cluster to find other problems.

determine the number of samples needed. A large number of
samples means lots of redundant work, and a small number of
samples means a low probability of finding all the problems.

With IC, things are different. After the developer labels a call,
all similar calls are grouped together and labeled. The developer
needs to focus on only those unlabeled calls that are usually
associated with new causes. The number of calls the developer
needs to listen to overall is thus greatly reduced.

Fig. 5 illustrates an example of IC. Originally, all calls are
unlabeled and clustered into one class, as shown in Fig. 5. After
only six calls are manually labeled, calls are clustered into three
classes, two of which are labeled. The next call the developer
needs to listen to is one from the unlabeled class.

The main component of IC is a semi-supervised, finite mix-
ture distribution model based on clustering algorithm.

A. Membership Determination

We want to find the best classification in which instances sim-
ilar to labeled data are labeled accordingly, given a large set
of unlabeled data instances and a small set of labeled data in-
stances. For the sake of easy discussion, we denote a variable
by a token in upper case (e.g., ) and the value of the variable
by that same token in lower case (e.g., ). We use to de-
note the probability that , given , or a probability
distribution for , given .

Our approach to cluster the whole data set
into clusters is based on

the mixture distribution model.
Given the model parameters , the probability that instance
belongs to class is

(6)

where is the probability that instance is generated
by class and is the prior of different classes. We as-
sume that the prior follows a Bernoulli distribution, i.e., without
knowing the value of the data instance, the probability that it be-
longs to class is

(7)
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This means (6) can be expressed as

(8)

The probabilities are called membership probabil-
ities. After we have computed these probabilities, we can either
assign the data instance to the cluster with the highest proba-
bility (a hard assignment) or assign the data instance fraction-
ally to the set of clusters according to this distribution (a soft
assignment). When we present the result to the developers, we
use hard assignment.

B. Model Parameter Learning

The model parameters are estimated with the Expecta-
tion–Maximization (EM) algorithm [14]. The EM algorithm
starts with a set of initial values of the parameters and then
iterates between an expectation or E step and an maximization
or M step until the parameter values converge to stable values.

Given the model parameters , the probability that instance
is generated by the model is specified as

(9)

The probability that all data instances are generated by the
model is

(10)

The posterior probability of model parameter is

(11)

where is the prior distribution of . The maximum a pos-
teriori (MAP) parameter is defined as

(12)

When used in conjunction with vague or noninformative
priors, MAP estimates are smoothed versions of Maximum
Likelihood (ML) estimates [20]. We choose a Dirichlet dis-
tribution as the prior for the multinomial distribution with
parameters

(13)

In our case, we choose .

Given the current parameters , the new parameters are
thus estimated to maximize the following function:

(14)

Assume that each data instance is an ordered vector of
attribute values and that attributes
are independent of each other; therefore

(15)

Each attribute can have either nominal values or real values.
Multinomial value attributes are modeled with a Bernoulli dis-
tribution: . Real value attributes are
modeled with a Gaussian distribution: .

By maximizing the function with respect to each subset of
parameters, we can get the algorithms for updating parameters.

At the initialization step, random probabilities are assigned to
, which is used to estimate the initial model.

C. Supervision as Constraint and Feedback

Thus far, we have only discussed the clustering algorithm
without any labeled data. To use the data instances labeled by
developers, we artificially boost the importance of the data in-
stance to the estimation of the model parameters

(16)

where is the label of data point , and is the boost
factor. is originally set to 1 and doubles its value every time
the converged result does not have labeled data correctly clas-
sified. It is easy to see that the labeled data is used both as con-
straint [30] and as feedback [11] in this approach.

Since we are interested in helping developers focus on calls
that are not similar to those already labeled, we set the number
of clusters in the clustering algorithm as one plus the number
of known classes. In other words, is set to 1 initially and in-
creases by one each time a new class is discovered by the devel-
opers. If the number of instances in the unlabeled cluster is zero
after the clustering, IC will confirm it with a second try. IC stops
when it confirms that the number of instances in the unlabeled
cluster is zero, and the developer is satisfied with the label.

IV. EXPERIMENT AND EVALUATION

We have developed a graphical user interface (GUI) tool
using our approach and evaluated it on an internal application
named MS Connect, which is an auto-attendant application
built on the Microsoft Speech Server. The system allows callers
to speak the name of the person they wish to contact, and it
provides them with a variety of messaging options. Although
we evaluated our approach with an auto-attendant application,
we hope this approach can be applied to other system-initiative
spoken dialog applications.

The MS Connect service has 33 QA states, 137 transitions,
and 14 different grammars and serves to transfer calls to more
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Fig. 6. Part of MS Connect Call Flow Graph.

than 50 000 employees at Microsoft Corporation. Fig. 6 illus-
trates part of the Call Flow Graph.

For performance monitoring and tuning purposes, all calls
are logged through the logging facility provided by Microsoft
Speech Server until the call is either transferred or the user
hangs up. In our experiment, we used log data collected in
June 2004. The whole database contains logs for about 50 000
calls. Each call consists of a sequence of QA events. Each
QA event contains information including the QA state name,
prompt, automatic speech recognizer (ASR) result, retained
audio, confidence score, barge-in information, grammars,
Dual-Tone-Multi-Frequency (DTMF) result, prompt time, ASR
time, and task information. An example of the event can be
found in Table II. The average number of turns for a call is
3.8. The success rate of all the calls is 76.2%, and the average
duration of all the calls is 37.3 sec.

Fig. 7 is a snapshot of the GUI tool. It shows the QA
transitions and calls sorted based on ACGSR on the June 28,
2004 logs, which contain a total of 2216 calls. From this
figure, we can see that the transition that would benefit most
from improvement is the transition from Phase1AskQA to
FarEnd (hung up by the caller). More than 10% (or 222) calls
pass through this transition. If we can reduce the calls flowing
through this transition completely, we can get absolute 8.5%
(or 189 calls) improvement in the success rate. Unfortunately,
this transition means that users hang up after they find they
are talking to a machine, so probably, there is not much the
developer can do. Another interesting finding is that 1.5%
calls pass from SayCallingContact to NearEnd (hung up by
the system.) This is surprising since the system already knew
where to route the call but failed to do so. It was then
discovered that the phone number was not available in the
database for some people. Fixing problems in this transition
would give us 1.5% gain in success rate. We have run the

tools on three days, 10 days, and 30 days of logs and seen the
similar results. ACGSR clearly identified those QA states and
transitions to which developers should pay most attention.

To check whether the assumption we have made to estimate
ACGSR is valid, we compared the success rate associated with
transitions before and after changing a transition. For example,
we changed the grammar associated with the Phase1AskQA
state by manually adjusting pronunciations for hundreds of
employee names since the pronunciations generated by the
letter-to-sound rules may deviate from the true pronunciations
of some names. Table III shows the test result. In the table, n-b
represents the total number of calls before the change. S-b rep-
resents the success rate before the change. N-a and s-a represent
the total number of calls and the success rate after the change,
respectively. Note that here, we measure the calls passing
through all the transitions started from a special QA state,
except for the transition that has been changed. This change
reduced the percentage of calls going from Phase1AskQA
to FarEnd. Before the change, the system got a consistently
low confidence scores for such names as Yun-Cheng Ju and
tended to ask for the full name again and again, and many users
simply hung up. After the change, we reduced the number
of people who hung up before going to the next state. In this
case, we measure all the calls passing from Phase1AskQA,
except for those passed to the FarEnd state. The variance shown
in the table is within the valid deviation range based on the
two-sample proportion test. We cannot deny the hypothesis that
the success rate before and after changing a transition are the
same.

Evaluating the effectiveness of IC requires additional work.
Traditionally, clustering algorithms are evaluated with criteria
such as confusion matrix, precision, recall, F1 measure, bal-
ancing, purity, entropy, and mutual information [15]. These cri-
teria do not fit here since the purpose of IC is to identify all
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Fig. 7. Snapshot of the GUI tool. It shows the QA transitions sorted by ACGSR. Each transition is followed by two sets of numbers. The first set of numbers
indicates the absolute and percentage gain of ACGSR. The second set of numbers indicates the absolute and percentage of calls passing through the arc.

TABLE III
COMPARING THE SUCCESS RATE BEFORE AND AFTER THE CHANGE

problems as fast as possible. The following are two obvious cri-
teria.

Criterion 1: PPI is the Percentage of Problems Identified
over all problems existing under the assumption that the devel-
oper can label each call he/she has listened to. The best PPI pos-
sible is 100%.

Criterion 2: The Average Number of Calls Labeled (ANCL)
is the ratio of total number of calls labeled manually per problem
identified. The lowest possible ANCL is 1.

Another less obvious criterion is the following.
Criterion 3: The Problem Distribution Accuracy (PDA) is

the accuracy of the number of calls in each class. It is defined as
the Kullback–Leibler (KL) distance [24] between the problem
distribution obtained from IC and the true problem distribution

PDA (17)

where is the estimated percentage of calls in class , and is
the true percentage of calls in class . The lowest possible PDA
is 0.

PDA is partially related to the goal of the analysis. The
closer to 0 the PDA is, the more accurate the estimation of the
problem distribution, and the more reliable the developers can
count on the estimated problem distribution to prioritize their
efforts. PDA by its own, however, is not sufficient to measure
the effectiveness of the approach.

We evaluated IC using two sets of data generated from the
ACGSR ranking and clustering step. The first set of data con-
tains 459 failed calls manually classified into four types of prob-
lems with distributions 338, 36, 53, and 32. The second set of
data contains 896 failed calls in four clusters, each of which has
706, 69, 67, and 54 calls. The four types of problems are the
following:

• Acoustic confusion, e.g., Alan Meier versus Alan Maier;
confusion caused by noise;

• Uncovered semantics, e.g., callers try to reach receptionist
or technical support that are not handled by the system;

• Bad dialog design, e.g., callers do not know how to or do
not want to choose from a voice menu; callers do not know
they need to say the first name and last name;

• Pronunciation variation, e.g., callers’ pronunciation of a
foreign name is different from that of the ASR.

The four types of problems were identified manually by lis-
tening to all calls. The feature set we used in this experiment
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TABLE IV
IC PERFORMANCE EVALUATION (DATASET 1)

TABLE V
IC PERFORMANCE EVALUATION (DATASET 2)

includes promptID, prompt barged-in status, DtmfID, repeti-
tion of passing, duration, and engine confidence scores. We ran
100 independent experiments for each data set and compared IC
with full sampling and random sampling. The goal of the experi-
ment is to determine how many problems can be found when the
developer listens to only a small subset of all those failed calls
(based on the success/failure marking in the log), and hopefully,
which call belongs to which problem cluster. Tables IV and V
and Fig. 8 illustrate the results. To tie part of the evaluation into
the traditional framework, we also report the average precision
(Acc) of the classification, although it is not directly related to
the purpose of problem identification.

Full sampling guarantees the correct identification of all prob-
lems and distributions. However, it requires the developer to
listen to 115 calls per problem on average in dataset 1 and 224
calls per problem in dataset 2. The random sampling approach
gives us a better result. To compare apples to apples with IC, we
conducted two sampling configurations. The first approach is to
fix the sampling size, and the second is to fix the PPI. The result
shows that by having the developer listen to only ten calls, IC
with confirmation can detect close to 100% of the problems in
both datasets, whereas the random sampling approach can de-
tect only 71.8% of problems in dataset 1 and 61.3% of problems
in dataset 2. To detect close to 100% of problems, IC requires
checking only 2.5 calls per problem in both datasets, whereas
the random sampling approach requires checking 6.6 calls per
problem in dataset 1 and 7.0 calls per problem in dataset 2. In
both configurations, IC provides a more accurate distribution
than the random sampling approach, whereas IC also clusters
similar calls.

Fig. 8 shows the distribution of the number of problems
identified if the developer listens to only ten calls. In the
random sampling approach, we may identify all four problems
with about a 20% of chance in dataset 1 and with less than 10%
chance in dataset 2. With the IC approach we can identify all
four problems almost all the time. This indicates that devel-
opers can identify more problems with our approach if they
listen to a fixed number of calls. It also gives us a rough idea
of the relationship between the number of calls labeled and the
number of classes numbered.

Fig. 8. Distribution of the number of problems identified when the developer
listens to only ten calls. The first three bars compare the results for dataset 1,
and the last three bars compare the results for dataset 2. RS=Random Sampling.
IC NC=IC with No Confirm. IC WC=IC with Confirm. We can see that with IC
WC, the developer can find all the problems while devoting little time to it.

TABLE VI
PROBABILITY THAT EACH PROBLEM MAY BE FOUND OUT BY LISTENING TO

ONLY 10 CALLS FROM DATASET 1

TABLE VII
PROBABILITY THAT EACH PROBLEM MAY BE FOUND OUT BY LISTENING

TO ONLY TEN CALLS FROM DATASET 2

Tables VI and VII report the probabilities that each individual
problem may be found out by listening to only ten calls from
datasets 1 and 2, respectively. We can see that problem 1 can be
identified with a 100% chance using either approach. However,
we only have about a 50% of chance to find problems 2 and 4
using the random sampling approach, although we can identify
those problems with more than an 85% chance using interactive
clustering with no confirmation and over a 98% chance using
interactive clustering with confirmation.

V. RELATED WORK

The CFD has been widely used in speech dialog design [1].
The CTD is an extension to CFD.

Lots of work has been conducted in dialog-spoken application
analysis. Hastie et al. [21] reported training a problematic di-
alog identifier to classify problematic human–computer dialogs.
Litman et al. [26] and Hirschberg et al. [22] suggested adapting
the system automatically by detecting ASR misrecognitions.
Bechet et al. [5] proposed applying data clustering methods to
spoken-dialog corpora and then using the resulting clusters for
system evaluation and language modeling. Aberdeen et al. [1]
proposed automatically identifying errors by using semantics at-
tached to the dialogs. Although we also work on spoken dialog
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application analysis, our focus is on reducing the time and ef-
fort needed to identify problematic QA states and transitions as
well as associated problems through automatic and semi-auto-
matic clustering algorithms. In contrast to other approaches, our
approach does not require completely labeled training data. In-
stead, the system learns from the interaction with the developers
gradually.

Probabilistic model-based clustering is well known and
widely used [3], [5], [9], [13], [17], [23], [27], [29], [32].
Kamvar et al. [21] proved that pair-wise distance/simi-
larity-based approaches can be considered to be special cases
of model-based clustering.

According to its original definition, clustering is unsuper-
vised. Clusters are solely determined by the initial clusters,
distance measurement, unlabeled data samples, and the al-
gorithm used to assign data samples. Recently, however,
semi-supervised clustering has been studied rigorously [4], [7],
[8], [10]–[12], [16], [19], [28], [30], [31], [33]. In semi-super-
vised clustering, both labeled and unlabeled data are used to
control the clustering process. Labeled data have been used in
the following three different ways.

• As initial seeds [4]. The labeled data is used to generate
the initial clusters only.

• As constraints [30]. The grouping of labeled data is kept
unchanged throughout the clustering process.

• As feedback [11]. Clusters are first determined based on
unsupervised clustering iteration, and the labeled data are
then used to adjust the resulting clusters iteratively.

Basu et al. [4] reported that the constrained approach per-
forms at least as well as the seeded approach. Zhong [33] con-
cluded that “the constrained approach is superior when the avail-
able labels are complete while the feedback-based approach
should be selected if the labels are incomplete.”

Our IC algorithm belongs to the semi-supervised clustering
algorithm family, where both labeled and unlabeled data are
used in the clustering process. Despite the similarity, our IC al-
gorithm is different from other approaches in several aspects.
First, the goal of our approach is to help developers identify
problems as fast as possible, whereas in other approaches, the
accuracy of the clustering is the most important criteria. For this
reason, we introduced PPI, ANCL, and PDA as new criteria.
Second, our approach uses labeled data as both the constraints
and feedback during the clustering process, whereas other ap-
proaches usually use the labeled data as either initial seeds, con-
straints, or feedback but not combinations of these. Third, in
other approaches, the number of clusters is usually assumed to
be a priori knowledge or determined by criteria such as mutual
information. In IC, the number of clusters is determined by the
problems already identified by the developers.

VI. CONCLUSIONS AND FUTURE WORK

We described our recent technologies on log analysis and
its application to system-initiative spoken dialog applica-
tion problem identification. In particular, we proposed using
ACGSR as the criterion to rank QA state and transitions and
using IC to help developers find problems more quickly. We
showed that our techniques can significantly reduce the time

and effort needed by developers to identify problems in their
spoken dialog applications.

We perceive that our system can be extended in the following
areas, and we are working in these new areas.

First, when a QA transition is identified to have a large
ACGSR, the cause of the problem may not be located at the
start state of the transition. For example, calls passing from
Phase1ConfirmQA to Phase2AskQA are largely caused by the
recognition error in the previous QA state—Phase1AskQA.
In our current implementation, we identify those so-called
confirmation states and trace back one level to extract a feature
set for problem identification purposes. We believe that a better
probabilistic approach can be invented to replace this heuristic.

Second, we used only six features in the IC process in the
current implementation. However, many other features, even
though they are hard to obtain, could be useful for identifying
problems. We are working on algorithms to extract those new
features.

Third, we do not have prebuilt classifiers for finding common
problems in the current implementation. We are working on pro-
viding such classifiers once we have enough logs from different
applications.
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