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Abstract. Speech technology has been playing a central role in enhancing human-machine interactions, especially
for small devices for which graphical user interface has obvious limitations. The speech-centric perspective for
human-computer interface advanced in this paper derives from the view that speech is the only natural and expressive
modality to enable people to access information from and to interact with any device. In this paper, we describe
some recent work conducted at Microsoft Research, aimed at the development of enabling technologies for speech-
centric multimodal human-computer interaction. In particular, we present a case study of a prototype system,
called MapPointS, which is a speech-centric multimodal map-query application for North America. This prototype
navigation system provides rich functionalities that allow users to obtain map-related information through speech,
text, and pointing devices. Users can verbally query for state maps, city maps, directions, places, nearby businesses
and other useful information within North America. They can also verbally control applications such as changing
the map size and panning the map moving interactively through speech. In the current system, the results of the
queries are presented back to users through graphical user interface. An overview and major components of the
MapPointS system will be presented in detail first. This will be followed by software design engineering principles
and considerations adopted in developing the MapPointS system, and by a description of some key robust speech
processing technologies underlying general speech-centric human-computer interaction systems.
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1. Introduction24

Speech recognition technology enables a computer25
to automatically convert an acoustic signal uttered by26
users into textual words, freeing them from the con-27
straints of the standard desktop-style interface (such28
as mouse pointer, menu, icon, and window etc.). The29
technology has been playing a key role in enabling30
and enhancing human-machine communications.31
In combination with multimedia and multimodal32
processing technologies, speech processing will in33
the future also contribute, in a significant way, to34
facilitating human-human interactions. In applications35

such as distributed meetings, audio-visual browsing, 36
and multimedia annotations, automatic processing 37
of natural, spontaneous speech will collaborate with 38
automatic audio-visual object tracking and other 39
multimedia processing techniques to complete full 40
end-to-end systems. In addition to the multimedia 41
applications, the most important role that speech can 42
play is in a full range of the devices that demand 43
efficient human inputs. Since speech is the only 44
natural and expressive modality for information access 45
from and interaction with any device, we highlight 46
the speech-centric view of human-machine interface 47
(HCI). 48
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Speaking is the most natural form of human-to-49
human communication. We learn how to speak in the50
childhood, and we all exercise our speaking communi-51
cation skills on a daily basis. The possibility to translate52
this naturalness of communication into the capability53
of a computer is our natural expectation, since a com-54
puter is indeed equipped with huge computing and55
storage capacities. However, the expectation that com-56
puters should be good at speech has not been a reality,57
at least not yet. One important reason for this is that58
speech input is prone to error due to imperfection of59
the technology in dealing with variabilities from the60
speaker, speaking style, and the acoustic environment.61
The imperfection, in addition to a number of social and62
other reasons, raises the issue that speech alone is not63
sufficient as the most desirable input to computers. Use64
of multimodal inputs in an HCI system, which fuses65
two or more input modalities (speech, pen, mouse, etc.)66
to overcome imperfection of speech technology in its67
robustness as well as to complement speech input in68
other ways, is becoming an increasingly more impor-69
tant research direction in HCI.70

Major HCI modalities in addition to speech are71
related to graphic user interface (GUI). GUI is based72
primarily on the exploitation of visual information,73
and has significantly improved HCI by using intuitive74
real-world metaphors. However, it is far from the ulti-75
mate goal of allowing users to interact with computers76
without training. In particular, GUI relies heavily77
on a sizeable screen, keyboard, and pointing device,78
which are not always available. In addition, with more79
and more computers designed for mobile usages and80
hence subject to the physical size and hands-busy or81
eyes-busy constraints, the traditional GUI faces an82
even greater challenge. Multimodal interface enabled83
by speech is widely believed to be capable of dramat-84
ically enhancing the usability of computers because85
GUI and speech have complementary strengths.86
While speech has the potential to provide a natural87
interaction model, the ambiguity of speech and the88
memory burden of using speech as output modality89
on the user have so far prevented it from becoming the90
choice of mainstream interface. Multimodal Intelligent91
Personal Assistant Device, or MiPad, was one of our92
earlier attempts in overcoming such difficulties by93
developing enabling technologies for speech-centric94
multimodal interface. MiPad is a prototype of wireless95
Personal Digital Assistant (PDA) that enables users to96
accomplish many common tasks using a multimodal97

spoken language interface (speech + pen + display). 98
MiPad, as a case study for speech-centric multimodal 99
HCI application, has been described in detail in our 100
recent publication [2]. In this paper, we will present a 101
second case study based on a new system built within 102
our research group more recently, called MapPointS. 103

During past several years, many different methods 104
of integrating multiple modalities (voice, visual, and 105
others) in HCI have been proposed and implemented, 106
and some key issues have been discussed [10–13, 16]. 107
Many prototype systems have also been built based on 108
the use of multiple modalities [1, 2, 7, 9, 14], most 109
of which have focused on the special advantage of 110
the speech input for mobile or wireless computing as 111
in multimodal PDA’s. Both of our prototype systems, 112
MiPad and MapPointS, have such mobile computing 113
in the special design consideration. Their design also 114
takes the speech-centric perspective — fully exploiting 115
the efficiency of the speech input where other modali- 116
ties have special difficulties. 117

The focus of this paper, the prototype MapPointS, is 118
a speech-centric, multimodal, location-related, map- 119
query application for North America. The unique 120
advantage of the system is its full and direct ex- 121
ploitation of the frequently updated backend database 122
provided by the existing Microsoft product, Map- 123
Point (http://mappoint.msn.com). MapPointS essen- 124
tially adds the “Speech” modality and its interface into 125
MapPoint, and hence MapPointS. MapPointS provides 126
rich functionalities to allow the users to obtain map- 127
related information through speech, text, and pointing 128
devices. (MapPoint provides the same functionalities 129
with the inputs of text and pointing devices only). 130
With MapPointS, the users can verbally query for 131
state maps, city maps, directions, places (e.g., school 132
names), nearby businesses, and many other useful in- 133
formation. They can also verbally control applications 134
such as changing the map size and panning the map 135
moving interactively through speech. In the current 136
system, the results of the queries are presented back to 137
users through GUI. An overview and the major com- 138
ponents of the MapPointS system will be presented 139
in detail in this paper first. Following this presen- 140
tation, we will describe several key software design 141
engineering principles and considerations in devel- 142
oping MapPointS. Finally we will present some key 143
speech processing technologies underlying the gen- 144
eral speech-centric HCI systems including MiPad and 145
MapPointS. 146
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2. System Overview and Functionality147
of Mappoints148

MapPointS is a map query application that supports149
a large set of map query commands through speech,150
text, and pointing devices. These commands can be151
classified into the following five categories:152

1. Application Control: Application control com-153
mands are used to control MapPointS applications.154
For example, a user can use speech (as well as other155
modalities) to quit the application, to pan the map156
towards eight directions, to zoom the maps, or to157
open and save the map.158

2. Location Query: Location queries are used to search159
for the map of a specific location. For example, a160
user can query for a map with city names, state161
names, joint city and state names, place names (e.g.,162
Seattle University), or referenced locations (e.g.,163
here; this place; and this area, etc., which are indi-164
cated by the mouse click rather than by the speech165
input.166

3. Route Query: Route queries are used to obtain167
directions from one location to another. There168
are two types of such queries. The first type169
contains both “from” and “to” information. For170
example, a user can say “How do I get from171
<startlocation> to <endlocation>” to obtain direc-172
tions from <startlocation> to <endlocation>. The173
<startlocation> and <endlocation> can be any lo-174
cation type specified in location query. The second175
type of queries contains information about “to lo-176
cation” only. “How may I go to <location>” is an177
example of such queries. When a query with “to178
location” only is submitted by a user, the system179
will infer the most probable from location based on180
the user’s dialog context.181

4. Nearest Query: “Nearest” queries are used to find182
the closest or the nearest instance of a specific type183
of places to the current location. MapPointS sup-184
ports about 50 types of locations including bank,185
gas station, airport, ATM machine, restaurant, and186
school. For instance, a user can query for the near-187
est school, Chinese restaurant, etc. When such a188
query is made, MapPointS will infer the most prob-189
able current reference location based on the dialog190
context.191

5. Nearby Query: “Nearby” queries are similar to the192
“nearest” queries above. The difference is that all193
nearby instances of a type of places, instead of only194

one, are displayed in the nearby queries. For ex- 195
ample, a user can query for all nearby gas stations. 196
Similar to the situation of the nearest query, Map- 197
PointS needs to infer the most probable reference 198
location before executing the query. 199

Examples of the above five types of queries are pro- 200
vided now. Figure 1 is a screen shot where a map of 201
Seattle is displayed as a result of speech command used 202
in the location query: “show me a map of Seattle”. A 203
typical map of Seattle with its surroundings is imme- 204
diately displayed. All cities in the U.S. can be queries 205
in the same manner. 206

Figure 2 gives a multimodal interaction example 207
where the user makes a location query by selecting 208
an area with mouse and zooming the picture to just 209
that part of the map while using the following simul- 210
taneous speech command: “show me this area”. The 211
portion of the map selected by the user is displayed in 212
response to such a multimodal query. 213

In Fig. 3 is another multimodal interaction example 214
for the nearest location query. In this case, the user 215
clicks on a location, and more or less simultaneously 216
issues the command: “Show me the nearest school” 217
with speech. MapPointS displays “Seattle University” 218
as the result based on the location that the user just 219
clicked on. 220

In Fig. 4 we show an example of the route query to 221
find the direction from Seattle to Boston, with a speech 222
utterance such as “Show me directions from Seattle to 223
Boston”, or “How may I go from Seattle to Boston”, 224
etc. If the immediately previous location is Seattle, 225
then saying just “How may I go to Boson” will give 226
the identical display as the response to the query. 227

We provide a further example in Fig. 5 of query- 228
ing nearby restaurants by speaking to MapPointS with 229
“show me all nearby restaurants”. The system assumes 230
the current location of the user based on the previous 231
interactions, and is hence able to display all nearby 232
restaurants without the need for the user to specify 233
where he currently is. 234

For the system functionalities illustrated in the above 235
description and examples, MapPointS demonstrates 236
the following four specific features: 237

1. Multi-Modal Human-Computer Interaction: As we 238
discussed in Introduction section, one of the trends 239
of HCI is the integration of multi-modal inputs, 240
through which speech recognition is integrated with 241
various other modalities such as keyboard and 242
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Figure 1. Navigation using voice command: “show me a map of Seattle”.

mouse inputs. MapPointS is a good show case for243
this capability since it includes both location search244
(via the name) and location pointing/selection. The245
former is most naturally accomplished using voice246
command because it is difficult to use a mouse or247
a pen to search for one of a very large number of248
items (cities, etc). The latter, location pointing and249
selection, on the other hand, is relatively easy to250
be fulfilled with mouse clicks. For example, a user251
may ask the system to “show me a map of Seattle”.252
The user can then use the mouse to click on a spe-253
cific location or to select a specific area. He/she can254
then or simultaneously issue the command “Show255
me the nearest school around here” with speech as256
the input.257

2. Integrated Interface for Speech and Text: In the258
MapPointS, a user not only can use speech to query259
the application but also can use a natural text input260
to ask for the same thing. For example, the user261
can say “Where is the University of Washington”262
to have the University of Washington be identified263

in the map. Alternatively, the user can just type 264
in “Where is the University of Washington” in the 265
command bar and obtain the same result. 266

3. Recognition of a Large Quantity of Names: As 267
we have mentioned, MapPointS allows its users to 268
query for all cities and places in the US. Accurate 269
recognition of all these names is difficult since there 270
are too many names to be potential candidates. For 271
example, there are more than 30,000 distinct city 272
names in the US, and the total number of valid 273
combinations of “city, state” alone is already larger 274
than 100,000, not to mention all the school names, 275
airport names, etc. in all cities. 276

4. Inference of Missing Information: When a user 277
queries information, he/she may not specify full 278
information. For example, when a user submits a 279
query “How may I get to Seattle University”, Map- 280
PointS needs to infer the most probable location that 281
the user is currently at. This inference is automati- 282
cally performed based on the previous interactions 283
between the user and MapPointS. 284
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Figure 2. User’s mouse selection is seamlessly integrated into the speech command: “Show me this area”.

3. System Architecture and Components285
of Mappoints286

The major system components of MapPointS are287
depicted in Fig. 6. The raw signals generated by the288
user are first processed by a semantic parser into the289
“surface semantics” representation. For the speech290
input, the speech recognizer first converts the raw291
signal into a text sequence, with the help from the292
Language Model component, before semantic parsing.293
Each possible modality, speech or otherwise, has its294
separate corresponding semantic parser. However, the295
resulting surface semantics are represented in common296
Semantic Markup Language (SML) format and is thus297
independent of the modality. With this approach, the298
input methods become separated from the rest of the299
system. The surface semantics from all the input media300
are then merged by the Discourse Manager component301
into the “discourse semantics” representation. When302

generating the discourse semantics, the discourse man- 303
ager integrates the environment information (provided 304
by the Environment Manager and Semantic Model 305
components) which includes: (1) dialog context; (2) 306
domain knowledge; (3) user’s information, and (4) 307
user’s usage history. Such important environment 308
information is used to adapt the Language Model, 309
which improves the speech recognition accuracy and 310
enhance the Semantic Parsers for either the speech 311
or text input. (Semantic Model is the component 312
that provides rules to convert the surface semantics 313
into actionable commands and to resolve possible 314
confusibility.) The discourse semantics is then fed into 315
the Response Manager component to communicate 316
back to the user. The Response Manager synthesizes 317
the proper responses, based on the discourse semantics 318
and the capabilities of the user interface, and plays the 319
response back to the user. In this process, Behavior 320
model provides rules to carry out the required actions. 321
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Figure 3. User’s latest mouse click input is referenced by voice command: “Show me the nearest school”.

We have already introduced some components of the322
above main architecture in some of our earlier publi-323
cations (e.g., [2]). In this paper, we focus on two novel324
components of the architecture: Language Model (LM)325
and Environment Manager. The design of these two326
components has been specific to the MapPointS sys-327
tem.328

As we pointed out in the previous section, one of329
the major difficulties of the task is the recognition of330
the very large quantity of names. Including all names331
in the grammar is infeasible because the total number332
of names is so large that the confusability between333
these names is extremely high and the computation for334
speech recognition search is very expensive.335

The speech recognition task is conducted as an336
optimization problem to maximize the posterior337
probability:338

ŵ = arg max
w

P(A | w)P(w),

where w is a candidate word sequence, and P(w) is 339
the prior probability for the word sequence (or LM 340
probability). This suggests that we can reduce the 341
search effort through controlling the language model 342
so that only the most probable names are kept in the 343
search space. One of the approaches used to better 344
estimate P(w) is to exploit the user information, 345
especially the user’s home address, usage history, 346
and current location. In other words, we can simplify 347
the speech recognition search task by optimizing the 348
following posterior probability: 349

ŵ = arg max
w

P(A | w)P(w | E),

where the general LM P(w) is now refined (i.e., 350
adapted) to the Environment-specific LM P(w | E), 351
which has a much lower perplexity than the otherwise 352
generic LM. (This environment-specific LM is 353
closely related to topic-dependent LM or user-adapted 354
LM in the literature.) How to exploit the user 355
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Figure 4. Route query to find direction from Seattle to Boston by speaking to MapPointS: “How may I go from Seattle to Boston”, or just
“How may I go to Boston” if the current location is Seattle.

“environment” information to adapt the LM is the job356
of the “Environment Manager” component in Fig. 1,357
which we describe in detail in the remainder of this358
section.359

In the current MapPointS system, the PCFG (Prob-360
abilistic Context Free Grammar) is used as the361
LM. Some examples of the CFG rules are shown362
below:

363
In order to build the environment-adapted LM based364

on the PCFG grammar, the LM probability P(w | E) is365
decomposed into the product of the words that make366
up the word sequence w and that follow the grammar367
at the same time. The majority of the words which368

are relevant to LM in our MapPointS system are the 369
names or name phrases such as “New York City” in 370
the above CRG rules. (Many non-name words in the 371
grammar are provided with uniform LM probabilities 372
and hence they become irrelevant in speech recognition 373
and semantic parsing.) 374

We now describe how the conditional probability of 375
a name or name phrase given the environment (user) 376
information is computed by the Environment Manager 377
component of MapPointS. Several related conditional 378
probabilities are computed in advance based on well 379
motivated heuristics pertaining to the MapPointS task. 380
First, it is noted that users tend to move to a city before 381
querying for small and less-known locations inside 382
that city. On the other hand, they often move between 383
cities and well-known places at any time. In other 384
words, small places (such as restaurants) in a city, 385
except for the city that the user is looking at currently, 386
have very small prior probabilities. Cities, well-known 387
places, and small places in the currently visited city, in 388
contrast, have much higher prior probabilities. For this 389
reason, we organize all names into two categories: the 390
global level and the local level. The global-level name 391
list contains state names, city names, City+State, 392
and well-known places such as Yellowstone National 393
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Figure 5. Display of MapPointS in response to the “Nearby Restaurants” query.

park. This global-level name list is included in the394
recognition grammar at all times. The local-level395
name list, on the other hand, contains detailed location396
information about a city or a well-known place. When397
the current city is changed, the local-level name list is398
changed accordingly.399

To speed up the loading of the local-level name list,400
we pre-built the local list for each of the 2000 major401
cities. This is needed because there are usually many402
place names in large cities and these lists are slow to403
build. For local-name lists of small cities, we build404
them when the city is firstly visited and cache the lists405
in the hard drive in order to speed up the process when406
it is visited again.407

Even after adopting this approach, the number of408
names is still large. The majority of the names in the409
global-level name list are for cite and state combination410
(City+State). The simplest way to include these names411
in the grammar would be to list them all one by one.412
This, however, requires more than 100,000 distinct413

entries in the grammar. Typical recognition engines 414
can not handle the grammars of such a size efficiently 415
and effectively. We thus take a further approach to 416
arrange the cities and states in separate lists and allow 417
for combinations of them. This approach greatly 418
reduces the grammar size since we only need 30,000 419
cities and 50 states. Unfortunately, this will provide 420
invalid combinations such as “Seattle, California”. 421
It also increases the name confusability since now 422
there are more than 30,000∗50 = 1,500,000 possible 423
combinations. To overcome this difficulty, we choose 424
to list only valid City+State combinations. To accom- 425
plish this, we prefix the grammar so that all names 426
are organized based on the city names, and each city 427
name can only follow the valid subset of the 50 state 428
names. The prefixed grammar can be processed by 429
recognition engines rather efficiently. For some slow 430
systems where the speed and accuracy may still be in- 431
adequate, we further pruned the number of City+State 432
combinations. 433
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Figure 6. Major system architecture and components in Map-
PointS.

The second heuristic adopted by the MapPointS sys-434
tem is motivated by the intuition that if a user queries435
restaurants a lot, the probability that he/she will query436
new restaurants should be high even though they have437
not been queried before. With this heuristic, we or-438
ganize all names into about 40 classes including gas439
stations, schools, restaurants, airports, etc. A complete440
list of the classes can be found in Table 1.441

We denote the probability that a class of names is442
queried as P([Class]|History) or P([C]|H). The esti-443
mate for this probability is provided as in the Map-444
PointS system:445

P([Ci ] | H ) =
∑

k exp (−λh(T − tik))
∑

j

∑
k exp (−λh(T − t jk))

where tik is the time the names in class Ci was queried446
the k-th time (as the “History” information), T is the447
current time, and λh is the forgetting factor. We further448
assume that [Ci ] is independent of other factors in the449
environment. This particular form of the probability450
we have adopted says that the further away a past class451
query is, the less it will contribute to the probability of452
the current class query.453

The third heuristic we have adopted is motivated454
by the intuition that even though names in the global-455
level name list are likely to be queried by users, the456
probabilities that each name would be queried will be457

Table 1. Full list of location classes in MapPointS.

Class ID Class Type

1 State

2 City

3 Well-known Places

4 Galleries

5 ATMs and banks

6 Gas stations

7 Hospitals

8 Hotels and motels

9 Landmarks

10 Libraries

11 Marinas

12 Museums

13 Nightclubs and taverns

14 Park and rides

15 Police stations

16 Post offices

17 Rental car agencies

18 Rest areas

19 Restaurants—Asian

20 Restaurants—Chinese

21 Restaurants—delis

22 Restaurants—French

23 Restaurants—Greek

24 Restaurants—Indian

25 Restaurants—Italian

26 Restaurants—Japanese

27 Restaurants—Mexican

28 Restaurants—pizza

29 Restaurants—pizza

30 Restaurants—seafood

31 Restaurants—Thai

32 Schools

33 Shopping

34 Casinos

35 Stadiums and arenas

36 Subway stations

37 Theaters

38 Airports

39 Zoos

different. For example, large cities such as San 458
Francisco and Boston are more likely to be queried 459
than small cities such as Renton. For this reason, 460
we estimated the prior probabilities of all cities and 461
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well-known places in advance. The estimation is based462
on the MapPoint.NET (http://mappoint.msn.com/)463
IIS (Internet Information Server) log data. The IIS464
log records raw queries users of the MapPoint.NET465
submitted (The log, however, does not contain any466
user identification information).467

We processed more than 40GB of the log data468
to obtain statistics of states, cities, and well-known469
places that users have queried. We found that for the470
cities, the probability computed by the log data is quite471
similar to that estimated based on the city population.472
We denote the probability for each name in the473
class given the class label as P(N|[C]; examples are474
P(Name|[Class]=‘City’) and P(Name|[Class]=‘Well-475
KnownPlace’). For local-level names, we assume a476
uniform distribution for P(N|[C]). Tables 2 and 3477
show the most frequently queried 10 States and cities478
respectively:479

The fourth heuristic implemented in the MapPointS480
system uses the intuition that location names related481
to the user are more likely to be queried than other482
names. For example, if a user lives in the Seattle, he/she483
is more likely to query locations in or close to the484
Seattle. We calculate this probability class by class.485
We denote this probability as P(Name|[Class],User) or486
simply P(N|[C],U) and estimate it according to:487

P(Ni | [Ck], U ) = S(Ni | [Ck], U )
∑

j :N j ∈[Ck ] S(N j | [Ck], U )

where488

S(Ni | [Ck], U ) = exp (−λudiU )P(Ni | [Ck]),

Table 2. Top 10 States queried by users of MapPoint.NET and
their estimated probabilities.

Top no. Name Occurrence in IIS log Relative frequency

1 California 2950295 0.127832

2 Texas 1791478 0.009605

3 Florida 1512045 0.065515

4 New York City 1117964 0.048440

5 Pennsylvania 1074052 0.046537

6 Illinois 1024543 0.044392

7 Ohio 1006874 0.043626

8 New Jersey 782871 0.033920

9 Michigan 776841 0.033660

10 Georgia 738660 0.032005

Table 3. Top 10 cities queried by users of MapPoint.NET and
their estimated probabilities.

Top # Name
Occurrence
in IIS log

Relative
Frequency

1 Houston, Texas 309246 0.014637

2 Chicago, Illinois 202948 0.009605

3 Dallas, Texas 169710 0.008032

4 Los Angeles, California 166005 0.007857

5 San Diego, California 141622 0.006656

6 Atlanta, Georgia 140637 0.006656

7 Orlando, Florida 135911 0.006433

8 San Antonio, Texas 122723 0.005809

9 Seattle, Washington 115550 0.005469

10 Las Vegas, Nevada 113927 0.005392

and diU is the distance between Ni ∈ Ck and 489
the user’s home. λu is the corresponding decaying 490
parameter. 491

The fifth heuristic uses the intuition that locations 492
close to the currently visited city are more likely to 493
be queried than other locations. Following the same 494
example, if the user lives in Seattle, not only is he/she 495
more likely to query Bellevue than Springfield, but 496
he/she is also more likely to query for “Everett, Wash- 497
ington” than “Everett, Massachusetts”. We denote this 498
probability as P(Name|[C],CurrentLocation) or simply 499
P(N|[C], L) and estimate it as: 500

P(Ni | [Ck], L) = S(Ni | [Ck], L)
∑

j :N j ∈Ck
S(N j | [Ck], L)

where 501

S(Ni | [Ck], L) = exp(−λldi L )P(Ni | [Ck]),

and di L is the distance between Ni ∈ Ck and the 502
current location. λl is the corresponding decaying 503
factor. 504

The final, sixth heuristic we adopted is based on the 505
intuition that if a user queries a location often recently, 506
he/she is likely to query the same location again in the 507
near future. For example, if the user lives in Seattle, 508
but he/she queried for “Everett, Massachusetts” 509
several times recently, we would expect that he will 510
more likely to query for “Everett, Massachusetts” 511
than “Everett, Washington” even though Everett, 512
Washington” is more close to his home. We denote 513



Journal of VLSI Signal Processing SJNW437-04-4150 October 1, 2005 3:23

UNCORRECTED
PROOF

Speech-Centric Perspective for Human-Computer Interface

this probability as P(Name|[C],History) or simply514
P(N|[C],H) and estimate it as:515

P (Ni | [Cn] , H ) = S (Ni | [Cn] , H )
∑

j :N j ∈Cn
S (Ni | [Cn] , H )

where516

S(Ni | [Cn], H ) =
∑

k

exp(−λh(T − tik))P(Ni | [Cn])

and tik is the time when the name Ni ∈ Cn was queried517
the k-th time. T is the current time, and λh is the518
forgetting factor.519

With the above assumptions and heuristics based520
on well founded intuitions, we obtain the conditional521
probability P(Name | Environment) as:522

P(Ni | E) =
∑

Cn

P(Ni | [Cn], E)P([Cn] | E)

=
∑

Cn

P(Ni | [Cn], U, L , H )P([Cn] | H )

=
∑

Cni

P(Ni , U, L , H | [Cn])

P(U, L , H | [Cn])
P([Cn] | H )

=
∑

Cni

P(U, L , H | Ni , [Cn])P(Ni | [Cn])

P(U, L , H | [Cn])

× P([Cn] | H )

We further assume that U, L, and H are independent523
of each other. This leads to the approximation of524

P(Ni | E) ≈
∑

Cni

P (U | Ni , [Cn]) P (L | Ni , [Cn]) P (H | Ni , [Cn]) P (Ni | [Cn])

P (U | [Cn]) P (L | [Cn]) P (H | [Cn])
P ([Cn] | H )

=
∑

Cni

P (Ni | U, [Cn]) P (Ni | L , [Cn]) P (Ni | H, [Cn])

P2 (Ni | [Cn])
P ([Cn] | H )

We can further simplify the above equation by as-525
suming that each name belongs to one class. This is526
accomplished by using the location in the map—the527
semantic meaning of the name as the unique identi-528
fier of the name. For example, Everett can mean “Ev-529
erett, Washington”, “Everett, Massachusetts”, “Everett530
Cinema”, and somewhere else. In our MapPointS sys-531
tem’s grammar, we allow for several different kinds of532
Everett’s; each of them, however, is mapped to a dif-533
ferent location in the semantic model with a different534
probability. This treatment removes the class summa-535
tion in the above and we have the final expression of536

the environment-specific name probability of: 537

P(Ni | E)

= P(Ni | U, [Cn])P(Ni | L , [Cn])P(Ni | H, [Cn])

P2(Ni | [Cn])
×P([Cn] | H ),

where Ni ∈ Cn and where all the probabilities at the 538
right hand side of the equation have been made avail- 539
able using the several heuristics described above. 540

In the previous discussion, we normalize probabil- 541
ities for each individual conditional probability in the 542
above equations. However, the normalization can be 543
done at the last step. We also noted that the system 544
is not sensitive to small changes of the probabilities. 545
With this in mind, in the MapPointS implementation, 546
we only updated the probabilities when the probability 547
change becomes large. For example, when the current 548
location is 10 miles away to the previous location, or 549
there are 20 new queries in the history. For the same rea- 550
son, the decaying parameters and forgetting parameters 551
are determined heuristically based on the observations 552
from the IIS log. 553

Another important issue in the MapPointS system’s 554
LM computation is smoothing of the probabilities since 555
the training data is sparse. In the current system im- 556
plementation, the probabilities are simply backed up 557
to the uniform distribution when no sufficient amounts 558
of training data are available. 559

With all the above environment or user-specific 560
LM implementation techniques provided by the 561

562
563

564
Environment Manager component in the MapPointS 565
system, most ambiguities encountered by the sys- 566
tem can be resolved. For example, when a user asks: 567
“Where is Everett”, the system will infer the most prob- 568
able Everett based on the different LM probabilities for 569
the different Everett’s. In most cases, the most probable 570
Everett is either the closest Everett or the frequently 571
visited Everett. In case the system’s guess is incorrect, 572
the user can submit a new query which contains more 573
detailed information in the query. For example, he/she 574
can say “Where is Everett, Washington”. 575
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Table 4. Four conditions under which the LM of the MapPointS
system is constructed and the LM perplexity associated with each
condition.

Conditions LM perplexity

Uniform probability for all city/place names 5748528

Two-level structure for cities and places, but
using uniform probabilities for city names

98810

Same as above but using prior probabilities
of city names

5426

Same as above but including user-specific
information

241

Further, in addition to providing useful environmen-576
tal or user information to infer the probabilities of577
queries in LM, the Environment Manager component578
of MapPointS also permits the inference of missing ele-579
ments in users’ queries to obtain the complete discourse580
semantic information. This aspect has been discussed581
in [17] in detail and will not be described here.582

We now present some quantitative results to show583
how the user modeling strategy discussed so far in this584
section has contributed to the drastic improvement of585
the LM. In Table 4, we list the perplexity numbers of586
the LM with and without the use of the user-specific587
information. These perplexity numbers are based on588
four ways of constructing the MapPointS system with589
and without using the probabilities and using user590
modeling. A lower perplexity of the LM indicates591
a higher quality of the LM, which leads to a lower592
ambiguity and higher accuracy for speech recognition.593
We observe from here that the system utilizing594
the user-specific information gives a much lower595
perplexity and better LM quality than that otherwise.596

4. Software Engineering Considerations597
in Mappoints System Design598

MapPointS involves its input from multiple modalities,599
its output in map presentation, and a large set of data600
for training the various system components we have601
just described. Without carefully architecting the sys-602
tem, the application would be inefficient and difficult603
to develop. In designing the MapPointS system, we604
have followed several design principles and software605
engineering considerations. In this section, we briefly606
describe these principles and considerations.607

The first principle and consideration is separation608
of interface and implementation. Following this princi-609

ple, we isolated components by hiding implementation 610
details. Different components interact with each other 611
through interfaces that have been well defined in ad- 612
vance. This allowed us to develop and test the system 613
by refining components one by one. It also allowed us 614
to hook MapPointS to different ASR engines without 615
substantially changing the system. 616

The second principle and consideration is separa- 617
tion of data and code. MapPointS can be considered as 618
a system whose design is driven by data and grammar. 619
In the system design, we separated data from code and 620
stored the data in the file system. The size of the data 621
stored is huge since we need to maintain all the city 622
names, place names, and their associated prior proba- 623
bilities. By isolating the data from the code, we freely 624
converted the system from one language to another by 625
a mere change of the grammar, the place names, and 626
the ASR engine for a new language. 627

The third principle and consideration is separation 628
of modalities. We separated modalities of the speech 629
input, text input, and the mouse input by representing 630
their underlying semantic information in a common 631
SML format. This allowed us to debug modalities one 632
by one, and also allowed us to integrate more modal- 633
ities in the future for possible system expansion by 634
simply hooking the existing system to a new semantic 635
parser. 636

The fourth principle and consideration is full ex- 637
ploitation of detailed user feedback. MapPointS pro- 638
vides detailed feedback to users in all steps that are 639
carried out in processing the users’ requests. In doing 640
so, the users become able to know whether the sys- 641
tem is listening to them and whether the ASR engine 642
recognizes their requests correctly. 643

The final principle and consideration is efficient de- 644
sign of the application grammar. One of the signif- 645
icant problems of a large system like MapPointS is 646
the creation of the specific application grammar, or 647
grammar authoring. A good structured grammar can 648
significantly reduce the effort in interpreting the re- 649
sults of speech recognition. In our implementation, we 650
organized the grammar so that the semantic representa- 651
tion of the speech recognition results can be interpreted 652
recursively. 653

5. Robust Processing Techniques 654
for Speech-Centric HCI Systems 655

Robustness to acoustic environment, which allows 656
speech recognition to achieve immunity to noise and 657
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channel distortion, is one key aspect of any speech-658
centric HCI system design considerations. For exam-659
ple, for the MiPad and MapPointS systems to be ac-660
ceptable to the general public, it is desirable to remove661
the need for a close-talking microphone in capturing662
speech. The potential mobile application of MapPointS663
for navigation while traveling presents an even greater664
challenge to noise robustness. Although close-talking665
microphones pick up relatively little background noise666
and allow speech recognizers to achieve high accuracy667
for the MiPad-domain or MapPointS-domain tasks, it668
is found that users much prefer built-in microphones669
even if there is minor accuracy degradation. With the670
convenience of using built-in microphones, noise ro-671
bustness becomes a key challenge to maintaining de-672
sirable speech recognition and understanding perfor-673
mance. Our recent work on speech processing aspects674
of speech-centric HCI systems has focused on this675
noise-robustness challenge in the framework of dis-676
tributed speech recognition (DSR).677

There has recently been a great deal of interest678
in standardizing DSR applications for a plain phone,679
PDA, or a smart phone where speech recognition is680
carried out at a remote server. To overcome bandwidth681
and infrastructure cost limitations, one possibility is682
to use a standard codec on the device to transmit the683
speech to the server where it is subsequently decom-684
pressed and recognized. However, since speech rec-685
ognizers only need some features of the speech sig-686
nal (e.g., Mel-cepstrum), the bandwidth can be further687
saved by transmitting only these features. Our recent688
work on noise robustness has been concentrated on the689
Aurora2 and 3 tasks [8, 15], an effort to standardize690
a DSR front-end that addresses the issues surrounding691
robustness to noise.692

In DSR applications, it is easier to update software693
on the server because one cannot assume that the client694
is always running the latest version of the algorithm.695
With this consideration in mind, while designing noise-696
robust algorithms, we strive to make the algorithms697
front-end agnostic. That is, the algorithms should make698
no assumptions on the structure and processing of the699
front end and merely try to undo whatever acoustic700
corruption that has been shown during training. This701
consideration also favors noise-robust approaches in702
the feature rather than in the model domain.703

We have developed several high-performance704
speech feature enhancement algorithms on the Au-705
rora2 and 3 tasks and on other Microsoft internal tasks706
with much larger vocabularies. One most effective707

algorithm is called SPLICE, short for Stereo-based 708
Piecewise Linear Compensation for Environments 709
[3–5]. In a DSR system, the SPLICE may be applied 710
either within the front end on the client device, or on 711
the server, or on both with collaboration. Certainly a 712
server side implementation has some advantages as 713
computational complexity and memory requirements 714
become less of an issue and continuing improvements 715
can be made to benefit even devices already deployed 716
in the field. Another useful property of SPLICE in 717
the serve implementation is that new noise conditions 718
can be added as they are identified by the server. This 719
can make SPLICE quickly adapt to any new acoustic 720
environment with minimum additional resource. 721

6. Summary and Discussion 722

Recent progress in signal processing and speech recog- 723
nition technologies has created a promising direction 724
for speech-centric multimodal HCI research. These 725
HCI modalities include speech, vision (e.g., gesture), 726
pen, mouse, keyboard, screen display, and other GUI 727
elements. The speech-centric perspective for HCI ad- 728
vocated in this paper is based on the recognition that 729
speech is a necessary modality to enable a pervasive 730
and consistent user interaction with computers across 731
a full range of devices—large or small, fixed or mo- 732
bile, and that speech has the potential to provide a 733
natural user interaction model. However, the ambigu- 734
ity of spoken language, the memory burden of using 735
speech as output modality on the user, and the lim- 736
itations of current speech technology have prevented 737
speech from becoming the choice of mainstream inter- 738
face. Multimodality is capable of dramatically enhanc- 739
ing the usability of speech interface because GUI and 740
speech have complementary strengths. Multimodal ac- 741
cess will enable users to interact with an application in 742
a variety of ways—including input with speech, key- 743
board, mouse and/or pen, and output with graphical 744
display, plain text, motion video, audio, and/or synthe- 745
sized speech. 746

Two prototype systems, MiPad and MapPointS, de- 747
veloped at Microsoft Research take the speech-centric 748
perspective in their design. They fully exploit the effi- 749
ciency of the speech input, while using other modalities 750
to enhance the interaction and to overcome imperfec- 751
tion of the speech recognition technology. This paper 752
provides a detailed account for the design of the Map- 753
PointS system. The system adds the “Speech” modality 754
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into the existing Microsoft product of MapPoint, which755
provides a comprehensive location-based database756
such as maps, routes, driving directions, and proxim-757
ity searches. MapPoint also provides an extensive set758
of mapping-related content, such as business listings,759
points-of-interest, and other types of data that can be760
used within applications. In particular, it is equipped761
with highly accurate address finding and geo-coding762
capabilities in North America, and contains finely763
tuned driving direction algorithms using blended in-764
formation from best-in-class data sources covering 6.7765
million miles of roads in the United States. Loaded with766
the speech functionality, the value of MapPointS to the767
users is the quick, convenient, and accurate location-768
based information when they plan a long-distance trip,769
want to find their way around an unfamiliar town or try770
to find the closest post office, bank, gas station, or ATM771
in any town in North American. The MapPointS system772
has implemented a subset of the desired functionalities773
provided by MapPoint, limited mainly by the com-774
plexity of the grammar (used for semantic parsing),775
which defines what kind of queries the users can make776
verbally, possibly in conjunction with the other input777
modalities such as the mouse click and keyboard input.778

We in this paper provided an overview of the Map-779
PointS system architecture and its major functional780
components. We also presented several key software781
design engineering principles and considerations in de-782
veloping MapPointS. One useful lesson we learned in783
developing MapPointS is the importance of user or784
environmental modeling, where the user-specific in-785
formation and the user’s interaction history with the786
system are exploited to beneficially adapt the LM. The787
drastically reduced perplexity of the LM not only im-788
proves speech recognition performance, but more sig-789
nificantly enhances semantic parsing (understanding)790
which acts on all types of input modalities, speech or791
otherwise. Some quantitative results we presented in792
Table 4 substantiated this conclusion.793

Our current work is to apply the lessons learned794
from the MapPointS case study, user modeling in795
particular, as presented in detail in this paper to796
other speech-centric HCI tasks. For the extension of797
the prototype MapPointS system, we perceive the798
following future work:799

• Port the system into mobile devices such as Pocket800
PC.801

• Incorporate GPS information into the existing Map-802
PointS functionality.803

• Include new system functionalities such as direct 804
address searching through speech. 805

• Improve the dialog system component in order to 806
provide the speech response (instead of only the 807
GUI response as is now), and to resolve confusability 808
using speech interaction. 809
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