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Abstract

The use of high bit-rate multimedia sensors in networked applications pasasber of scalability challenges.
In this paper, we present howrISNET, a software infrastructure for authoring wide-area sensor-erttisbevices,
supports scalable data collection from such sensors by greatly redheinzandwidth demands. The architecture
makes a number of novel contributions. First, it enables the use of apipliespecific filtering of sensor feeds near
their sources and provides interfaces that simplify the programmingremdpulation of these widely distributed
filters. Second, its sensor feed processing API, when used by muliiigleedt services running on the same machine,
automatically and transparently detects repeated computations amonguicessand eliminates as much of the
redundancy as possible within the soft real-time constraints of the serviderd, IRISNET distinguishes between
the trusted and untrusted services, and provides mechanisms to hédt&veeensor data from the untrusted services.
Using implementations of a number of real world sensor-enrichedcesren RISNET, we present an evaluation of
the benefits of our distributed filtering architecture. Our evaluation shatstit design can: 1) reduce the bandwidth
demands of many applications to a few hundred bytes per secondloseresor, 2) support a large number of services
on each sensor through the use of redundant computation eliminateb8) address privacy/security concerns with

little additional overhead.

1 Introduction

The availability and cost of multimedia sensor hardwarehsas cameras and microphones, has improved dramati-
cally over the past several years. In fact, such sensorareagularly incorporated into existing devices such as,PCs
laptops and cell phones. While the state of sensor hardwanerbgressed rapidly, the software needed to make a col-
lection of these devices useful and accessible to appitats still sorely lacking. This lack of a suitable standlzed
infrastructure of hardware and software makes authoringd@ploying sensor-enriched services an onerous task, as
each service author needs to address all aspects of dagatimi| sensor feed processing, sensing device deployment
etc.

An example of a sensor-enriched application we would likertable is a Person Locator service that takes sensor
feeds from cameras, indoor positioning systems, smartdsgdec; processes these feeds to determine individuals



locations; and organizes the collected position infororatd answer user queries (with appropriate attention to pri
vacy). Several services could use the same sensor feedsssigausly. For example, a Parking Space Finder service,
which locates available parking spaces near a user’s déistin may use a subset of the cameras used by the Person
Locator that overlook parking lots to determine the avdlitghof parking spaces. Authors of these services could
benefit from a software infrastructure that aids in collegtand processing sensor feeds, as well as organizing the
resulting data and handling user queries. Our system,dcEesNET (Internet-scaleResourcefntensiveSensor
Network), handles both these needs and is the first system we &hthvat is tailored for developing and deploying
new sensor-enriched Internet services on a shared infcagte of rich sensors. In this paper, we describsMNET'S
approach to simplifying the task of sensor data collectiatails of IRISNET's support for query processing can be
found in[11, 13, 23].

IRISNET's data collection component must address the followingirements:

e Use of rich, shared data sourceslRISNET must enable an infrastructure where such sensors can kesidhar

a number of simultaneously operating services.

e Scalability up to Internet size. IRISNET must scale to support a large number of simultaneous ussssess
and sensors. In addition, it must accommodate a wide hetreity in the type and ownership of the sensors.
Despite this scaling, developers should be able to userttasnet-scale sensor collection as a seamless platform

on which they can deploy services.

o Efficient use of bandwidth. IRISNET must support sensors that may be connected to the Intermddwi
bandwidth wireless links. Even those that have better odivity may not be able to support the transfer of

multimedia streams for many concurrently running services

IRISNET addresses these challenges through the uappifcation-specific filtering of sensor feeds at the source
In IRISNET, each application processes its desired sensor feeds @Peof the sensor nodes where the data are
gathered. This dramatically reduces the bandwidth conduinstead of transferring the raw data across the network,
IRISNET sends only a potentially small amount of postprocessed Eateexample, the Parking Space Finder service
would have cameras overlooking parking lots process a vided to generate a small bit-vector of parking space
availability information. Our experience with arISNET prototype has shown that many applications require less
than a hundred bytes per second of communication after pos¢gsing.

While it solves some problems, this filtering approach ceateew challenge: many services may have interest
in the same sensor feeds and their associated sensor fembgirgg may place excessive demands on the computa-
tion resources of the sensor node. To reduce the compu@diorands of this approach, we take advantage of the
observation that sensor feed processing is a relativelpwallomain and, as a result, many services require similar
processing of the sensor fee@&I$NET includes a mechanism for sharing of reslgweersensing services running
on the same node. Distinct sensing tasks name the resuligiotbmputations, and use these names to retrieve the
results computed by other sensing tasks. Our results staivittis approach makes computation demand scale sub-
linearly with number of applications (e.g., eight simukans typical applications sharing a sensor node resultlin on

twice the computation load of running one such application)
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Figure 1: RISNET Architecture

Finally, while this basic design solves the scalability lldreges of sensor data collection, it fails to address the
associated security and privacy concerns. For examplehiduéng of results between sensor filters allows malicious
services to feed incorrect data to other services and ttaioneof an easily accessible shared sensor infrastructure
raises a number of privacy concerns. To mitigate these @nahyl RISNET supports different classes (trusted and
untrusted) of services that have different privileges fomning code and accessing sensor data on the each node.
In addition, RISNET also supports probabilistic checking of shared resultdémtify malicious services. These
techniques place little additional overhead on the system.

The rest of the paper is organized as follows. Section 2 prilefscribes the architecture afiIENET followed by a
description of a number of real services built on it (Sec8pnSection 4 provides a description of the environment of
distributed filtering in RISNET. We describe howRISNET addresses scalability and privacy challenges in Section 5
and Section 6 respectively. Section 7 presents the evatuatiour design and implementation. We describe related
work in Section 8 and conclude in Section 9.

2 ThelrISNET Architecture

In this section, we describe the basic two-tier architectfriRISNET (Figure 1), its benefits, and some of the chal-
lenges it creates. We also examine how a service developdiula services using this infrastructure. The two tiers
of the IRISNET system are the Sensing Agents ($)Asvhich collect and filter sensor readings, and the Orgagizi
Agents (OAs), which perform query processing tasks on the@ereadings. Service developers deploy sensor-based
services by orchestrating a group of OAs dedicated to thacgerAs a result, each OA participates in only one sensor
service (a single physical machine may run multiple OAs)ilevin SA may provide its sensor feeds and processing

capabilities to a large number of such services.

1We use the terms "SA” and "SA daemon” interchangeably



2.1 OA Architecture

The group of OAs for a single service is responsible for cbitey and organizing sensor data in order to answer the
particular class of queries relevant to the servieg.(queries about parking spaces for a Parking Space Finde)) (PSF
service). In our deployments, an OA is typically a well pgighed PC with a fast connection to the Internet. Each
OA has a local database for storing sensor-derived datse tbeal databases combine to constitute an overall sensor
database for the service. One of the key challenges is tdalitie responsibility for maintaining this Internet-scale
sensor database among the participating OA&SsSNET relies on a hierarchically organized database schemag(usin
XML) and on corresponding hierarchical partitions of thell database, in order to define the responsibility of any
particular OA. Users can use XPath [8], a standard XML quanguiage, to query the sensor database. Each service
can tailor its database schema and indexing to the pantiselice’s needs, because separate OA groups are used
for distinct services. The design of the OAs poses a numbehallenges including distributed query processing,
caching, data consistency, data placement, replicatidrfaarit tolerance, etc. The details of hom$NET addresses
these challenges can be found in [11, 13, 23].

2.2 SA Architecture

SAs collect raw sensor data from a number of (possibly difietypes of) sensors. The types of sensors can range
from webcams and microphones to temperature and pressugegaThe focus of our design is on sensors such as
webcams that produce large volumes of data, and can be usesdiety of services. In our deployments, an SA is
typically a laptop with one or more such sensors and eitharelegs or wired connection to the Internet.

One key challenge is that transferring large volumes of ttathe OAs can easily exhaust the resources of the
network. RISNET relies on sophisticated processing and filtering of theareiegd at the SA to reduce the bandwidth
requirements. To greatly enhance the opportunities fodwalth reduction, this processing is done irservice-
specificfashion. RISNET allows service authors to upload programs, cafledseletsthat perform this processing to
any SA collecting sensor data of interest to the service s&@tsenselets instruct the SA to take the raw sensor feed,
perform a specified set of processing steps, and send thikedishformation to the OA. Senselets can reduce the
needed bandwidth by orders of magnitudey., PSF senselets reduce the high volume video feed to a few bjtes
available parking space data per time period.

Many sensors can be actuated by software via a control &erfThis actuation can initiate, stop, or configure the
data collection. Examples of such sensors include a camieoaewiewing angle and focus point can be controlled
with software commands, a robot which can be instructed talgser to some object and take pictures of it, etc.
In addition to filtering sensor data, senselets interfadh am SA's actuator interfaces to configure and control data
collection.

The use of senselets raises three new questions: (1) Whataproung environment doeRISNET provide for
the senselets?, (2) how does$NET enable scaling to a large number of senselets running orathe SA? and (3)
How does RISNET support untrusted, buggy, or malicious senselets? We ssltliese three questions in Section 4,

Section 5, and Section 6 respectively.
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Figure 2: Outputs of two services built on IrisNet

2.3 Authoring a Service in IrisNet

To author a sensor-enriched service @sNET, a service author needs to first create the sensor datalizsmac
that defines the attributes, tags and hierarchies used toiltkesind organize sensor readings. He then writes senselet
code for the SAs having sensor coverage relevant to theedesensor service. This senselet code converts raw
sensor feeds into updates on the database defined by theasckamally, he provides a user interface for end users
to access the service. These simple steps highlight IR8NIET makes it easy to create and deploy new services.
IRISNET seamlessly handles many of the common tasks within sersadbservices, such as the data collection,

query processing, indexing, networking, caching, loa@ieihg, and resource sharing.

3 Example Services

A number of RISNET-based services are being developed and deployed [22]s&ti®n describes two such services
and the distributed filtering they perform at the SAs.

3.1 Coastal Imaging Service

In collaboration with oceanographers of the Argus projétaf Oregon State University, we have developed a coastal
imaging service onRISNET. The service uses cameras installed at sites along the @egstline. These SAs
communicate with the OAs through wireless network. The alets running on the SAs process the video to identify
the visible signatures of the nearshore phenomena sucptates and sandbar formations. One senselet produces
10-minute time-averaged exposure images (Figure 2(ad)stiav wave dissipation patterns (indicating submerged
sandbars), variance images, and photogrammetric metaBataselets for other experiments often perform similar
processing with slightly different run-time parametersek$ can also change the data collection and filtering param-
eters remotely and install triggers to change the data sitiqui rates after certain events (for example, to increase
sampling frequency when interesting phenomena are ddjecte
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Figure 3: Execution Environment in SA

3.2 Parking-space Finder

The Parking-Space Finder (PSF) service uses cameras ttwatug metropolitan area to track parking space avail-
ability. Users fill out a Web form to specify a destination amy constraints on a desired parking space (e.g., must
be covered, does not require permit, etc.). Based on the amjperia, the PSF service identifies the available parking
space nearest to the destination and uses the Yahoo! Majisester find driving directions to that parking space from
the user’s current location (Figure 2(b)).

We have implemented multiple versions of the PSF senselegeh of these uses different image processing
algorithms to recognize if a parking spot is enfptPne version of the senselet is configured with the locataoms
background images of the spots. It determines whether &spé&all or not by subtracting the current image from the
background and comparing it with a predefined threshold. tiieroversion of the PSF senselet uses variance of the

color of each pixel with its neighboring pixels to detect guges of the cars.

4 The SA Execution Environment
This section describes the basic execution environmem &#ain IRISNET (Figure 4).

4.1 Controlling Senselets

Each RISNET service processes the sensor data at the SAs with appticgéexific code called senselets. Each sense-
let runs as separate process, collects sensors data fradthdilters them, and finally sends the filtered information

20ur current algorithms are very simple. We could use more stigdiied image processing algorithms. A possible algorith2i dould be to
maintain different statistical models for each pixel in thekzaround image based on the time of day. This model could morly eashpensate for
changes in sunlight, shadows, etc. However, our simple imeggepsing code is sufficient to demonstrate the importantfesof the RISNET
infrastructure.



Load(senselet-code, senselet-id, SA-name

Uploads the specified senselet code to an SA. The senselktteahe referenced by usisgnselet-id
StartSenseletsenseied-id, SA-name

Starts the senselet at the specified SA. It assumes thatrtbelseis already uploaded to the SA.
ControlSenselefcontrol-message, senseied-id, SA-name

Sends a control message.d., stop, change sampling-rate) to the specified senseletngrom the

specified SA. It returns the concatenated responses.

Figure 4: Senselet Manipulation APIs.

to the OAs. Senselets can be any executable code and arallypicitten using standard C and C++ programming
languages.

IRISNET provides a set of APIs (Figure 4) by which service authorsingeract with SAs to install and control
senselets. In the simplest case, service authors can sseARds to interact with a single specified SA. However, in
a deployment with thousands of SAs, it might be more usefultieract with a large subset of the SAs with a single
command. For example, a service author might want to uplaa@hasenselet to all the SAs in Pittsburgh. This task
requires a compact way to select a set of SAs before intatpetith them. RISNET supports this by interfacing
the senselet manipulation APIs with its query processirguie. A service author can call the intended senselet
manipulation API with a selection query that selects therided subset of SAs. This simplifies the task of managing
a widely deployed service.

In addition to providing access to sensor and actuatorseriaedets, an SA also provides access via HTTP. Each
sensor/actuator is named with a uniform resource idenfifi&tl). HTTP GET requests (with optional parameters)
for this URI provides applications with a simpler interfdoe configuring data collection and retrieving sensor feeds
However, this interface provides little filtering (otheathcontrolling the sampling rate for sensors) of the senatar.d
The input/output syntax for this interface follows the dfieation given in [25] for the software sensors provided by
the PlanetLab [6] infrastructure.

4.2 Programming Interfaces

While a senselet can be an arbitrary executable, there armbeanof important programming interfaces that it must
use. These interfaces provide support for a senselet’'sate¢he sensors/actuators, its filtering of the collectedar
data and its scheduling for CPU resources.

Sensor Access IRISNET exposes the sensors and actuators through well definedac#srso that senselets can
interact with them. The SA places all readings from a senstor & shared memory segment associated with that
sensor. Senselets gain access to the sensor feed by mappisigared memory segment into its address space. This
interface is especially suitable for high bandwidth serfseds (e.g., video) since it minimizes data copying. The
shared memory segment keeps a sliding window of sensor alatatated with relevant metadata (e.g., timestamp),
so that senselets can randomly access them for furthergsioge This well defined interface also hides from the
senselets the details and heterogeneity of the drivers lighvBA hosts interact with the sensors.



Filtering Libraries  The IRISNET also provides sensor feed processing libraries with wedvwkn APIs to be used

by the senselets. For example, senselets can perform tlye ipracessing task on video data by using RISNET
customized version of the OpenCV library [3]. We expecttgbsenselets to be sequences and compositions of these
well-known library calls, such that the bulk of the compigatconducted by a senselet occurs inside the processing
libraries. The computation outside the libraries largetpliements service-specific intelligence. For example)evhi
the OpenCV library performs high-level tasks such as edgjecband face detection, the senselet must decide which
objects to transmit to the OAs and possibly how to reconfigiata collection when objects are detected. Senselets
may also include code to react to external eveatg.(the Parking Space Finder senselet may start archiving video
feed when a security alarm is raised).

CPU Scheduling A typical senselet is written in a way to achieseftreal time behavior. A senselet uses periodic
deadlines for completing computations, but associatelack time or tolerance for delay, with these deadlines. A
senselet periodically reads a sensor feed, processesds seitput information to an OA, and sleeps until the next
deadline. Senselets dynamically adapt their sleep timdsrurarying CPU load to target finishing their next round
of processing within the window defined by the next deadlptes-or-minus the slack time. Note that the slack time
allows the senselets to make only an approximate guess sieigping time between two deadlines. While we use
standard UNIX scheduling (i.e., not a real-time schedwar)he SAs, this typical behavior provides a simple way for
senselets to yield computation and provides a metric by wvhvie can evaluate the behavior of an SA schedule (how

often thedeadline + slack is violated).

5 Scalable Filtering

So far we have discussed horI$NET uses senselets to perform distributed filtering to redueaéiiwork overhead
of sensor data collection. In this section, we discuss hovArcan support a large number of computationally
intensive senselets. This is especially critical as we ex@eme sensor feeds to be much more popular than others.
We exploit the following observation to achieve scalailitn general, we expect sensor feed processing prim-
itives (e.g. on video streams, color-to-gray conversion, noise redoctdge detectioretc) to be reused heavily
across senselets working on the same sensor feed or vidgonstrif multiple senselets perform very similar jobs
(e.g.,tracking different objects)nostof their processing would overlap [14]. For example, mangge processing
algorithms for object detection and tracking use backgdosubtraction. Multiple senselets using such algorithms
need to continuously maintain a statistical model ofsheebackground [12]. Similarly, we have seen that exper-
iments in the Coastal Imaging service have much similarittheir computations. These examples suggest a large
degree of shared computation across services we are dyrcensidering. Because most of a senselet’s time is spent
within the sensor feed processing APIs, using this simplehaeism to optimize these APIs will reduce computation
and storage requirements significantly. In this sectiondescribe our design for supporting shared filtering across

multiple senselets.
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Time: 10 Time: 11 Time: 12 void cvsAbsDiff (IplImage* srcA, IplImage* srcB,
IplImage* dst);

Reduce Noise
Y / void saAbsDiff (TimeSpec ts, IplImage* srch,

’ ‘ ’ ‘ ’ ‘(a) IplImage* srcB, IplImage* dst) {
. // pre-processing
Y v Find Contour name = getName (srcA, srcB,SA_ABSDIFF);
’ ‘ ’ ‘ b foundTuple = Lookup (name, ts);
( ) if (foundTuple != NULL) {
dst = foundTuple->result;
Detect Face return;

Detect Cay }

// call the OpenCV API

cvAbsDiff (srcA, srcB, dst);
Senselet 1 Output

) Recognize Face // post-processing
|:| Video Frame ' tuple->name = name;
tuple->result = dst;

|:| Intermediate |:|
Result Insert (tuple);

. Senselet 2 Output return;
— Processing )

(a) Computation DAGs for two senselets. (b) Wrapped versi@n@penCV API.

Figure 5: Cross senselet sharing between PSF and Persotot.doa(a), the complete DAG is shown for the video
frame at time 12. A few tuples of the computation DAGs for jwee frames are also shown. In (b), the OpenCV API
cvsAbsDi ff () is wrapped to enable cross senselet sharing.

5.1 Cross-Senselet Sharing

Multiple senselets in an SA run continuously on the sameamdred, such that there may exist many common sub-
tasks across the senselets. For example, consider the hwelsts whose data flow graphs (that show the sequence
of sensor feed updates, computations and intermediatés)eate shown in Figure 5(a). Note the bifurcation at time
12, step (b) between senselets 1 and 2; their first two imageepsing steps, “Reduce Noise” and “Find Contour,”
are identical, and computed over the same raw input videodraviore formally, a sequence of operations on a set of
raw sensor data feedd } can be represented as a directed acyclic graph (DAG), whenedades with zero in-degree
are in{V'}, the remainder of the nodes represent intermediate reanlisthe edges are the operations on intermediate
results. If multiple senselets use the same sensor data&€U }, their corresponding DAGs can be merged into a
single DAG referred to as theomputation DAGFigure 5(a) shows such a computation DAG where two scrig@s a
processing the same sensor data with timestamp 12.

We wish to enable senselets like the pair shown in Figuretb(apoperate with one another. In the figure, one
senselet could share its intermediate results (marked asdgb)) with the other, and, thus, eliminate the compoitati
and storage of redundant results by the othersMET uses names of sensor feed processing API calls to identify
commonality in execution, rather than attempting to debeensommonality acrosanyarbitrary piece of C code.

Two mechanisms are required for sharing intermediatetelsatween senselets: a data store that is shared between
separate senselets (which run as distinct processes)nandex whereby senselets can publish results of interest to

other senselets, and learn of ones of interest to themseMéesdescribe these mechanisms in the following two



subsections.

5.2 Shared Buffering of Intermediate Results

In IRISNET, intermediate results generated by the senselets arerksipaied memory regions so that all senselets can
use them. This technique is quite similar in spirit to the ro&ation done by optimizing compilers, where the result
of an expensive computation is stored in memory for re-use, levithout repetition of the same computation.

The SA daemon, which spawns senselets, allocates each neeletea shared memory region. A senselet has
read/write access to memory allocated from its own sharadangpool, but read-only access to memory allocated
in other senselets’ shared memory pools. This allocati@tegy prevents one senselet from overwriting intermediat
results generated by other senselets. Figure 3 shows th&tatking Space Finder senselet can read and write the
memory allocated from its own shared memory pool, but cay w@dd from other shared memories.

To generate intermediate results in the shared memory, plece standard dynamic memory allocation calls in
the sensor feed processing libraries with shared memagailbn calls (based on [5]) that allocate memory from the
calling senselet's own shared memory pool. Note that intelirte results are not self-contained — they often may
contain pointers to other objects which may, in turn, cantadditional pointers. These pointers, in general, are not
meaningful across senselets running as separate procésstisnately, pointers within the shared memory regions
are valid for all senselet processes since they map eachsbfiired memory regions at identical addresses. This
equivalence of pointers across address spaces is alsdiakk®rindexing the shared memory, as will be revealed in
the next section. All intermediate results are marked withttimestamp of the original sensor feeds they are generated
from.

When allocation of shared memory for a new result failslSNET evicts an intermediate result from shared
memory. The replacement policy for shared memory is to é¢kietitem with the oldest timestamp. If multiple such
results exist (because they all are from the same DAG), teegenerated most recently is selected. The intuition here
is that old results are relatively less likely to be used beosenselets, and within the same computation DAG, the
ones generated more recently (farther down in the compat&AG) are less likely to be common across senselets.

5.3 TStore: Indexing Intermediate Results

To make use of the shared memory store, senselets need t@imaimindex in order to advertise and find intermediate
results. RISNET indexes intermediate results @plesin a Tuple StorgTStore), which is itself in a shared memory
region mapped into all senselets’ address spgadesles are of the forrtanane, ti mest anp, result),where
nane is a unique name for theesul t computed from a sensor feed with timestaniprest anp. Ther esul t

may contain a value (if the intermediate result is a scalappint to a shared memory address where that intermediate
result is stored; recall that shared memory pointer valuesvalid across all senselets. Conceptually, TStore is a
black box with two operationd:nser t (t upl e) , which inserts a tuple into TStore, ahdokup(t upl e- nane,

3In our current implementation, all senselets have read artd permissions to the TStore. However, we are moving to a modalendnly the
SA daemon has write permission and performs all writes to theréSt

10



ti me- spec), which finds tuples with the specified tuple-name and timeegfimestamp and slack) in the TStore.
The slack in the time-spec allows a senselet to take advamiiigs tolerance for accepting any of number of close
together sensor readingkookup returns a result as long as the appropriate computed valgts éar any of the
sensor readings in (timestampslack).

The names of intermediate resuli®( the nane fields of tuples) must be consistent across senselets, elgiqu
describe results, and be easily computable. Recall thaeksts are comprised of API function calls to libraries
provided by the RISNET SA platform. Senselets leverage the function names in talskmown library API to name
their intermediate results for sharing with other senselet

A tuple within TStore represents the result of applying é&sawf API function calls to some particular sensor feed.
We name a tuple using itsieage which is an encoding of the path from the original sensod teethe result in the
computation DAG. The encoding should preserve the ordéreofibn-commutative function callsRISNET names the
intermediate result produced by a function by hashing timeatenation of the names of the function and its operands.
For example, the name of the tuple marked (b) in Figure 5thgitiash of the function nanseFi ndCont our , con-
catenated with the name of the tuple marked (a), concatndtie the names of other operandstaFi ndCont our .
Note that TStore may contain multiple tuples with the sammaaaut they will have different timestamps.

We implement TStore as a hash table keyed on toplee fields. Within a hash chain, tuples are stored as a
linked list in decreasing order of their timestamps. Thidesing improves the performancelobokup andl nser t
operations. Tuples are evicted from TStore when the cooredipg intermediate results are evicted from shared
memory, or when TStore itself exhausts storage for new suplée TStore tuple replacement policy for selecting a
victim tuple is similar to that for intermediate results imased memory.

5.4 APIs to Enable Sharing

The sharing of the intermediate results through TStore amgptetely hidden from the senselet authors. The sharing
is automatically enabled if the authors use the sensor fesgkpsing library provided byrRISNET. The APIs of this
library are built from the APIs of widely used libraries withe addition of a simple wrapper that enables sharing.
The wrapper uses TStore by preceding calls to the sensomdatassing libraries witt.ookup calls for tuples

with names for the appropriate function and data source tleadlesired time-spec. If TStore contains a matching
intermediate result previously computed by another sehgéthin the appropriate time rangepokup returns the
requested intermediate result from shared memory. Otkerwie senselet calls the actual sensor data processing
library function and stores the result in TStore wiithser t .

We show, in Figure 5(b), how thev AbsDi f f API (that finds the pixel-by-pixel difference of two imaged)he
OpenCV [3] library has been modified. The wrapped versiomefAPl, namedaAvsDi f f has a similar interface
ascvAbsDi f f, except with the additiondli meSpec parameter that defines the desired timestamp and slack in the
sensor data. For example, if thié meSpec parameter specifies that the timestamp is now and slack isnsQthen
a previously computed result is returned only if it has beemguted on data within the last 100 ms, otherwise the
result is computed anew. Before calling theAbsDi f f function provided by the OpenCYV library, tls@AbsDi f f

11



function uses thget Narme andLookup calls to determine if the result of the call is already ava#an the tuple
store. Similarly, if the result is computed, th@sert call is used to add the result to the tuple store so that other
senselets can reuse them.

Since the wrapped APIs have very similar interface as thggral APls, it is relatively easy for a senselet author to
modify his code to use therISNET provided library and enable sharing. The maximum amountiedatage that can
be achieved from the commonality of computation acrossedetssdepends on the size of the slack and the amount of
shared memory allocated to store the intermediate rednlSection 7.3, we present experimental results measuring

the effect of these two factors on system performance.

6 Privacy and Security of Distributed Filtering

Running senselets at sensor hosts is fraught with safetyecos. Buggy or malicious senselets may consume exces-
sive resources on a sensor host or may even exploit secutitgnabilities in the sensor host OS. CurrentijtINET

uses two simple mechanisms for safe execution of senselet ¢arst, all the senselets are run inside a single User-
Mode Linux (UML) virtual machine [17]; this ensures that Isuig the senselets can not compromise the SA host.
Second, each senselet is run as a separate process; thissgmsicess level security among the senselets. Since the
code is relatively compute intensive (rather than systelinocd/O intensive), this virtual machine (VM) approach
imposes a modest 13% reduction in our test senselet’s vid®megsing rate.

We should note thatRISNET's VM approach is neither the most fool-proof or efficientwg@n. However, such
safety concerns are far from new areiSNET can easily take advantage of existing efficient techniqoeséfe
execution of such code [4, 24, 26]. Our efforts focus more @n types of safety concerns that tlredNET archi-
tecture creates rather than on ones that traditional tquakeican solve. In this section, we describe our approach
to two such issues: 1) the sharing of results between séssdlews malicious senselets to feed incorrect data to
other applications, and 2) the creation of an easily acolesshared sensor infrastructure raises a number of privacy

concerns.

6.1 Sharing in the Presence of Malicious Senselets
A malicious senselet can compute and share incorrect iettiate results to feed false sensor readings to other ap-
plications. For example, a malicious senselet processiagmage of an empty parking spot can produce incorrect
intermediate results that, when used by the PSF sensatehale it infer that the parking spot is full.

Although IRISNET currently assumes that the senselets are not maliciowgppbsts mechanisms to deal with this
problem. Passing the value of -1 for thene- spec parameter of an function supporting sharing forcesNET
to compute a result from the original sensor data, even istme result is available in the TStore. Thus, a senselet,
S1, can occasionally compute the intermediate results itsalf compare them with those available in the TStore. If
the results disagre®; adds the producer of the TStore value into its black-listaralds sharing intermediate results
computed by that producer.
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Figure 6: Privacy-Protecting SA

6.2 Protecting Privacy

Providing easy access to live video and other sensor feegsranumber of obvious privacy concerns. Ensuring, with
full generality, that a sensor fe@dnnotbe used to compromise the privacy of any individual is ous@dpe for our
work on IRISNET. Nevertheless, we believe tha&iENET must provide a framework for helping to limit the ability of
senselets to misuse video streams for unauthorized sanes!.

Towards this goal, we divide the senselets into two clagsstedanduntrusted Senselet authors cryptographi-
cally sign senselets, and SAs classify them into one of theseategories according to the (verified) identity of the
author. While trusted senselets are given access to the raersteeds, untrusted senselets can only access sensor
feeds that have been pre-processed. This pre-processamgpds to remove any data that affects the privacy of an
individual. For example, we have implementadvacy-protecting image processirigr IRISNET, in which we use
image processing techniques to anonymize a video streamprototype uses a face detector algorithm to identify
the boundaries of human faces in an image, and replacesriggisas with black rectangles. Identifying people in
the anonymized image is significantly more difficult. Figérshows the resulting architecture of thegNET SA
augmented to support privacy-protecting image procesgitsp, note that there are separate shared memories for the
two senselet classes; intermediate result sharing is dohefare, but only among senselets in seneclass.

One challenge in this design is that if the privacy filter anttusted senselets are free-running, the resulting naive
CPU allocation may be inefficient. For example, if when sigithe CPU equally, the privacy filter produces 10 frames
per second of video and an untrusted senselet process 5sfrssneecond of video, the privacy filter wastes half the
CPU it consumes. These cycles might instead have been ugkd bgtrusted senselets to increase their output frame
rates. However, carefully coordinating the demands of ifierdnt senselets can be difficult. For example, suppgrtin
two senselets each requiring 5 frames per second may reshé privacy filter generating anywhere between 5 to 10
frames per second depending on how cleverly the demandsaressed.

To support scheduling that maximizes the output frame ritieeountrusted senselets (the “useful work” done by
the system), and eliminates wasted work by the privacy fillesNET incorporates flow-control between the privacy
filter and untrusted senselets. The privacy filter timessegch video frame it produces, and marks the frame as
unused Any untrusted senselet that reads a frame marks that framgeal An untrusted senselet requests a video
frame by specifying the oldest timestamp value it can acdepgtrieves the newest used frame more recent than that

timestamp. If no such frame is available, the senselettimiestrieve the newest unused frame that is more recent than
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Figure 7: Bandwidth requirements for data sent from the S#édOA under four scenarios.

the timestamp. However, if no frames are more recent thatirttestamp, the untrusted senselet sets the used bit on
the newest frame and cedes the CPU until a sufficiently newwyanized frame is produced by the privacy filter. This
preference for retrieving previously used frames redubesaggregate frame rate requested by the set of untrusted
senselets by increasing sharing of frames, within them&dreshness constraints. The privacy filter monitors the
number of unused frames in its output buffer. It only geresa new frame when there are unused frames in the
output buffer. In this way, we can ensure that the privacgffiiroduces frames at a rate no greater than the rate the

fastest senselet consumes them.

7 Experimental Results

We present a performance evaluation of tResSNET's SA architecture that seeks to answer the following threesg
tions: 1) What are the performance gains in intelligenthefiig at the SAsss. performing the work at the OAs,
(Section 7.2)? 2) What is the cost or gain of cross-sensedeirgh(Section 7.3)?, and 3) What are the overheads of
providing privacy through a privacy filter (Section 7.4)?

7.1 Experimental Setup

In our experiments, we run SAs on 1.2 GHz and OAs on 2.0 GHzilanlv PCs, all with 512 MB RAM. All

the machines run Redhat 7.3 Linux with kernel 2.4.18. SAspbathe webcam feed 10 times per second, to support
services that require up to that frame rate, and write frdmes shared buffer sized to hold 50 frames. Note, however,
that senselets may elect to sample frames at a lower rateexBarple, the PSF service we examine reads one frame

per second. Unless otherwise specified, we use the PSFedescribed in Section 3.

7.2 Processing Webcam Feeds
In our first set of experiments, we show the effectivenesslififig sensor feeds at the SAs. We compare two
scenarios. In the first scenario, filtering is done in the SAth senselets. In the second scenario, filtering is done
in the OAs — SAs send compressed video frames to the OAs, whahdecode the frames, process them with the
senselet code, and update their local databases. We us@&Rte [2] library for encoding the video frames into
MPEG-4 at the SAs, and tH&MPEG][7] library for decoding the frames at the OAs. We assumetti@SAs are in
the same local area network as the OAs and the OA databasd&edmnce per second.

Figure 7 shows how filtering at the SAs reduces the requiradwalth between SAs and OAs. The first two rows

in the figure show numbers estimated usd x 480 RGB video frames, while the last two rows show numbers from
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Figure 8: Breakdown of time spent extracting informaticomfrvideo frames and updating the database.

actual measurements. Although cameras feed a large voltiraeswideo data to the SAsour PSF service samples
the frames at only 1 frame per second. Still, sending thesermapressed frames to the OAs demands a vast amount of
bandwidth. The figure reveals that encoding the frames in GH8Eormat reduces the traffic. While the compression
ratio depends on the dynamic behavior of the video feed, weddhe average compression ratio to be approximately
50. However, filtering the frames in the SAs produces the @ame of traffic—as low as a few bytes per frame.

Figure 8 shows the breakdown of time spent on stages of ¢ixtgaoformation from a video frame and updating
the database under the strategies of filtering in SAs and @&pectively. Here, we measure the execution time
required to run one senselet on the SA, 8 senselets on theh8Adenario is described in the next section), and one
senselet on the OA. Not only does filtering at SAs save netWwarlidwidth; it also parallelizes sensor feed processing
across SAs, rather than concentrating processing at Ogsrd-8(b) shows that an OA takes the same order of time to
process a video frame as an SA, but intuitively, aggregaifdeeds from many SAs at an OA can easily overwhelm
the computational capability of even the fastest proce§dus poor scaling is exacerbated in the case where multiple
OAs run on the same physical machine. Figure 8(a) also reteat while filtering at SAs puts high load on SA hosts,
even moderate sharing across the senselets reduces thengetet computational load significantly. For example, th
second bar in the graph shows that running 8 concurrentie¢maad enabling result sharing across them significantly
reduces the per-senselet costs.

All these results suggest that filtering at SAs is far mordadata than filtering at OAs. The advantage is two-fold:
first, the network and computational loads are distributest the SAs (expected to outnumber the OAs, as multiple
SAs may report to the same OA), and second, co-locating lEtasg SAs creates the opportunity to share computation

among senselets.

7.3 Effectiveness of Sharing Among Services
In this section, we evaluate the overhead introduced by pwnggthe OpenCV image processing APls in TStore calls,

and the performance gains we achieve from sharing acroselsén

4Most webcams compress the video to less than 12Mbps to trahateoss a USB bus.
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7.3.1 Experiment Parameters
Our evaluation of sharing has three critical parameterstkiad, shared memory size and execution slack. We

describe each below.

Workload In order to evaluate the effectiveness of sharing, we cdea®A workload based on four differentimage
processing senselets we have developed. For example, EhedPBce described in Section 3 uses the senselet PSF2
below. These senselets perform image processing tasksdetecting an empty parking spot, detecting motion, etc.)
and constitute a realistic synthetic workload for SAs. T fsenselets and the sequences of major image processing
operations they perform are as follows:

e Parking Space Finder 1 (PSF1): Get current frameReduce noise~ Convert to gray— Find contour—
Compare contours- - - -

e Parking Space Finder 2 (PSF2): Current frameReduce noise—~ Convert to gray— Get image parts—
Subtract backgroung- - - -

e Motion Detector (MD):{Current frame— Reduce noise~ Gray, 1 second old frame> Reduce noise» Gray}

— Subtract images- - - -

e Person Tracker (PT): Current frame Reduce noise~ Gray — Find Contour— Get image parts— Subtract
background- - - -

We average all measurements in this section over 20 30-megndcutions. We report the results of four sets of
experiments. The combinations of senselets in each sethairdieadline intervals in seconds are as follows:

[E1] 2 senselets{PSF1, 1 seg+ {MD, 1 se¢

[E2] 4 senselets: E1 $PSF2, 1 seg+ {PT, 1 se¢
[E3] 6 senselets: E2 $PSF1, 2 segs+ {MD, 2 sec$
[E4] 8 senselets: E3 $PSF2, 2 seds+ {PT, 2 secs

Shared Memory Size The optimal size of shared memory needed to achieve the maxisharing depends on

a senselet’s sensor feed access pattern, execution p@eadline and slack values), and intermediate result gen-
eration rate. For a small shared memory, arrival of a newrnmeliate result may force the discarding of an old
intermediate result, before that prior result has been byeather senselets. In these cases, the prior result will be
recomputed redundantly. Let us assume that ardyfid(% is a constant in each run - but is varied between ex-
periments) of the intermediate results generated by onselstrwill eventually be used by some other senselet. In
the case where most senselets use input from the same setsdeed, we estimate that a senselet should allocate
(Periodnax/Periodenselet< Sizqr)/k bytes of shared memory, where Periggk is the maximum of the periods

of all the concurrent senselets, Pedgfse|els the per-iteration running time of the senselet undericenation, and

SizgqR, is the size of the intermediate results the senselet gasaraeach execution round for other scripts to share.
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Figure 9: Average time required by different operations.
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Figure 10: Plots showing the effect of sharing on CPU time.

Slack As mentioned before, the senselets have soft real time eh#wy process data periodically, and the dead-
lines have small slack periods. This slack in execution fsrthe same slack that is used in retrieving results from the
TStore. In this evaluation, slack is defined as a percentbgenselet's execution interval. We vary this slack between

experiments.

7.3.2 Overhead of Wrapping APls
Figure 9 shows the execution times for a few typical fundiamthe OpenCV API and the overhead of wrapping

them. The numbers reported in the figure are the averagesfofmpéng the operations on a lightly loaded SA on
20 different640 x 480 24-bit images. A typical OpenCV API takes 1-5 ms, whereasotlerhead we introduce by
wrapping them is around 0.02 ms, less théhof the time taken by the original APl in most of the cases. Asheaw

later in this section, we make significant gains for this $mast.

7.3.3 The Effect of Sharing on CPU Load

Figures 10(a) and 10(b) show that cross-senselet shagngisantly reduces the CPU load on SAs. In accordance
with intuition, the gain from sharing increases as the nunalbeenselets increases, and more redundant computation
is saved by result reuse. The graphs also shovidiw CPU load for the same set of senselets, where the ideal load
is computed assuming that no two tuples with the same linaaddimestamp are ever generated. In addition, the
ideal case assumes that every senselet is scheduled taexsaatly periodically (i.e. it ignores CPU scheduling
conflicts). However, inRISNET, a result computed by one senselet may be evicted from tha-$ize TStore and
shared memory before it is needed by another senselet, asdnihist be computed again. Also, if a senselet working

on the current frame misses its deadline and is scheduled laimay not find a tuple fresh enough to use, even
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Figure 11: Plots showing the effect of sharing on missed lde=x]

though it could have used the tuple if scheduled within thedtire. The likelihood of these occurrences increases
with the number of concurrent senselets, as at higher CRi$)a&nselets requiring the same tuple may be scheduled
to execute far apart in time from each other. This argumepla@s why the load with sharing irRISNET is higher

than the ideal load, and why the gap between the two curvessgrith the number of concurrent senselets.

We note that the performance gap between sharing and tHecagsacan be reduced by using greater slack values
on senselet deadlines or larger shared memory buffers. rd-it(a) shows that the CPU utilization under result
sharing approaches the ideal CPU utilization as the slalclevacreases. Greater tolerance of older results incsease
the likelihood of finding an intermediate result with a tirteap falling in the desired window. Figure 10(b) reveals
that as the shared memory size increagedereases), the performance of sharing again approachieteti case, as
shared memory holds progressively more results for latesees

7.3.4 The Effect of Sharing on Missed Deadlines

As described in Section 4.1, senselets exhibit soft rea biehavior by dynamically adjusting the length of the period
they sleep between two successive rounds of processingetowbecause the SAs do not run under a real-time OS,
scheduling of SAs may become unpredictable at high CPU laadssenselets miss more deadlines. Figures 11(a)
and 11(b) show how the number of missed deadlines increaiteshe number of concurrent senselets. Without
sharing, the SA host becomes overloaded quickly and séaseies more and more deadlines. Cross-senselet sharing
significantly reduces missed deadlines by shedding redur@RU load and re-using tuples computed previously to
meet deadlines. As before, the number of missed deadlimelseceeduced by using longer slack times (Figure 11(a))
and larger shared memories (Figure 11(b)).

7.4 Overhead of Privacy Protection

To evaluate the potential overhead of the privacy-pratediiter, we have constructed a filter using the OpenCV face
detector. The filter detects all human faces in a video franteraplaces them with a gray rectangle. We measured
the effects on three different untrusted senselets, eaphrieg different amounts of processing time per frame. We

modified the PSF senselet into three different senseletdiffiar in the frequency of camera calibration, a desirable
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Figure 12: Effect of flow control on senselet processingsate

functionality when the cameras may move (by wind, for exanpCamera calibration uses a few predefined landmarks
to infer positions of the parking spots in the video frameg. d#liberately choose this compute-intensive function and
disabled sharing to illustrate the effects of flow control.

The first bar of each group in Figure 12 shows the frame rateachh €@omponent when they run concurrently
and without any flow control. They are scheduled using thauwetinux process scheduler. Because there are four
concurrent processes running, the frame rate of each canpamning individually is four times of what is shown in
the graph. With no flow control, the face removal filter run® &4 fps while Parking 1 runs at 0.25 fps. The filter is
wasting 43% of its work. After adding flow control between faee filter and the senselets, the face filter's frame rate
drops to 0.30 fps, while Parking 1's frame rate increases28 fps. We see a 12, 16, and 14 percent increase in frame
rates for parking apps 1, 2 and 3, respectively. As expetitedCPU time given up by the filter is evenly distributed
among the senselets.

8 Related Work

In this section, we explore related efforts in the followiageas of work: video surveillance, active networks, and
sensor networks. Note that while each of these relatedteffatdresses a subset of the issues in creating sensor
services, only RISNET provides a complete solution for enabling such application

Video Surveillance. The use of video sensors has been explored by efforts sudieagideo Surveillance and
Monitoring (VSAM) [10] project. Efforts in this area have meentrated on image processing challenges such as
identifying and tracking moving objects within a camera&idiof vision. These efforts are complementary to our
focus on wide-area scaling and service authorship tools.

Active Networks. The Active Network architecture [26] shares much in commdh waur SA design. In both systems,

a shared infrastructure component (routers and SA hogtsdggammed by end-users and developers to create a new
service. However, the differences between the target@djins of packet forwarding and sensor data retrievaltresu
in significant differences in the requirements for Activetierks’ code capsules an&ISNET's senselets. In order to
protect the resources of the router, capsules need to ctevgdecution quickly, typically before the arrival of thexhe
capsule. Capsule code is also limited to using soft-stateeatouter across invocations. In contrast, the very p@wpos
of senselets forces them to be long-running and store hatel. sAnother important difference is that capsule code
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is fetched on demand (and cached) upon arrival of a packés.fatt and resource constraints force capsule code to
be relatively small. The loading and execution of a sensglpérformed once—upon the initialization of the sensor
service. In general, the programming environment of SAarisefss constrained than that of capsules.

Sensor Networks. Sensor networks anRISNET share the goal of making real world measurements accessible
applications. The work on sensor networks has largely aunated on the use of “motes,” small nodes containing
a simple processor, a little memory, a wireless network eofian and a sensing device. Because of the emphasis
on resource-constrained motes, earlier key contributi@ve been in the areas of tiny operating systems [16] and
low-power network protocols [18]. Mote-based systems hralied on techniques such as directed diffusion [15] to
direct sensor readings to interested parties or long-ngnqieries [9] to retrieve the needed sensor data to a fraht-e
database. Other groups have explored using query tectafigusgtreaming data and using sensor proxies to coordinate
queries [19, 20, 21], to address the limitations of sensaiemoNone of this work considers sensor networks with

intelligent sensor nodes, high-bit-rate sensor feedsgéotzhl scale.

9 Conclusion

Distributed filtering is the key to creating sensing sersitgat can scale to employ a large number of high bit-rate
sensors such as webcams. In this paper, we have descrilzditechniques that address the challenges of efficiently
supporting this filtering near the sensors. In the contexReENET, we have presented the APIs required to perform
distributed filtering, techniques required to scale theaistiucture to a large number of concurrent sensor-erttiche
services, and mechanisms to address the privacy and seiesries raised by untrusted services. The deployment of
a number of real world services oRIENET indicates that our solutions place few restrictions on yipe of services
that IRISNET can support. Finally, we have shown the significant beneffitsiodesign through experiments with our

IRISNET implementation.
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