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ABSTRACT 

In this paper, we present new hardware prototypes that 
integrate several heterogeneous sensors into a single 
headset and describe the underlying DSP techniques for 
robust speech detection, enhancement and recognition in 
highly non-stationary noisy environments. We also 
speculate other business uses with this type of devices. 

1. INTRODUCTION 

One of the most difficult problems for an automatic speech 
recognition system resides in dealing with noises. When 
there are multiple people speaking, it is difficult to 
determine whether the captured audio signal is from the 
speaker or from other people. In addition, the recognition 
error is much larger when the speech is overlapped with 
other people’s speech. Because speech is non-stationary, it 
is extremely hard to remove the background speech from 
just one channel of audio signals. 

We at Microsoft Research recently started a project 
called WITTY (Who Is Talking To You) to deal with this 
and related problems. In this paper, we present a few 
hardware prototypes we have recently developed that 
integrate several heterogeneous sensors into a single 
headset and describe the underlying DSP techniques for 
robust speech detection and enhancement. Besides, we 
believe this type of devices has many other business 
applications, which are described in Section 5. 

2. RELATED WORK 

There has been a lot of work on using cameras to help 
with speech detection and recognition [1,2,3,4,5].  The 
work closely related to ours is that of Graciarena et al. [6]. 
They combined the standard and throat microphones for 
speech recognition in a noisy environment, and very good 
results were reported. There are three main differences 
between their work and ours. The first difference is in 
hardware. Our hardware has the look and feel of regular 
headset while their hardware requires wearing two 
separate devices: one on the neck and a regular 
microphone on the face. The second is in the algorithms. 

Their algorithm requires three-channel simultaneous 
recordings (clean close-talk, noisy close-talk and noisy 
throat microphone signals) to learn a piecewise linear 
mapping from the combined noisy feature vector of both 
microphones to the standard clean-speech feature vectors. 
It thus achieves its best performance only when the noise 
condition of the test data matches that of the training data. 
It is not clear how well their technique will work in 
simultaneous speech environments because of non-
stationarity of the background speech, and they did not 
report any results on that.  In comparison, our algorithm 
only requires two-channel simultaneous recordings (clean 
close-talk and clean bone or other sensor signals) to learn 
the mapping from the bone sensor to the close-talk. The 
predicted speech from the bone sensor is then fused with 
the noisy close-talk speech in order to reconstruct the 
clean speech signals. Our work aims at simultaneous 
speech environments. Finally, we also develop techniques 
for speech detection and speech enhancement. As a result, 
our headset can be used to feed cleaned signals into any 
existing speech recognition systems.  

3. PROTOTYPES 

We have developed several prototypes of multi-sensory 
headsets. 

The first one, as shown in Figure 1 is a headset that 
combines regular close-talk microphone (air-conductive 
microphone) with a bone-conductive microphone. The 
device is designed in such a way that people wear and feel 
it just like a regular headset, and it can be plugged into any 
machine with a USB port. Compared to the regular 
microphone, the bone-conductive microphone is 
insensitive to ambient noise but it only captures the low 
frequency portion (less than 3 KHz) of the speech signals. 
Because it is insensitive to noise, we use it to determine 
whether the speaker is talking or not. And we are able to 
eliminate more than 95% of the background speech. Since 
the bone-conductive signals only contain low frequency 
information, it is not good to directly feed the bone-
conductive signals to an existing speech recognition 
system. We instead use the bone-conductive signals for 
speech enhancement. By combining the two channels from 
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the air- and bone- conductive microphone, we are able to 
significantly remove background speech even when the 
background speaker speaks at the same time as the speaker 
wearing the headset. Some preliminary results with this 
device have been reported in our ASRU paper [8]. 

Figure 1: Air- and bone-conductive integrated 
microphone headset 
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Figure 2: Diagram of a bone-conductive microphone 

One design of a bone-conductive sensor is illustrated 
in Figure 2. In this sensor, a soft elastomer bridge is 
adhered to the diaphragm of a normal air-conductive 
microphone. This soft bridge conducts vibrations from 
skin contact of the user directly to the microphone. When 
the user talks, the user’s skin vibrates, and the microphone 
converts the skin vibration into analog electrical signal. 
This signal is finally sampled by an analog-to-digital 
converter. Together with the sampled signal from the 
close-talk microphone, the air- and bone-conductive 
integrated microphone headset outputs two channels of 
audio signals. 

Figure 3: In-ear and air-conductive microphone 

Figure 4: Throat and air-conductive microphone 

Figure 5: Infrared augmented air-conductive 
microphone 

The prototype shown in Figure 3 is designed for 
people who feel comfortable to wear an earphone. There is 
an in-ear microphone in side the earphone. The in-ear 
microphone picks up voice vibrations from the ear canal 
and/or surrounding bone. The signals from the in-ear 
microphone are, however, low quality, and are in the low-
frequency range. To obtain better audio quality, a close-
talk microphone is integrated. This system works in a 
similar fashion as the headset with bone-conductive 
microphone. 
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The prototype shown in Figure 4 is designed to be 
worn around the neck. The throat microphone is best 
positioned at either side of the user’s "Adam's Apple" over 
the user's Voice Box. The audio quality from the throat 
microphone is not very high, but does not degrade 
significantly in noisy environment. We integrate an air-
conductive microphone with the throat microphone in 
order to take advantages of both types of microphones. 

The prototype shown in Figure 5 has an infra-red 
device attached to the close-talk microphone. The infrared 
device has a pair of near infrared LED and receiver. When 
the user adjusts the boom to point the microphone towards 
the mouth, the infrared device also points to the mouth. 
The LED emits (invisible) infrared signal and shines on 
the mouth. The receiver measures the amount of infrared 
lights reflected from the surface. When the mouth moves, 
the amount of light being reflected will vary due to both 
skin deformation and the fact that some lights that go 
inside the mouth will not be reflected. The infrared-
enhanced microphone can thus robustly detect whether the 
speaker is talking or not even in very noisy environment. 

4. ROBUST SPEECH DETECTION AND 
ENHANCEMENT WITH THE AIR- AND BONE-
CONDUCTIVE INTEGRATED MICROPHONE 

In this section, we provide some details on how the air- 
and bone-conductive integrated microphone is used for 
robust speech detection, enhancement, and recognition. 

4.1. Speech Detection 

In Figure 6, we show the speech signals from this 
integrated microphone when two people take turn to talk.   

       
Figure 6: An example of speech detection 

The yellow curve shows the signal from the close-talk 
microphone. The white curve shows the signals from the 
bone sensor. The local speaker (who wears the headset) 
and a background speaker were talking in an alternative 
way. The background speaker was talking loudly and 
clapped in the middle.  The green curve shows our 
detection result. Notice that if we only look at the yellow 
curve, it is almost impossible to tell which section belongs 

to the background speaker. But it is so obvious from the 
white curve. Details can be found in [8]. 

4.2. Speech Enhancement 

In addition to speech detection, the integrated microphone 
can be used for speech enhancement when the speech 
signal is corrupted by highly non-stationary noise. Our 
idea is to train a mapping from the bone signals to the 
clean speech signals. Let b and y denote the observations 
from the bone and close-talk microphones, respectively.  
Let x denote the clean speech. To predict x from b, we use 
a technique that has some similarity to SPLICE [7]. 
Instead of learning the mapping from the corrupted speech 
y to clean speech x as in the original SPLICE algorithm, 
we learn the mapping from bone sensor signals b to clean 
speech x. We use a piecewise linear representation to 
model the mapping from b to x in the cepstral domain. 
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To obtain the waveform, we construct a Wiener filter by 
using the estimated cepstral features: 
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where M is the matrix for Mel-frequency mapping, C is the 
DCT matrix. We then apply this filter to the waveform of 
the close-talk microphone signals to obtain the waveform 
of the estimated clean speech. 

4.3. Speech Recognition 

To measure the performance of speech enhancement, we 
used our integrate microphone to record 42 sentences for 
one person in an office with a different person talking at 
the same time. We then feed the waveform of the 
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estimated clean speech to a commercially available speech 
recognition system. For comparison, we also feed the 
signals from the close-talk microphone to the same speech 
recognition system. Table 1 shows the result. The top row 
is the result by using the single channel from the close-talk 
microphone. The bottom row is the result of using the 
enhanced signal. We see large reductions in both the 
insertion errors and the substitution errors. The accuracy is 
improved from the original 36% to 70%, or the word error 
rate is reduced by more than a half. 

Table 1: Speech recognition result  
(H: # correct words; D: # deleted words; S: # substitutions; 

I: # insertions; N: total number of words)
 H D S I N 
    Without 
Enhancement 422 15 200 193 637 

With 
Enhancement 504 9 124 59 637 

5. APPLICATIONS AND BUSINESS IMPACTS 

The multi-sensory headsets described above can find quite 
a number of applications that can considerably impact 
end-user experiences. 

• Removal of the push-to-talk button. Recent 
Microsoft Office Usability study showed that users did not 
grasp the concept of using Press & Hold (Push to talk) to 
interact with Speech modes and that users would begin to 
speak concurrently with pressing the hardware buttons, 
leading to the clipping at the beginning of an utterance. 

• Reduction/removal of background speeches. 
Again, according to a recent study, “People talking in the 
background” is identified as the most common noise 
source by 63% of respondents, followed by “Phones 
ringing” (59%) and “Air conditioning” (53%). 

• Improving speech recognition accuracy in noisy 
environment. About half of speech users identify 
themselves in somewhat noisy environment, and the 
speech recognition accuracy is too low in noisy 
environment. By combining multiple channels of audio 
signals (such as bone microphone with normal 
microphone), we expect to improve the speech quality 
even in very noisy environment.  

• Variable-rate speech coding. Since we know 
whether the person is talking or not, a much more efficient 
speech coding scheme can be developed to reduce the 
bandwidth requirement in audio conferencing.  

• Floor control in Real-time communication. One 
important aspect that is missing in audio conferencing is 
lack of a natural mechanism to inform others that you want 
to talk; this may lead to the situation that one participant 
monopolizes the meeting. With the new headset, we can 
establish a convention to inform other participants that you 

want to talk, e.g., by opening and closing your mouth a 
few times. 

• Power management of a PDA/Tablet. Battery life 
is a major concern in portable devices. Through knowing 
whether the user is talking or not, we can allocate 
adequately the resources devoted to the DSP and speech 
recognition. 

6. CONCLUSION 

We have presented new hardware prototypes that integrate 
several heterogeneous sensors into a single headset and 
described techniques of using them for robust speech 
detection, enhancement and recognition in highly non-
stationary noisy environment. Other possible applications 
were also discussed. 
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