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ABSTRACT

One well-known difficulty in creating effective human-machine in-
terface via the speech input is the adverse effects of concurrent
acoustic noise. To overcome this challenge, we have developed
a joint hardware and software solution. A novel bone-conductive
microphone is integrated with a regular air-conductive one in a
single headset. These two simultaneous sensors capture distinct
signal properties in the speech embedded in acoustic noise. The
focus of this paper is exploration of the type of dynamic properties
that are relatively invariant between the bone-conductive sensor’s
signal and the clean speech signal; the latter would not be available
to the recognizer. Our approach is based on a nonlinear process-
ing technique that estimates the unobserved (hidden) vocal tract
resonances, as a representation of such invariant hidden dynam-
ics, from the available bone-sensor signal. The information about
these dynamic aspects of the clean speech is then fused with other
noisy measurements to aim at improving the recognition system’s
robustness to acoustic distortion. The fusion technique is based
on a combination of three sets of signals including the synthesized
speech signal using the vocal tract resonance dynamics extracted
nonlinearly from the bone-sensor signal.

1. INTRODUCTION

Noise robustness remains one major obstacle to mainstream adop-
tion of speech recognition [1]. In [5], a novel hardware solution
was developed to combat against highly nonstationary acoustic
noise, including background interfering speech. A separate, very
inexpensive sensor using bone conduction (i.e., bone-conductive
microphone) was added to the same headset that also mounts a
regular, air-conductive microphone. The regular microphone cap-
tures the acoustic signal comprising speech mixed in noise, while
the bone sensor captures mostly the speech sounds uttered by the
intended speaker but transmitted via the bone and tissues in the
speaker’s head. Therefore, the external noise is heavily reduced in
the bone sensor but the signal, especially the high-frequency com-
ponents, is highly distorted along the non-air signal transmission
path.

The challenge is to intelligently fuse these complementary sig-
nals in order to derive the original, undistorted clean speech sig-
nal which is often unavailable to any direct measuring microphone
sensor under noisy acoustic environments. The work reported in
this paper is based on the empirical observation that the underlying
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hidden dynamics of speech in the form of vocal tract resonances
(VTRs) are relatively invariant between those extracted from the
bone-sensor signal (under any acoustic condition) and from the
clean speech signal. That is, the bone conduction has not intro-
duced the distortion in the low-frequency regions which is severe
enough to affect the general dynamic properties of VTRs. On the
other hand, under noisy conditions, VTR extraction is severely af-
fected using the air-conductive microphone that captures acoustic
noise as well as speech. Using this invariance, we are able to in-
fer key properties of clean speech from the bone-conductive mi-
crophone measurement, while these properties are difficult to infer
using the regular microphone alone since it captures acoustic noise
also.

This paper is organized as follows. We outline, in Section 2,
a novel algorithm for automatically tracking the dynamics of low-
frequency VTRs from the bone-sensor signal that are relatively
resistive to interfering noises. Exploitation of the extracted VTR
dynamics is presented in Section 3, where synthesis of speech us-
ing the VTRs is described and its use as the new data stream in a
novel three-stream information fusion is described. Then, in Sec-
tion 4, experimental results are presented to demonstrate strong
correlations between VTRs extracted from the bone sensor under
noisy environments and those from clean speech. Positive speech
recognition results are also presented using the new three-stream
fusion technique that makes use of automatically extracted hidden
VTR dynamics.

2. EXTRACTING HIDDEN DYNAMICS OF SPEECH
FROM BONE SENSOR

We use the recently developed adaptive Kalman filtering algorithm
reported in [2] to extract the VTRs from the bone-sensor signal.
The underlying assumption is that the extracted VTRs from the
bone sensor under noisy conditions should reflect aspects of re-
alistic speech dynamic properties that are largely independent of
the acoustic environment. (Empirical evidence supporting this as-
sumption is provided in Section 4.1.) To enable VTR estima-
tion, we construct a state-space formulation of the speech dynamic
model. The state equation in this formulation is

z(t+1) = ®x(t) + [I — @lu+ w(t), @
where x(t) is the hidden dynamic vector of the VTR sequence:
w:(f: b)/:(.fla.f?:"'7.fP:b1:"'7b37bP),: (2)

consisting of resonance frequencies and bandwidths correspond-
ing to the lowest P poles in the all-pole speech model. & is the



system matrix, and « is the averaged VTR target vector, provid-
ing the constraint on the (phone-independent) mean values of the
VTR.

The observation equation of the speech dynamic model is

o(t) = Cla(t)] + p+ v (1), ®

where o(t) is the observation sequence from the bone sensor in
the form of LPC cepstra. The nonlinear function C[z(t)] has the
following explicit form:
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where f; is the sampling frequency, 7 is the order of the cepstrum
up to the highest order of m, and p is the pole order of the VTR up
to the highest order of P. To account for the modeling error due
to the missing zeros and additional poles beyond P (i.e., source as
well as filter modeling errors), we introduce the (trainable) residual
vector p in addition to the use of the zero-mean noise v(t) in Eq. 3.

To construct the adaptive Kalman filtering algorithm for op-
timal estimation of the VTR sequence x(¢) from the cepstral se-
quence o(t), we perform adaptive piecewise linearization on the
nonlinear observation equation (3). In the mean time, the residual
mean vector p and variances in v(t) are adaptively trained in an
iterative manner as detailed in [2].

3. EXPLOITING HIDDEN DYNAMICS: FUSION OF
MULTIPLE SENSOR-DATA STREAMS

3.1. Synthesizing spectra and waveforms from the extracted
hidden dynamics

As mentioned earlier, two sensor data streams, captured by the
bone sensor and by the regular (air-conductive) microphone, re-
spectively, have respective weaknesses in representing full prop-
erties of clean speech, which are not directly measurable, under
noisy conditions. Given the extracted VTR dynamics that reflect
one essential (but not complete) property of the non-measurable
clean speech, we intend to create an additional data stream for the
sensor fusion.

The specific technique we have developed is described here.
First, we use Eq. 4 to generate linear cepstral sequence using the
extracted VTR sequence. When the spectral distortion in the orig-
inal bone sensor is weak, we add to these synthesized cepstra the
residual mean vector w in Eq. 3. This compensates for, at least par-
tially, the approximation errors of Eq. 3 to true cepstra due to well
known limitations of the all-pole model of speech with finite or-
ders. However, if the spectral distortion is severe (e.g., strong teeth
clacking or noise leakage through the bone sensor), we remove the
above compensation step since it would otherwise add back such
spectral distortion to the synthesized cepstra. Second, we perform
inverse discrete cosine transform (IDCT) on the synthesized cep-
stra above to generate the log-spectral sequence. From the log-
spectral spectrograms, we have observed that different ways of
adding the compensation vector p (e.g., varying the number of
iterations in training) gave different tradeoffs between modeling
inaccuracy and spectral distortion in the original bone-sensor sig-
nal. Finally, we exponentiate the above synthesized log-spectra,
take square root, and then add the phase information derived from
the bone-sensor signal. This gives a synthesized complex spectral
sequence, and then a synthesized speech waveform, after applying
the overlap-and-add technique.

3.2. Fusion of threeinput data streams

The above synthesized complex spectral sequence® derived from
the bone sensor and denoted by Y3(¢, k) is combined with the
two directly measured complex spectra, Y1 (¢, k) for the close-talk
air-conductive microphone and Y>(, k) for the bone sensor. The
FFT’s frequency index is k for each window, and the windowed
time (i.e., frame) sequence index is ¢. The fusion rule to estimate
the complex spectrum X (¢, k) of clean speech is based on the fol-
lowing highly simplified linear filtering model:

Yi(t,k) = X(t, k) +N[0,%4] 5)
Ya(t, k) = H(k)X(t k) + N[0,Z,] (6)
Ys(t,k) = G(k)X(tk)+ N[0, 3s], @

where H (k) represents the bone microphone’s channel distortion,
and G(k) represents the overall channel distortion (from clean
speech to bone-sensor distorted speech and then to the synthesized
speech), and N[0, ;] denotes the normally-distributed random
vector representing the additive interfering noise’s spectrum. Un-
der this model, an optimal (maximum likelihood) fusion rule can
be shown to be
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where H is the estimated channel distortion function for the bone
sensor [3]. G is estimated in a similar way, but estimation uses
the synthesized speech waveform based on the extracted hidden

dynamics instead of on the bone-sensor data directly.
To gain insight into the fusion rule (8), we rewrite it as the
following weighted sum of three signal components:

X(t,k) = WiYi(t, k) + Wo H Ya(t, k)] + W3[G~1Y3(t, k)], (9)
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and where the three weights sum to one: Wi +W>+W3 = 1. Note
the estimate expressed in (9) contains the inverse-filtered bone-

sensor signal [H~'Y>(t, k)] and inverse-filtered synthetic signal
[G_1Y3 (ta k)]

4. EXPERIMENTSAND RESULTS

4.1. Resultsof Hidden Dynamics Tracking

In this section, we first show the results of tracking VTR dynamics,
demonstrating that such inherent properties of speech in relatively
invariant between the clean and noisy acoustic environments. This
hence provides evidence supporting the rationale behind this work.

In Fig. 1, we show comparisons between the VTR frequencies
extracted from the bone sensor with noisy speech input and those
extracted from clean speech for a typical utterance in our speech

11n speech recognition experiments, due to system implementation con-
straints, we use the synthesized speech waveform. The front-end of the
speech recognizer then takes a sequence of FFT's to obtain the complex

spectra.



database. The noisy speech used as the input is created artificially
by adding background interfering speech into the clean speech,
with SNR=5dB. Close correlation between the two sets of VTR
frequencies is observed, especially for the second resonance fre-
quency (labeled as f- in Fig. 1), and the correlation coefficient is
computed to be as high as 0.98 in this typical example. The corre-
lation is found to be much lower between the VTR frequencies of
clean speech and those extracted from the regular, air-conductive
microphone. This is because the VTR extraction is subject to er-
rors due to the interfering noise, especially for low-energy portions
of the speech signal where the noise spectral components dominate
the observed spectra with mixed speech and noise.

Resonance Fregs. from Bone-Mic at SNR=50B

° 0.5 1 1.5 2 2.5 3 3.5 a as 5
Resonance Fregs. in Clean Speech (kHz)

Fig. 1. Comparison between 1) VTR frequencies extracted from
the bone sensor with noisy speech input (y axis); and 2) VTR fre-
quencies extracted from clean speech (x axis).

More detailed illustrations are provided in Figs. 2 and 3 for the
extracted VTR frequencies superimposed on the spectrograms of
the clean speech signal captured by the air- and bone-conductive
microphones, respectively. The same illustrations for noisy speech
are shown in Figs. 4 and 5, respectively, for the two types of mi-
crophones. The bone sensor captures much less noise than the
air-conductive microphone, while cutting off most of the high-
frequency energies. However, the tracked f; to f4 VTRS shown
as the four separate lines in Figs. 2-5 are quite similar in values for
clean speech in the air-conductive microphone (Fig. 2) and for the
bone sensors (Figs. 3, and 5). In particular, the tracked VTRs from
the signal captured by the bone sensor for noisy speech (Fig. 5) are
much less affected than those by the air-conductive microphone
(Fig. 4).

Another advantage of the nonlinear process of VTR extraction
as discussed in this paper is to eliminate possible noise leakage to
the bone sensor in the low-frequency region. Typically, the mag-
nitude of such leaked noise is relatively small. When the spectral
peaks due to the leaked noise are competing with those in the clean
speech, the VTR extraction technique described in Section 2 is of-
ten effective in discarding the interfering spectral peaks. This is
because not only the observation equation of the dynamic speech
model ((3) in Section 2) tends to fit the spectral peaks with large
magnitudes, but also the model incorporates powerful prior knowl-
edge about the VTR dynamics in clean speech based on state equa-
tion (1). This constrains the possible range for each VTR compo-
nent among a small number of total VTR components (four in the
current implementation). Any spectral components due to inter-
fering noise are likely to create mismatch to the prior dynamic
patterns of clean speech and are thus likely to be rejected.

4.2. Preliminary Resultson Noise-Robust Speech Recognition

We have conducted preliminary experiments on noise-robust speech
recognition, where the largely invariant hidden dynamics of speech
extracted from the bone-sensor signal are exploited. The maximum-
likelihood fusion rule in (8) is used in the experiments. In imple-
menting (8), the variances, X1, Y5>, and X3, are estimated from
three separate data streams, Yi(t, k), Y2(t, k), and Ys(¢, k), re-
spectively, using the utterance-initial, speech-free frames. The es-
timation is carried out for each test utterance separately.

Because the fusion model for the synthesized spectral sequence
Ys(t, k) in (7) is very crude, the estimate of variance, X3, using
speech-free portions of Y3(¢, k) sequence could be very inaccu-
rate. One technique to compensate for such inaccuracy is to em-
pirically scale the estimated variance.? Speech recognition results
with this technique will be reported in this section.

In our experiments, we use a Microsoft’s internal large vo-
cabulary HMM system, trained with a large amount of relatively
clean speech data with a single data stream (i.e., with no bone-
sensor data). The test data are collected with two streams using
simultaneous air- and bone-conductive microphones. One female
speaker wears a headset mounted with both types of microphones
and utters 42 sentences from the Wall Street Journal corpus in an
office with a loud interfering speaker in the background. The bone-
sensor data collected are used to track VTRs and then to synthesize
speech waveforms. This synthetic data stream, together with the
two original data streams, are fused to estimate the clean speech
waveform. This is then fed to the HMM system for recognition.

The speech recognition accuracy, listed as a function of the
variance scaling factor, is shown in Table 1. The baseline accu-
racy is 72.21% for two-stream fusion, using Y1 (¢, k) and Ya(¢, k)
(and 55.00% for one-stream input using noisy air-conductive mi-
crophone speech Yi (¢, k) only). Adding the new stream Y3 (¢, k)
produces virtually no improvement if the unscaled variance is used
in the fusion. However, when the variance scaling factor is in-
creased to a value between five and six, a sizable accuracy im-
provement is obtained. When the variance scaling factor is further
increased, the accuracy drops back to the baseline performance.
Indeed, when X3 — oo, Eq. 8 is reduced to

Yo + ELH* (k)YQ(t, k)

Xtk i
(t, k) — SANRSAT TSI

(13)

which is the two-stream fusion rule.

scale factor 0.1 0.2 0.5 1 2
Rec.Acc(%) || 51.65 | 65.46 | 70.40 | 72.37 | 72.70

scale factor 3 5 6 10 1000
Rec.Acc(%) 73.45 | 7411 | 74.10 | 7281 | 72.21

Table1. Speech recognition accuracy (%) as a function of the vari-
ance scaling factor, which adjusts the relative contributions of the
new data stream and the original data streams in the information
fusion. The baseline accuracy is 72.21% for two-stream fusion,
and 55.00% for the one-stream noisy-speech input.

2Similar variance scaling was found useful in other noise-robust speech
recognition experiments [4], where inaccuracy of the variance estimate was
due to ignorance of the phase relationship between clean speech and inter-
fering noise.



5. SUMMARY AND FUTURE WORK

In this paper we present a novel technique that recovers hidden
VTR dynamics of speech under high-noise conditions. It uses
the speech signal captured by a bone sensor that distorts high-
frequency energies but retains most of noise-reduced low-frequency
energies where major VTRs of speech lie. We have discovered that
the extracted VTR frequencies from the bone sensor under noisy
conditions have exceedingly high correlations with those extracted
from clean speech. A three-stream fusion technique is further
developed that capitalizes on the synthetic spectra or waveforms
based on the extracted VTRs. While the fusion technique itself
is linear, the new stream is derived from an original stream in a
highly nonlinear fashion. This nonlinear VTR extraction process
creates complementary signal properties in the new stream and is
responsible for the speech recognition performance gain reported
in our experiments.

While the largely invariant hidden dynamic properties of speech
are discovered, extracted, and successfully exploited in this work,
significant challenges remain for future research. VTR extraction
from the bone sensor as a novel nonlinear processing technique can
remove non-dominant noise components, but the synthesized spec-
tra of speech also contain significant distortions compared with
clean speech. To reduce such distortions while retaining the pho-
netically rich information contained in the extracted VTRs, we
need to develop better synthesis techniques (e.g., formant vocod-
ing). This will require careful source modeling of speech, rather
than using the highly empirical compensation vector g as used in
the current work. In addition, we have found significant phase dis-
tortions in the synthetic waveforms. Our current speech recognizer
implementation requires the input in the form of waveforms. In the
new implementation that directly accepts cepstral-based features,
the effect of such phase distortions can be eliminated. Finally,
the fusion technique experimented in this work is at the waveform
level, without any modification of any element in the speech rec-
ognizer. When new fusion techniques are developed at the feature
or decision level that requires expansion of the recognizer’s fea-
ture set or modification of the decision rule, greater recognition
performance improvement is expected.
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Fig. 2. Extracted VTRS (f1 to f4) superimposed on the spectrogram for
the “clean” (femal€e) speech recorded by the regular, air-conductive micro-
phone in aquiet offi ce environment. Utterance: A commission spokesman
said a decision on the appeal is expected soon.
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Fig. 3. Extracted VTRs from clean speech captured by the bone
Sensor.
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Fig. 4. Extracted VTRs (f1 to f4) superimposed on the spectro-
gram for noisy speech, where noisy speech is created by artificially
adding interfering speech into the clean speech with SNR=5dB.
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Fig. 5. Extracted VTRs from the noisy speech captured by the
bone sensor.



