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ABSTRACT

We present a novel hardware device that combines a reg-
ular microphone with a bone-conductive microphone. The
device looks like a regular headset and it can be plugged
into any machine with a USB port. The bone-conductive
microphone has an interesting property: it is insensitive to
ambient noise and captures the low frequency portion of
the speech signals. Thanks to the signals from the bone-
conductive microphone, we are able to detect very robustly
whether the speaker is talking, eliminating more than 90% of
background speech. Furthermore, by combining both chan-
nels, we are able to significantly remove background speech
even when the background speaker speaks at the same time
as the speaker wearing the headset.

1. INTRODUCTION

One of the most difficult problems for an automatic speech
recognition system is in dealing with noises. When there are
multiple people speaking, it is difficult to determine whether
the captured audio signal is from the speaker or from other
people. In addition, the recognition error is much larger
when the speech is overlapped with other people’s speech.
Because the speech is non-stationary, it is extremely hard
to remove the background speech from just one channel of
audio signals.

In this paper, we propose a hardware device that com-
bines regular microphone (air-conductive microphone) with
a bone-conductive microphone with the purpose of handling
noisy environment. The device is designed in such a way
that people wear it just like a regular headset, and it can
be plugged into any machine with a USB port. Compared
to the regular microphone, the bone-conductive microphone
is insensitive to ambient noise but it only captures the low
frequency portion of the speech signals. Because it is insen-
sitive to noise, we use it to determine whether the speaker is
talking or not. And we are able to eliminate more than 90% of
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background speech. Since the bone-conductive signals
contain low frequency information, it is not good to di-

ly feed the bone-conductive signals to an existing speech
gnition system. We instead use the bone-conductive
als for speech enhancement. By combining the two
nels from the air- and bone- conductive microphone,
re able to significantly remove background speech even
n the background speaker speaks at the same time as the
ker wearing the headset.

2. RELATED WORK

re has been a lot of work on using cameras to help with
ch detection and recognition. Researchers have used
visual and audio information to determine whether the
is speaking or not [1, 2]. DeCuetors et al [3] used
video and audio signals for speaker intent detection.

n et al [4] and Basu et al [5] used visual information to
rove speech recognition in noisy environments.
Graciarena et al [6] combined the standard and throat
rophones in the noisy environment. They used a prob-
stic optimum filter mapping algorithm to estimate the
n speech features from the speech features of both mi-
hones. There are three main differences between their
k and ours. One difference is that our hardware is differ-
Our hardware has the look and feel of regular headset

le their hardware requires wearing two separate devices:
on the neck and a regular microphone on the face. The
nd difference is that we have developed an algorithm to
ct speech and modulate the regular microphone signals
d on the speech detection results. As a result, our head-
an be used with any existing speech recognition prod-
and it removes the noise between speeches. The third
rence is in the speech enhancement algorithm. Their al-

thm requires a database of simultaneous clean and noisy
rdings. It achieves its best performance only when the
e condition of the test data matches the noise condition
he training data. It didn’t report any results on simul-
ous speech environment. In comparison, our algorithm
requires clean training data. We rely more on the bone

or, which is insensitive to noise, to reconstruct the clean



speech signals. Our algorithm is targeted at the simultaneous
speech environment.

3. AIR- AND BONE-CONDUCTIVE INTEGRATED
MICROPHONES

Fig. 1. The Air- and Bone-Conductive Integrated Micro-
phone.

When we speak, there is vibration on the bones of the
head. The bone-conductive sensors, when pressed again the
bones, can capture the bone vibrations. The bone sensors are
in general insensitive to noise. Figure 1 shows a prototype
of our Air- and Bone-Conductive microphone. It is the same
as a regular headset except that we added a bone-conductive
sensor. Since the regular microphone input on the audio
cards do not take stereo data, we use a USB HUB to combine
the two channels into a stereo data. We can then plug this
device into any machine which has a USB port.

Figure 2 shows an audio stream recorded by the inte-
grated microphone. There are two people sitting about 3
feet apart. One person wears the microphone. The other
person acts as a noise generator. The top row of Figure 2 is
the signal from the regular microphone. The bottom is the
signal from the bone sensor. We can see that it is much easier
to differentiate the speech and noise from the bone sensor
than from the regular microphone. Therefore, we can use
the bone sensor for speech detection.

Figure 3 shows the spectral view of each channel ranging
from 0 to 8KHz. Whereas the regular microphone contains
wideband speech suitable for recognition, the bone sensor
only contains narrowband speech. Therefore if we simply
feed the bone sensor signals to an existing speech recognition
system, the results would not be good.

If enough transcribed training data were available, one
could build a speech recognition engine specifically targeted
for bone signals. The problem is that there is no such data
available.

We are taking a more practical approach: using the bone
sensor to enhance the wideband noisy speech for use with an
existing speech recognition system. Since the bone sensor
signals contain very little noise, we can combine the bone
sensor signals with the close talk microphone signals to ob-
tain a better estimate of the clean speech.
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2. An audio stream recorded by the bone microphone.
the regular microphone. Bottom: the bone sensor

3. The spectral view (0–8KHz). Top: the regular mi-
hone. Bottom: the bone sensor.



4. SPEECH DETECTION
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Fig. 4. Histogram of the bone sensor log energy

Figure 4 shows a histogram of the log energy of the bone
sensor signals in Figure 2. We can see that the speech sig-
nals and the non-speech signals are separated very well. So
we choose to use a moving-window histogram approach for
speech detection. For each frame, we first compute the his-
togram of the audio data prior to this frame with a fixed
window size (notice that we compute the histogram of the
energy instead of the log energy). In our implementation,
we use the window size of 1 minute. To reduce computation
time, the histogram is updated incrementally for each frame.
The second step is to find the valley after the first peak and
use the valley as the separator.

Denote d to be the energy separator. Given any frame,
let e denote its energy. Set r = e/d. The speech confidence
for this frame is set to be

p =




0 : r < 1
r−1
α−1 : 1 ≤ r ≤ α

1 : r > α
(1)

where α is a user specified parameter which defines the grace
transition period between the two states. We choose α = 2
in our implementation.

Finally we smooth out p by taking the average of the
current frame with the previous 4 frames.

4.1. Removal of non-overlapping noises

We use the speech confidence p to modulate the audio signals
from the regular microphone to remove the noises between
speeches. The modulation factor f is set to be f = h(p)
where h(x) is a Hermite polynomial with the property that
h(0) = 0, h(1) = 1 and its derivatives at 0 and 1 are both
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le 1. The performance of the noise removal with the
grated microphone.

s. For each sample x of the regular microphone signal
is frame, its modulated value is x̃ = f ∗ x.

In this way, our integrated microphone can be directly
with any existing speech recognition system. To mea-
the performance of the noise removal algorithm, we
our new microphone with Microsoft’s speech recogni-
system. The setup is as follows. We had two people
reading an article from a newspaper. One person wore

integrated microphone while the other person acted as
ise generator. The two people spoke alternatively. We
rded 5 minutes of data. Figure 2 shows a portion of the
rded data.
Table 1 shows the recognition results. The top row x is
esult obtained by feeding the regular microphone signals
ctly to the speech recognition system. The bottom row
the result by feeding the modulated signal to the speech
gnition system. N is total number of words and H is
number of correctly recognized words. D, S, and I are
tion, substitution, and insertion errors, respectively. We
see that the insertion error is reduced by 90% while it
not increase the deletion or substitution errors.

5. SPEECH ENHANCEMENT

is section, we describe how to use the bone sensor for
ch enhancement in an environment with highly non-
onary noises such as when there are people talking in
background.
Figure 5 shows the graphical model of the integrated mi-
hone. Here we make the approximation that bone sensor
t affected by the noise at all. b and y are observations.
corrupted by the noise. There is a channel distortion
from x to b. Basically b only contains frequency up to
z. The speech enhancement problem becomes recover-

x given b and y.
Our idea is to first predict x from b, and then combine
b and y to obtain the final estimate of x. To predict

om b, we use a technique which has some similarity to
ICE [7], which is a frame-based noise removal algorithm

cepstral enhancement in the presence of additive noise.
ead of learning the mapping from the corrupted speech
clean speech x as in the original SPLICE algorithm, we

n the mapping from bone sensor signals b to clean speech



Fig. 5. The graphical model

5.1. SPLICE training

We use a piecewise linear representation to model the map-
ping from b to x in the cepstral domain.

p(x, b) =
∑

s

p(x|b, s)p(b|s)p(s) (2)

p(x|b, s) = N(x; b + rs,Γs) (3)

p(b|s) = N(b; µb,Γb) (4)

The bone sensor model p(b) contains 128 diagonal Gaus-
sian mixture components, and is trained using standard EM
techniques, the parameters rs of the conditional pdf p(x|b, s)
can be trained using the maximum likelihood criterion.

rs =
∑

n p(s|bn)(xn − bn)∑
n p(s|bn)

(5)

Γs =
∑

n p(s|bn)(xn − bn − rs)(xn − bn − rs)T

∑
n p(s|bn)

(6)

p(s|bn) =
p(bn|s)p(s)∑
s p(bn|s)p(s)

(7)

5.2. Clean Speech Estimation

Assuming the noise is additive, in the cepstral domain we
have y = x + C ln(1 + eC−1(n−x)), where C is the DCT
matrix and n is the noisy cepstral [8]. Since the noise estima-
tion in the cepstral domain involves highly nonlinear process,
we handle it in the power spectral feature domain. Assum-
ing that the noise level in the b is negligible and the additive
noise is uncorrelated with the speech signal, the problem can
then be formulated as follows:

Sy(ω) = Sx(ω) + Sn(ω) (8)

Sx(ω) = f(Sy(ω), Sb(ω)) (9)

Sx(ω) = H(ω)Sy(ω) (10)
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re Sy , Sx, Sb and Sn are the power spectrum for noisy
ch , clean speech, bone signal, and noise, respectively,
f(z) is a nonlinear mapping function. Our goal is to find
optimal H (the Wiener filter). In the following, we omit
r convenience.
Given two observations Sy and Sb under Gaussian ap-
imation, we use MMSE estimator to find Ŝx:

Ŝx = (Σ−1
n + Σ−1

x|b)
−1[Σ−1

n (Sy − µn) + Σ−1
x|bŜx|b]

(11)

here Ŝx|b = eC−1x̂

x̂ = b +
∑

s

p(s|b)rs

Σx|b = V ar(Sx|b)
µn = E[Sn], Σn = V ar[Sn]

nd Σn are estimated during non-speech section, which
tected by our speech detection algorithm.

Given Sy and Ŝx, the estimated Wiener filter Ĥ can be
ulated as:

Ĥ =
Ŝx

Sy
(12)

6. EXPERIMENT RESULTS

speech enhancement is an on-going work. Here we show
e preliminary results. We collected about 150 words of
n speech of a male wearing the integrated microphone.
used these data for the SPLICE training. We then used
t of 24 words which are not in the training set as the
data. The test data is corrupted with another person’s
ch. We then apply our speech enhancement algorithm

stimate the clean speech.
To measure the quality of the reconstruction result, we
ucted mean opinion score (MOS) [9] comparative eval-

ons. Table 2 shows the score criteria. To ensure a fair
parison, the non-overlapping noises (the noises between
two words) in the corrupted data are removed prior to

S evaluation. The 24 words are divided into 4 groups
consisting of 6 words. The corrupted audio files and

nced audio files are mixed randomly, and then played to
valuators (the people who gave the scores) with desktop
kers. There are 4 evaluators and they do not know which
are corrupted and which ones are enhanced results. Ta-

3 shows the MOS results for the 0dB and 10dB cases.
observe that the enhanced data consistently gets better
es for all the evaluators. In the 0dB case, the improve-
t is more significant. Figure 6 shows the spectral view of
enhancement results. The top row is the corrupted data.
middle row is the result after enhancement. The bottom
is the clean speech (the ground truth). Clearly some of



the background speech are removed by our enhancement al-
gorithm. For example, background speeches around 1KHz
between 0.8s and 1.0s and around 5KHz and 7KHz between
0.2s and 0.4s are significantly reduced by our enhancement
algorithm.

Score Impairment
5 (Excellent) Imperceptible
4 (Good) (Just) Perceptible but not Annoying
3 (Fair) (Perceptible and) Slightly Annoying
2 (Poor) Annoying (but not Objectionable)
1 (Bad) Very Annoying (Objectionable)

Table 2. MOS score criteria

before enhancement after enhancement
0dB 1.8 2.4
10dB 3.5 3.8

Table 3. MOS result. Each score in the table is averaged
over 4 people and 4 different groups of test data.

7. CONCLUSION

We have presented an Air- and Bone-Conductive Integrated
Microphone. This new hardware device has the look and
feel of a regular headset. We have developed algorithms to
use this new device for robust speech detection and speech
enhancement in highly non-stationary noisy environment.
We have shown that this new device can reduce most of
the insertion errors between speeches without adding dele-
tion or substitution errors. We also showed that this device
can be used effectively for speech enhancement with highly
non-stationary noises such as when people talking in the
background.

8. FUTURE WORK

This is an on-going project. The reported results, although
very encouraging, are preliminary. In the future, we would
like to further improve our speech enhancement algorithm.
We are planning on collecting more training data to improve
the mapping from b to x. We would like to better estimate
the noise by using a more sophisticated noise estimation
algorithm.
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Fig. 6. The spectral view of the enhancement results. Top: the corrupted data. Middle: the enhancement result. Bottom: the
clean speech.
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