
One-Time Password Access to any Server without
Changing the Server

Dinei Florêncio and Cormac Herley
dinei@microsoft.com, c.herley@ieee.org

Microsoft Research, One Microsoft Way, Redmond, WA

Abstract. In this paper we describe a service that allows users one-time password access
to any web account, without any change to the server, without changing anything on the
client, and without storing user credentials in-the-cloud. The user pre-encrypts his password
using an assigned set of keys and these encryptions are sent as one-time passwords to his
cell phone or carried. To login he merely enters one of the encryptions as prompted, and
the URRSA service decrypts before forwarding to the login server. Since credentials are
not stored (the service merely decrypts and forwards) it has no need to authenticate users.
Thus, while the user must trust the service, there are no additional passwords or secrets to
remember. Since our system requires no server changes it can be used on a trust-appropriate
basis: the user can login normally from trusted machines, but when roaming use one-time
passwords. No installation of any software or alteration of any settings is required at the
untrusted machine: the user merely requires access to a browser address bar.

Keywords: passwords, one-time passwords, authentication, replay resistance

1 Introduction

Users increasingly find themselves in the position of having to enter sensitive information on
untrusted machines. As access to more and more services is pushed online, the range of sensitive
information that a user must protect grows with time. Passwords are the most obvious example.
Email, bank and brokerage accounts, employee benefits sites, dating and social networking sites
almost universally allow password protected access to services. A user who logs in to any such
account from an untrusted machine runs the risk that a keylogger will capture the password
and allow unauthorized access. In addition, the number of machines that must be regarded as
untrusted also grows. Most obviously, any machine at an internet café or kiosk must be assumed
suspect. But additionally a user’s own home computer can easily be infected with spyware.

The problem we address is to enable a user to login from a machine that is untrusted. For
simplicity we will assume the worst: everything the user does on such a machine is observed and
logged. Everything typed, everything that appears on the screen, and all of the network traffic
is captured and is available to an attacker. Nonetheless we want to be able to login to password
protected accounts from such a machine, without risking catastrophic loss of data. While there
are widely varying estimates of the dollar size of the fraud problem that password stealing causes
[20] the fear and confusion is very real. We assume that preventing passwords from falling into
the wrong hands is more important than protecting the rest of the data from a session. Thus we
are not protecting the privacy of data, and we do not prevent session hijacking.

Our approach for passwords to a particular account will be to generate a series of one-time
passwords that can be used to login. The actual mechanism we employ will be for the user
to navigate to a webserver that will act as a Man-In-The-Middle (MITM). We call the system
URRSA: Universal Replay-Resistant Secure Authentication. The one-time data will be provided

Proc. ISC ’08, Taipei

to the URRSA server, which then performs a decryption and substitution: replacing the one-time
password typed at the suspect machine with the true password forwarded to the login server.
In this way the sensitive information is not typed at the untrusted machine, and neither is it
displayed or downloaded to the compromised environment; nor is it stored at the URRSA server.

We make several requirements of the solution in order to be useful:

– No change to existing login server.
– No change to the browser or client software environment. We do not assume that the roaming

user has installation privileges. We do not require the user to change the browser proxy
settings. Requiring users to alter browser proxy settings we believe makes the User Experience
of Impostor [27] and KLASSP [15] unworkable for a realistic deployment.

– No storage of credentials in the cloud: this removes the single point of attack that such a
server would represent.

– No authentication of the user to the service: if we try to authenticate with a password we are
back where we started. The alternatives, such as smartcards, greatly increase the complexity
of the service and the burden on the user.

Our main goal in this paper is to describe the technology and give sufficient detail to allow
implementation. However, it is legitimate to question whether users will trust such a system. The
answer is obviously dependent on who runs it. There are two deployment scenarios that don’t
involve trusting a third party. The first is that the login server runs the service. For example,
using URRSA, PayPal or Fidelity might offer OTP access to those clients who desire it without
altering their current authentication process. The second is that the user self-hosts the service on
a machine that he controls. Obviously this solution requires that the user maintain a server and a
fixed IP address or a domain name; so this is possible only for a small minority of users. Both of
these deployment models are potentially useful, and get around the issue of trust by having the
“third party” be one of the existing two parties. The final model, and potentially most useful,
is of URRSA offered as a web-service hosted by a third party. The success of online financial
management sites such as www.yodlee.com, www.mint.com and www.wesabe.com demonstrates
that at least some users will trust such a service. At Yodlee, for example, users give the service
passwords to their bank and credit-card accounts so that it can daily update bill and payment
information.

In the next section we review related work. In Section 3 we show how any account can
be transformed into a one-time password account without having to change the server or the
browser. We review implementation details in Section 4. Section 5 examines attacks and Section
6 evaluates our deployment.

2 Related Work

2.1 Coping Strategies and Simple Tricks to Evade Spyware

Sometimes coping strategies can be enough to evade a keylogger. Herley and Florêncio [11] de-
scribe a simple trick that users can employ to confound keyloggers by obfuscating their passwords.
By interspersing the legitimate password characters with random characters typed outside the
password field, the technique is able to confuse most existing keyloggers. While useful, this is not a
durable solution, as keyloggers could be easily modified to capture enough additional information
to retrieve the actual password.

Another technique that can be used to authenticate without explicitly typing passwords in-
volves storing the password or equivalent information in a bookmark, and accessing it from a
standard web browser. A flexible way of achieving that is based on the use of bookmarklets.

2

Proc. ISC ’08, Taipei

These are small JavaScript programs that are stored as bookmarks. JavaScript is flexible enough
that it can be even used to hash a general password, and generate site-specific passwords [1].
Storing the password (or equivalent information) in a URL link, bookmarklets avoid the need
to type the target site password. Access could be achieved when roaming, by storing the book-
marklets on a USB drive, for example. Nevertheless, this is not necessarily safe. If its use were
to become widespread, hackers could attack the bookmarklets directly. If the file containing the
bookmarklets is copied when inserting the USB drive, every single password on the drive could
be compromised (thus making the user less secure not more). It would make matters worse not
better if checking a hotmail account exposed the BankOfAmerica credentials stored on the same
device to be exposed.

Another group of solutions involves having the web site use some authentication method other
than simply typing passwords - sometimes in combination with some typing. Examples include
on-screen keyboards, two-factor authentication, challenge-responses systems, and many others.
These usually apply only to the site that adopts that particular mechanism, and require a major
change in the server and User Experience. Rather than have users key their passwords some
web sites have experimented with on-screen keyboards as a method of secure data entry. These
schemes can be attacked by having the keylogger do a screen capture at each mouse click event.
An interesting work by Tan et al. [31] addresses the question of minimizing the chances that a
password entered using an on-screen keyboard is captured by an observer. This work addresses
the “shoulder surfing” risk rather than the risk that the machine itself is running spyware, but
has interesting analysis of the usability of various alternative password entering mechanisms.

2.2 Challenge Response Mechanisms

The use of challenge response has been explored as a means of achieving resistance against replay
attacks when the user must login from an untrusted environment. Cheswick [12] examines on a
higher level the use of Challenge-Response authentication mechanisms to evade spyware. The
advantage of such systems is that a spy who observes a successful login session cannot perform
a replay attack: the challenge will be different for each event and observing a single response
helps the attacker very little. Cheswick reviews a number of approaches from the point of view
of usability. Each of these schemes would require changes at the server.

Pering et al. [28] explore the use of a series of the user’s own images uploaded in advance. The
user is then authenticated by successfully responding to a series of challenges, which essentially
involve picking his images from random images. Another image based scheme is proposed by
Weinshall [32]. To avoid an image-similarity attack, the images are assigned, rather than uploaded.
Furthermore, to reduce the amount of information given out with each authentication session,
the user is not directly asked which images are his. Instead, the image set memberships are used
to select a certain path on an image mosaic, with the user providing only a code that depends
on the path’s endpoint. It is pointed out by Golle and Wagner [18] that observing as few as six
logins of this scheme can allow an attacker to determine the secret. Coskun and Herley [13] show
that a challenge response scheme that relies on the users memory and calculating ability alone
is almost certainly vulnerable to brute-force attack.

2.3 Proxy-based systems

Four works that directly address authentication from untrusted machines are Impostor [27], that
of Wu et al. [25], Delegate [21], and KLASSP [15]. All use a proxy to intervene.

The Impostor [27] system of Pashalidis and Mitchell, is a password management system where
roaming users can access their credentials. Rather than have users authenticate themselves by
typing a master password (as is the case for [17]), a challenge response authentication is used. The

3

Proc. ISC ’08, Taipei

user is assigned a large string that forms the secret. When requesting access the user is challenged
to provide characters from randomly selected positions in the string, and is authenticated only
if she responds correctly. In this way the user reveals only a small portion of the secret string to
any compromised machine. A replay attack is difficult, since the challenge positions change each
time the user contacts the proxy. Nonetheless, Impostor potentially protects strong secrets with
weak ones. If strong (e.g. 60 bit) passwords are stored with the system an extension of the three
character challenge originally proposed would be necessary (as shown in [13] such a scheme is
vulnerable to an attacker who observes several logins). Impostor runs as a HTTP proxy, and the
user must direct their browser to the proxy. Wu et al. [25] sketch a similar architecture where
a proxy stores credentials; the proxy delivers a challenge which must be answered by SMS to
authenticate the user.

Another proxy-based system which stores users credentials is Delegate of Jammalamadaka
et al. [21]. Like Impostor, they store the passwords in the cloud, and act as a proxy to serve as
intermediary between the server and the untrusted terminal. Credentials are filled by the proxy
in web requests as they are forwarded to the login server. A cell phone is used for the user to
explicitly authorize credential insertion when necessary. This requires, of course, that the user
has cell reception. By contrast our system has no such requirement. An additional feature is that
Delegate uses a rule-based hierarchy to request additional authentication whenever a sensitive
operation is requested. This can be used to reduce the risks of a session hijacking (e.g., by
requesting additional authentication when a money transfer is requested) as well as to remove
sensitive information (e.g., account balances) from web pages provided by the server. These rules
are generally to be provided by security experts, or learned from the user on a previous interactive
session from a safe terminal.

The KLASSP proxy [15] of Florêncio and Herley also functions as a MITM proxy for com-
munication with the login server. The user enters a mapped password M(pwd) on the untrusted
machine, and the proxy unmaps before forwarding M−1M(pwd) to the login server. The mapping
M() has, of course, been agreed in advance between the user and the proxy and serves as a shared
secret. KLASSP suggests two broad directions for mappings. In the first the user obfuscates the
password by entering either password keys or random keys in response to prompts from the
proxy (in a variation on [28] the prompts are a series of images, where the user’s personal images
act as sentinels to signal a true password character). As with Impostor, this technique protects
strong secrets with weak ones. In the second the user encrypts the password using a large and
cumbersome encryption table.

Impostor and KLASSP have in common that they are implemented as HTTP proxies. This
means that the user must force the browser on the untrusted machine to use the proxy. This
is inconvenient and is not always possible (e.g. the user may not have permissions). In Internet
Explorer this requires editing Tools, Internet Options, Connections, LAN settings, un-checking
“Automatically detect settings”, checking “Use a proxy server”, entering the IP address and port
number, clicking “Advanced options” and checking “Apply same proxy for all protocols.” Further
the settings must be undone when the user leaves; if this is neglected or forgotten there is a risk
that the next user of the machine has his traffic routed through the proxy also.

2.4 One-Time Passwords and S/Key

Several one-time password systems have been proposed that limit the attacker’s ability to exploit
any information he obtains. Notable among them is S/Key [22, 29] which generates a series of
passwords by iteratively taking a cryptographic hash of a secret key. At each login the server
verifies that the hash of what the user presents is the previously used password. Since each of the
passwords is used only once it is of no use to an attacker. A further advantage is that the server
need store only the previously used password. Thus even the database at the server contains

4

Proc. ISC ’08, Taipei

nothing useful to the attacker. A popular implementation of S/Key for Unix is described by
Haller [19]. The user carries a list of OTP’s; generally these are sequences of short English words,
so the user must type a total of about 20-24 characters to authenticate. An alternative one-time
password system is OTPW by Kuhn [2]. Instead of being generated from a single secret (as with
S/Key) here the passwords are independently chosen random secrets, and the hash of each is
stored on the server.

Mannan and van Oorschot [24] describe MP-Auth: a system that uses a trusted mobile device
such as a PDA or smart-phone to enter the password. The device encrypts the password using the
end server’s public key before passing it to the untrusted terminal. MP-Auth has the advantage
of not requiring (as we do) that the user trust a proxy, but does not work with existing login
servers, and requires a channel (such as bluetooth) between the trusted device the untrusted
machine.

SecurID from RSA [3] gives a user a password that evolves over time, so that each password
has a lifetime of only a minute or so. This solution requires that the user be issued with a physical
device that generates the password. This solution requires considerable infrastructure change on
the server side, which has limited its use. However SecurID has the advantage of being immune
to OTP stealing attacks (see Section 5.3).

2.5 In-the-cloud Password Managers

One sub category of challenge response system is worth a separate note: in-the-cloud password
management systems. These systems store the sensitive information at a server in-the-cloud, and
have the server deliver the sensitive information directly to the desired destination on the user’s
behalf. An early example is [17]. Storing all this sensitive information in the server provides a
new vulnerability. Indeed, if an attacker gains access to the user’s account at this server, it would
have access not only to the information that the user typed, but to any other information stored
there as well. Further, a server storing hundreds or thousands of users sensitive information can
itself become a target for attacks.

An early in-the-cloud example, proposed by Gaber et al. [17], used a master password when a
browser session was initiated to access a web proxy, and unique domain-specific passwords were
used for other web sites. Since users authenticated themselves by typing the master password, this
clearly offers no defence against keyloggers. The same is true of other in-the-cloud systems such
as Passport, where the user authenticates himself using a master password, or www.clipperz.com
where a passphrase is used.

2.6 Relation to our service

One-time Passwords offer well understood security enhancements over existing password systems.
Our proposed scheme gets the excellent protection enjoyed by users of existing OTP systems [22,
19, 2, 3] to all users. We wish to be clear that we will have the same security and usability
questions that arise with other OTP systems; e.g. from a usability standpoint the user must
keep the OTP list safely, and, like most OTP systems, session hijacking is still possible. The
advantages we offer over previous approaches is that we give OTP protection without changes to
the existing server. A consequence is that users can have trust-appropriate authentication. When
using a trusted machine they can continue to login as before. However when they decide the
circumstances demand they can use one-time passwords to access the account. When an OTP
list is generated it is sent by SMS text message to the user’s cellphone, but users who prefer
may print and carry a hardcopy OTP list. We view the cellphone as preferable for a number of
reasons. It represents a device that the user generally carries anyway. The user is less likely to
lose or misplace a cellphone than a hardcopy OTP list. Finally, by using an out of band channel

5

Proc. ISC ’08, Taipei

like SMS to send OTP’s to the user new OTP lists can be generated without requiring the user
to return to a trusted location (see Section 4.3).

An advantage of the system we propose with respect to the proxy-based systems Impostor and
KLASSP [27, 15] is that it is implemented as a MITM web service rather than a HTTP proxy.
Users do not need to change the proxy settings on the browser before they begin and undo them
when they are done. Thus the burden is much lower than with [15] or [27]. Further the service is
involved only for the duration of the connection to a password protected account. For example
an Impostor or KLASSP user during a one hour session might change the proxy settings at the
beginning and undo them at the end. If he visited several password protected accounts, but also
news and information sites the proxy would handle all of the traffic for the entire hour. With
our MITM service implementation the URRSA server is involved only from login to logout on
each password protected account. The entire traffic for BankOfAmerica would flow through the
service, but none of the general browsing traffic would. Thus the load on the service is greatly
reduced (in comparison with Impostor or KLASSP) and privacy is enhanced. Delegate [21] does
not explain how its proxy mechanism works. We assume, since it makes no mention of the crucial
processing of the request-response stream that is the heart of our system (Section 4.2), that it is
also implemented as a HTTP proxy.

The URRSA service can be seen as a descendant of KLASSP [15], where the mapping M()
becomes a true encryption of the password, and the proxy is a reverse proxy. Independently,
and after, one of the authors of Impostor also developed and deployed a similar system [4]. This
appears to be based on a reverse proxy similar to CGIProxy rather than the scheme we describe
in Section 4 but is similar in many other respects to our service.

3 Method

URRSA provides a service that allows users to access a website requiring authentication, without
having to type the actual password in the clear. The only time the actual password is typed is
during the registration, which is done in advance from a safe location. At registration, the user
receives versions of the true password, each encrypted with a different key. The service will
decrypt using any of the keys only once, so effectively the user receives One Time Passwords each
of which can be used once to access the registered site from untrusted locations. Our approach
does not store any passwords at the URRSA server. The server needs to store only the encryption
keys used, not the actual password. By doing this we remove the information stored with the
service as a vulnerability: the keys have no value to the attacker without the corresponding OTPs
(and if an attacker has the OTPs, he doesn’t need to steal the keys, just use the service). More
importantly, we remove the need to authenticate the user. We wish to be clear however that,
while the service does not store user passwords, the user must still trust the service.

3.1 Mapping Strategy

In theory passwords can contain upper and lower case letters, digits and any of a few dozen special
characters. While in practice we know that the majority of users seldom use extended characters
[14] we must nonetheless support all possibilities. Letters and digits give 62 characters and we
allow for 66 special characters, for a total of 128 possible characters. Call this set C. An obvious
way of encoding the password characters would be to use a simple permutation code that maps
C to itself, and to apply this to all characters independently. Thus a length N password (i.e. in
CN) would be mapped to another password in CN . There are a few problems with this approach.
First, permutation codes leak information when two characters of the original password are the
same. More significantly we have the following complications:

6

Proc. ISC ’08, Taipei

– Confusion sets: certain characters such as the number “zero” and the letter “O”, or the
number “one”, the upper case “I” and lower case “L” can be hard to tell apart when context
is removed.

– SMS restrictions: certain characters (e.g. []{}) cannot be sent by SMS (see e.g. [5]).
– Unfamiliar keyboards: layout for the position of special characters varies greatly on interna-

tional keyboards. Some characters requiring meta-keys (e.g. Shift, Alt, Alt-Gr etc) can be
very hard to find.

It is important to exclude confusion sets. This is especially the case if the user carries the OTP
list on his cell phone, since we have no control whatever over the fonts in which the OTP will
be displayed. We require that every password map to an OTP that is unambiguously readable
on any display. This rules out “O” and “0” etc. The set of characters that cannot be sent by
SMS must be excluded from any mapping we produce. Since the phone will merely receive and
display we have no opportunity to perform any mappings there. Finally, even common special
characters such as “@” can be hard to find on an unfamiliar keyboard (e.g. on many keyboards
it requires pressing the Alt-Gr key which often causes confusion since Alt-Gr does not exist on
US keyboards). The problem is compounded when the meta keys such as SHIFT, Alt, Alt-Gr,
Esc etc are labeled in a language or alphabet unfamiliar to the user. While we wish to support
the minority of users who have unusual characters in their passwords we do not wish to force a
user with a simple password such as “Snoopy2” to search for characters like “%” and “¿” on the
keyboard in a Chinese internet café.

To avoid any and all confusion, we restrict the output OTPs to use only capital letters and
digits, not including the above mentioned characters: “0”, “O”, “I”, and ”1”. Therefore the valid
characters are easily identifiable: ABCDEFGHJKLMNPQRSTUVWXYZ23456789. Call this set
D. This gives us 32 characters, enough to carry 5 bits of information per character.

So we have an input password with N characters drawn from an alphabet of 128 symbols
(i.e. the set C). We wish to map to an OTP drawn from an alphabet of 32 symbols (i.e. the set
D). Clearly the OTP must be longer than the input password. We transform the input password
to a string of 7N bits, and encrypt those bits using the one time encryption pad. We then
map the result (5-bits at time) to a password OTPi with M symbols drawn from an alphabet
of only 32 symbols. Clearly, OTPi will have M = ceil(7N/5) characters. Thus the procedure
maps a password from CN to an OTP from DM . For example the 9 character input password
“{Qp#oL{4s” might map to the 13 character OTP “RM8BQ47AAKW3U.” The OTP contains
only characters that are unambiguously readable on any display and easily found on any keyboard.
We then repeat the process with different encryption keys to produce each of the desired OTPs.
For decoding, we follow the reverse procedure. Pseudo-code for this encoding is given in Section
A.1. To decrypt the password, the URRSA server needs only to know which encryption key was
used. The url and userID pair allows this to be determined. After receiving this information, the
server checks which was the last key used and informs the user which OTP to use next. This
information is all that is required to tell the Service which key to use (see Section 4.2), and to
guarantee that service and User are in sync. Since the service merely decrypts and forwards no
authentication of the user with the service is required.

As described each input password of a length N would map to an OTP of length M =
ceil(7N/5). However, since we know that a majority of users choose weak passwords [14] this is
actually somewhat wasteful. The two passwords “snoopy” and “G(r!e9” will map to the same
length. If we Huffman encode [30] the plaintext password before encryption and mapping we
can reduce the length of the average OTP that must be typed. Huffman decoding is done at
login time. Note that we have not weakened user passwords in so doing; we have merely ensured
that weak passwords from CN will be mapped to the shortest possible strong password. It is
also worth noting that password strength does not necessarily increase security when password
stealing attacks such as phishing and keylogging are the main threats [16].

7

Proc. ISC ’08, Taipei

3.2 User Experience

The user merely navigates to http://{URRSA}/OTPLogin login page at the webserver and enters
first the url and userID of the account he wishes to access (this allows the proxy to retrieve the
keys used to generate that user’s one-time passwords). The user then enters the k-th OTP from
his OTP list, allowing the server to decrypt and temporarily store the true password. The user’s
browser is directed to open https://{URRSA 1} (which directs our server to fetch the registered
login page). The user need type nothing further and merely clicks the submit button and login
proceeds. Observe that the URRSA service does not authenticate the user. It has no need to,
since it does not know any of the user’s passwords and merely decrypts and forwards.

If we compare the user experience between logging in directly (i.e. navigating directly to the
login server and risking a keylogger) and using our service we find as follows (we will use PayPal
as an example). To go directly to the login server the user types https://www.paypal.com in
the address bar and then his userID and password and clicks submit. To login using our service
the user types http://{URRSA}/OTPLogin in the address bar, then types www.paypal.com and
his userID at the loaded page and submits. A new page loads on which he enters the requested
OTP and submits. Finally, when the https://{URRSA 1} page loads (which will be a copy of the
https://www.paypal.com just loaded by the service) he clicks submit one more time. Thus it
can be seen that the additional burden on the user is not very great: the user has one additional
URL to type, and two additional clicks. The sequence of events is detailed in Section A.2.

3.3 Acting as a MITM Webservice

The MITM service that URRSA performs can be regarded as a reverse proxy [23]. Conceptually
(if we dealt only with static HTML pages) a reverse proxy works by fetching a first document for
the client and translating all links therein to again go through the proxy. For example if the client
wants https://www.abc.com/foo it would instead ask for https://{URRSA 1}/foo. The proxy
receives the request and forwards to the server at www.abc.com; the server delivers the request
to the proxy, which passes it back to the client browser. This is not to be confused with a HTTP
proxy, where the browser is configured to direct all traffic to the proxy [23]. Reverse proxies
are also sometimes known as CGIproxies after a particularly popular family of implementations
[6]. While conceptually simple, reverse proxying modern web-sites is a complex task. Examples
of reverse proxy can be seen at any of a number of anonymizing web proxies. However most
anonymizing proxies offer a somewhat brittle experience [26]. In particular dynamically generated
links are often handled incorrectly, and missing images and broken links are a common experience.
In addition many are unable to handle SSL traffic successfully, certificate errors are common, and
cookies do not always get correctly assigned. We are unaware of a single anonymizing reverse
proxy that is robust enough to handle the complicated request/response stream that occurs
during an authentication.

We are able to simplify the problem by attempting considerable less generality than anonymiz-
ing reverse proxies offer. Rather than reverse proxy for any possible domain, and all the links
therein we seek to handle only the limited number of domains and sub-domains encountered
during login at a site. A login server generally has links to fewer external domains than a con-
ventional site (e.g. when logging into www.PayPal.com a user sees essentially only content from
the PayPal and PayPalObjects domains while loading www.nytimes.com involves as many as
ten distinct domains). So our task will be to translate only for the domain(s) to which the user
is authenticating and not for a plurality of sites.

8

Proc. ISC ’08, Taipei

4 Implementation

We have implemented the URRSA server and deployed on an internet facing machine: see Section
6 below. We now address some of the issues related to implementation. This architecture and
flow of events during an authentication is illustrated in Figure 1. We use ASP.Net scripting to
handle the the actions to be performed at the web server. There are three web services running
on the server: OTPRegistration, OTPLogin and OTPRefresh, which we review in turn.

4.1 Registration Webservice

To use the service a user must first navigate to {URRSA}/OTPRegistration and get a list of one-
time passwords. He enters the url and userID of an account he wishes to access and is assigned a
randomly chosen set of keys. Recall that the url and userID pair uniquely identifies the user, and
hence the set of keys issued. He also enters the password, pwd, for this account; and indicates the
cellphone number he wishes the list sent to. The webservice then generates a list of 10 one-time
passwords and sends them by SMS text message to the desired number.

For this step OTPRegistration interfaces to an SMS gateway service. There are several
providers which expose programmable interface to make sending text messages simple. In our
implementation we use Clickatell [7] which offers a variety of means of triggering the send mes-
sage. In the simplest, after establishing an account and paying for credits, a message can be sent
merely by navigating to: http://api.clickatell.com/http/sendmsg?user=xxxxx&password=
xxxxx&api id=xxxxx&to=xxxxxxx&text=xxxxxx, where the fields to be filled are the user ac-
count name, password, application id, destination phone number and SMS message. This could
be invoked by causing the user’s browser to navigate to the appropriate address once the OTP
list has been calculated. While simple, this leaves our password to the SMS gateway (though not
the user’s password) in the clear on the trusted machine. While the machine is trusted by the
user, the user is not necessarily trusted by the server, and this would potentially allow him to
replay and exhaust the message budget at the gateway. Instead we use an API integrated with
the server, which also causes the desired message to be sent. We are limited to only 10 passwords
by the 160 character limit that applies to SMS messages. This step must be done at a trusted
machine. The keys are stored at the server along with the url and userID, but no record of the
password is kept.

In the event that the user does not have a cellphone he may elect to carry a copy on paper.
In this case the webservice then generates a larger list of 30 one-time passwords which he prints
and carries. The OTP’s can be carried on a PDA, or an mp3 player that is capable of displaying
text files. This has the advantage that storage is no longer an issue. As with any OTP system
the user must protect the list (see coverage of attacks in Section 5).

4.2 Login Webservice

Now to login the user navigates to {URRSA}/OTPLogin. He is asked for the url and userID of
the account he wishes to access. Since this pair uniquely identifies him this allows the proxy
to retrieve the keys. For the k-th login the user is prompted to enter the k-th OTP from his
list: OTPk. The server decrypts to get the true password. The user’s browser is instructed to
automatically open https://{URRSA 1}. Using the onclick event for the “Submit” button we
can use, for example the Javascript Open() command, which causes a new window to open with
a specified URL.

9

Proc. ISC ’08, Taipei

B
R
O
W
S

WEB
SERVER

T
A
R
G
E
T

S

Contact UR RSA webserver

Send userid, url

Send one-time password

auto-transfer to Populate login form with

password

UR RSA Server

userid

1

2

4 5

3

S
E
R TRANSLATE

S
E
R
V
E
R

auto-transfer to
https://{UR RSA_1 }

User clicks “submit” Send userid, password

actual userid, “roguePwd”

Replace “roguePwd”
with actual password

4

6

8 7

5

Done

Fig. 1. The sequence of steps logging in using the URRSA service. See a description in Section A.2. The
heart of the service is the translation which acts as a MITM service: it sits between the client browser
and the login server and edits the request/response traffic between them. The implementation this part
is described in detail in Section 4.2.

Backend processing To reliably translate as a MITM service between https://{URRSA 1} and
https://www.paypal.com our URRSA implementation must perform [23]:

– request URL mapping
– request header mapping
– response header mapping
– response body link translations
– cookie re-assignment
– certificate replacement.

These changes can be implemented directly on the request/response stream using the WebClient
and HttpWebResponse classes in .Net. There are also a variety of proxy applications that offer
the ability to modify in real-time request/response traffic [8–10]. The most common mapping
that must be performed on the request header is to the Host field. Requests that are con-
structed relative to a given host will require mapping of this field. For example, in request-
ing https://www.BankOfAmerica.com/accounts the GET request issued by the browser is for
/accounts and the Host from which it is to be retrieved is in the header. However, when using a
reverse proxy we want the browser to request /accounts from {URRSA 1}. The proxy must then
map {URRSA 1} to www.BankOfAmerica.com as the request goes by.

Response headers often contain information about the document in the Location field. The
most common case is to indicate the new location when a document has moved. This is a very
common way to allowing sites to add and change web site content and point several access points
at a single login page. Before forwarding the response back to the browser we have the proxy map
www.paypal.com to {URRSA 1}. Cookies play an important rôle at many login servers. When a
cookie is set by PayPal the same origin policy will cause the browser to return that cookie only
with requests sent to PayPal. This is problematic, since the browser at the untrusted machine is
connected to {URRSA 1} rather than www.paypal.com. We solve this by re-assigning the domain
to which cookies belong in the response header.

10

Proc. ISC ’08, Taipei

When SSL connected to PayPal the browser receives a PayPal certificate signed by Verisign
(a Certificate Authority (CA) trusted by most browsers). The URRSA server will maintain two
SSL connections. From PayPal it receives a PayPal certificate signed by Verisign, just as a regular
client would. For the SSL connection it maintains with the client it must have its own certificate,
also signed by a CA trusted by the browser. Thus the user will never see a PayPal certificate,
but rather one for {URRSA 1}.

The response content must have all references to the end server replaced with ones to the
proxy. For example translate requests such as https://www.paypal.com/images/logo.gif to
https://{URRSA 1}/images/logo.gif. Table 2 lists the rules to carry out the mappings referred
to above.

The changes described so far allow us to translate for a single host. However, for many sites
content is loaded from more than one host. For example, when logging into PayPal the browser
loads content both from www.paypal.com and www.paypalobjects.com. For gmail content is
loaded from mail.google.com and www.google.com, while for sites such as myspace as many
as a dozen or more hosts can be involved. We solve this by having a single IP address, or host,
at the proxy handle each host that is involved in a login at the end server. For example for
Paypal the translations for www.paypal.com will be handled at {URRSA 1} while those for www.
paypalobjects.com will be handled at {URRSA 2}. This has the major advantage that relative
links in the response are resolved automatically without intervention by the proxy. This represents
a major point of difference with reverse proxies based on CGIProxy: these use a single proxy host
for any and all hosts involved in the login session. Thus all relative links must be found and
translated. A detailed description of reverse proxying can be found in [26].

In addition, recall that we must insert the user’s decrypted password into the request as the
login page is submitted to the server. When a login page is loaded the response content (Step 5 of
Figure 1) contains a password field. We auto-populate this field by replacing in the response body
the string type=‘‘password’’ with type=‘‘password’’ value=‘‘roguePwd’’. This causes the
login page that appears to the user to have an already filled in password field (this is not of course
the user’s password, but rather the “roguePwd” string). We have a further rule that replaces in
the request header the string “roguePwd” with the just decrypted user password (Step 6 of Figure
1).

Having the login page appear with an auto-populated password field serves a number of
functions. First, it provides the sentinel value for which the URRSA server will search the request
header to do the actual password switch. Second, many login pages will not allow submission
with an empty password field, so the field must contain something. Finally, in having the field
auto-filled with a value that is of no use to an attacker we greatly reduce the risk that the user
reflexively types his password when faced with an empty login page.

Table 2 lists the rules to carry out the mappings between www.paypal.com and {URRSA 1}
referred to above. A similar set of rules would translate between www.paypalobjects.com and
{URRSA 2}. Essentially any server can be handled in this way, where we dedicate an IP address
or host at the proxy to each host at the end server. A more scalable reverse proxy scheme is
described in [26].

4.3 Refresh Webservice

When the user requires a new OTP he can re-register. Alternatively, he can have a new list
generated and sent to his cell phone. This works as follows. A service {URRSA}/OTPRefresh
resembles the {URRSA}/OTPRegistration service. The user identifies himself by giving the url
and userID of the account for which he requires a new OTP list. However, instead of presenting
his true password for encryption he submits the last OTP on his list. This allows the server to
retrieve the key i. The proxy decrypts to get the true password, and then re-encrypts to form

11

Proc. ISC ’08, Taipei

a new list and transmits them to the desired number. In this manner the user can repeatedly
refresh his OTP list without having to return to a trusted machine. Of course, he must refresh
the list before he uses the last OTP on his list. OTP Refresh is not available if the user carries
the list by paper, since the proxy has no out-of-band channel to send a fresh list.

5 Attacks

5.1 Lost or Stolen OTP list

First, the technology is a one-time password (OTP) technique, and therefore, subject to the same
kind of vulnerabilities as other OTP systems. It deserves emphasis that the list must be generated
at a trusted location and should be kept carefully. The OTP list is sent by SMS text message to
the user’s cellphone, but printing and carrying a hardcopy is also supported. The list contains
the url of the login server along with the OTP list, but not the userID. If the OTP sheet is lost
or stolen the finder will possess a series of one-time passwords, but will not know the userID
of the account for which they work. We recognize that this is an imperfect defence, and do not
claim to have solved the problem of users who are careless or lose their OTP sheet (it is for this
reason that we regard the phone as a better channel). However a user who discovers he has lost
his OTP sheet can render it useless by generating a new sheet. If he can go to a trusted PC he
generates a new sheet and the old one is worthless (since a new set of keys is generated). A user
who cannot reach a trusted PC can still render the lost OTP sheet worthless by re-registering
at an untrusted PC. By typing random characters instead of the true password he will receive
one-time encryptions of junk, but this accomplishes a key reset at the service, rendering the lost
OTP’s useless. He cannot now use the service until reaching a trusted PC. A user who carries
the OTP list both on a cell phone and by paper and who loses the paper can, of course, render
the lost sheet useless by using the {URRSA}/OTPRefresh service.

5.2 Brute-force and Denial of Service

An attacker who wishes to guess or brute force the password will gain nothing by going through
the service, since we do not protect strong secrets with weak ones. To login normally he would
require the userID and password, to login via the service he requires the userID and the password
encrypted with the correct key. Any lockout policies enforced by the login server (e.g. “Three
strikes and you’re out”) remain in effect. An attacker who observes several logins or gains access
to the entire list cannot brute-force the password.

The proxy itself is a likely point of attack. Observe, however, that the OTP Login Web
interface (described in Section 4.2) is merely a conventional password web interface: it accepts
text and password HTML form fields from the user and relays them to backend processing. Thus
the web facing portion of the proxy is implemented with a tried and trusted password server. The
fact that we use components with well-understood attack surfaces increases the expectation that
attacking the system will be hard. Since at the backend credentials are stored only temporarily,
a snapshot of the database would gain an attacker little. A rogue employee at the proxy would
see at any given time only the credentials of users currently logging in.

Since we do not authenticate users it is possible to exhaust a user’s OTP list by repeatedly
invoking the OTPLogon service (with the correct url and userID but incorrect OTP’s). This form
of denial of service is possible, but gains the attacker nothing unless he can lure the user into
typing the true password in the clear.

12

Proc. ISC ’08, Taipei

5.3 Session Hijacking and OTP Stealing

There are two main active attacks on the system: session hijacking and OTP stealing. Session
hijacking is not addressed by our technique. Indeed, even long established OTP solutions such as
SecurID [3] have this vulnerability. However session hijacking is a complicated attack that requires
code tailored to each target login server. The fact that RSA has had considerable commercial
success protecting high-value accounts in spite of this well-known vulnerability suggests that
session-hijacking is not a common attack. In addition the techniques suggested in [21], which
require explicit out-of-band authorization for important transactions, might present a way of
addressing this problem.

OTP stealing is the technique that malware can employ to get OTP’s from the user. There
are a number of variations; the simplest is to allow a user to connect to {URRSA}/OTPLogin, have
him enter the requested OTP and then fail to submit it. If the user assumes that he mis-typed
he might try again, and give the attacker a second OTP. Depending on the user the attacker
might gain anywhere between one and three OTP’s this way (we assume that it is unlikely that a
user will type more than that). This is a well-known attack on all static OTP systems; dynamic
systems such as securID do not have this vulnerability since each OTP is good for only a few
seconds. We do not eliminate this attack. However, we point out that an attacker who logs in
with a stolen OTP has full access, but cannot change the account password. This is so, since
almost all web services require the original password before allowing a change; while the attacker
has one or more OTP’s he cannot use these to derive the password. This restricts the attacker:
if he has stolen three OTP’s he can now login three times. He cannot change or get access to
the true password and thus every access must continue to be done via URRSA. It is possible
to restrict the types of actions that can be performed via the proxy. For example, submission
of the HTML form that changes the user email, address or phone number might be forbidden.
This can be accomplished by adding a rule to the translations in Table 2 that drops the request
that contains any such POST. Finally, we point out that the OTP stealing attacker leaves a
clue to his presence in that he must cause a login to fail for each OTP he steals (i.e. each OTP
becomes worthless after its first use). Thus, in the absence of failed login attempts the user can
be confident that no OTP has been stolen. A user who suspects that an OTP has been stolen
can, of course, render them useless by connecting to {URRSA}/OTPLogin.

6 Status and Evaluation

We have implemented the system described and deployed on an internet-facing server. The service
currently supports OTP logins to a number of sites. The entire server code is small enough
that it can comfortably be hosted on a modest desktop machine. This makes self-hosting a real
possibility: i.e. users who have a fixed IP address or domain name might run their own instance.
This removes the necessity of trusting a proxy maintained by a third party.

The URRSA instance in its current form has been in active use by a small number of users
for over six months. A large number of successful logins to have been handled. These were carried
out from a variety of networks; i.e. machines that exist on home networks, are behind corporate
firewalls, internet cafés and public library locations have all been tried. The service works well
with Internet Explorer, Firefox, Safari and Opera. Users report that all of the functionality
generally available at a server works well when accessed through the URRSA service. Users do
not report perceptible delay, and the service is generally transparent to users once connection
is established. The service is running at www.urrsa.com. It is not possible to invite general use
as yet. However, for demonstration and verification purposes, we may allow restricted access as
conditions permit.

13

Proc. ISC ’08, Taipei

7 Conclusions

We have described a system that allows users one-time password access to accounts without
changing the server or the client. The method is entirely general and can be applied to almost
any login server. Among the key contributions are a very simple user experience and a truly
robust MITM translation. We do not authenticate users: thus there are no additional secrets to
remember or tokens for the user to carry. The service acts as a transparent MITM between user
and login server: thus there are no browser settings to be done or undone. We employ a simple
mapping of the arbitrary input password to restricted character set OTP’s: thus every OTP is
readable without ambiguity no matter what display or font is used, can be transmitted over SMS,
and can be entered even on unfamiliar keyboards without the use of meta keys.
Acknowledgements: the authors wish to thank Eric Lawrence, Ziqing Mao, Nikita Pandey,
Erin Renshaw and Dany Rouhana for help with various stages of this work.

References

1. http://labs.zarate.org/passwd/.
2. http://www.cl.cam.ac.uk/∼mgk25/otpw.html.
3. http://www.rsasecurity.com.
4. http://www.kyps.net.
5. http://www.csoft.co.uk/sms/character sets/encoding.htm.
6. http://www.jmarshall.com/tools/cgiproxy.
7. http://www.clickatell.com.
8. http://www.fiddlertool.com.
9. http://www.xk72.com/charles/.

10. http://www.portswigger.net/proxy.
11. C. Herley and D. Florêncio. How To Login From an Internet Café without Worrying about Keylog-

gers. Symp. on Usable Privacy and Security, 2006.
12. W. Cheswick. Johnny Can Obfuscate: Beyond Mother’s Maiden Name. In Proc. Usenix HotSec,

2006.
13. B. Coskun and C. Herley. Can “Something You Know” be Saved? ISC 2008, Taipei.
14. D. Florêncio and C. Herley. A Large-Scale Study of Web Password Habits. WWW 2007, Banff.
15. D. Florêncio and C. Herley. KLASSP: Entering Passwords on a Spyware Infected Machine. ACSAC,

2006.
16. D. Florêncio, C. Herley, and B. Coskun. Do Strong Web Passwords Accomplish Anything? Proc.

Usenix Hot Topics in Security, 2007.
17. E. Gaber, P. Gibbons, Y. Matyas, and A. Mayer. How to make personalized web browsing simple,

secure and anonymous. Proc. Finan. Crypto ’97.
18. P. Golle and D. Wagner. Cryptanalysis of a Cognitive Authentication Scheme. Symp. on Security

and Privacy, 2007.
19. N. Haller. The S/KEY One-Time Password System. Proc. ISOC Symposium on Network and

Distributed System Security, 1994.
20. C. Herley and D. Florêncio. Phishing as a Tragedy of the Commons. NSPW 2008, Lake Tahoe, CA.
21. R. C. Jammalamadaka, T. W. van der Horst, S. Mehrotra, K. Seamons, and N. Venkasubramanian.

Delegate: A Proxy based Architecture fort Secure Website Access from an Untrusted Machine. Proc.
ACSAC, 2006.

22. L. Lamport. Password Authentication with Insecure Communication. Communications of the ACM,
1981.

23. A. Luotonen. Web Proxy Servers. Prentice Hall, 1998.
24. M. Mannan and P.C. van Oorschot . Using a Personal Device to Strengthen Password Authentication

from an Untrusted Computer. In Financial Cryptography, 2007.
25. M. Wu and S. Garfinkel and R. Miller . Secure Web Authentication with Mobile Phones. In DIMACS

Workshop on Usable Privacy and Security Software, 2004.
26. Z. Mao and C. Herley. Robust Reverse Proxy Implementation. MSR-TR.

14

Proc. ISC ’08, Taipei

27. A. Pashalidis and C. J. Mitchell. Impostor: A single sign-on system for use from untrusted devices.
Proceedings of IEEE Globecom, 2004.

28. T. Pering, M. Sundar, J. Light, and R. Want. Photographic Authentication through Untrusted
Terminals. IEEE Security and Privacy, 2003.

29. B. Schneier. Applied Cryptography. Wiley, second edition, 1996.
30. T. C. Bell, J. G. Cleary and I. H. Witten. Text Compression. Prentice Hall, 1990.
31. D. Tan, P. Keryana, and M. Czerwinski. Spy-resistant keyboard: more secure password entry on

public touch screen displays. CHISIG’05.
32. D. Weinshall. Cognitive Authentication Schemes Safe Against Spyware. Symp. on Security and

Privacy, 2006.

A Additional Details

A.1 Pseudo-code of the mapping procedure

Here is a pseudo code illustrating the above encoding procedure:

//Encode
// get bits from input password P
BitString = 0;
TotalBits = 0;
for each character P[i] {

PP = table128_lookup_character(P[i]);
BitString = BitString <<7 + PP;
TotalBits += 7;

}
//encrypt
Key = get next TotalBits bits from One Time Encryption Pad
BitString = BitString XOR Key;
//convert bits to OTPi characters
i = 0;
while TotalBits > 0 {

PP = BitString AND 31
OTPi[i] = table32[PP];
BitString = BitString >> 5;
TotalBits -= 5;
i++;

}

A.2 Sequence of Events

1. User navigates to http://{URRSA}/OTPLogon, enters the userID and url (e.g. www.paypal.com).
This allows the server to determine the key values, that were used to generate the OTP list.

2. For the k-th login the user enters the k-th one-time password OTPk
3. The server decrypts to get the true password pwd
4. Browser is auto-transferred to request the url via the URRSA service (e.g. we request https:

//{URRSA 1}).
5. Server requests https://www.paypal.com, receives the response and populates login form

with userID and “roguePwd,” and sends to user.
6. User receives pre-populated https://www.paypal.com page and clicks submit button.
7. Server receives request, replaces “roguePwd” with pwd, forwards to https://www.paypal.

com.
8. Login proceeds and server continues in a MITM rôle until the user navigates from the site.

15

Proc. ISC ’08, Taipei

A.3 Login servers that do not use forms

Our system is applicable to login servers that use HTML forms and POST a password to be
authenticated at the server. While this appears to account for the vast majority of login servers
there are exceptions. Certain institutions implement an entirely proprietary authentication on
their website using Flash or a comparable technology. For example FirstTech Credit Union uses
only Flash on their login page https://online.firsttechcu.com/.

http://{URRSA}/OTPRegistration Register login domain and userID and receive OTP list

http://{URRSA}/OTPLogin Enter login domain, userID and requested OTP

http://{URRSA}/OTPRefresh Enter login domain, userID and requested OTP to get new OTP list

https://{URRSA 1} MITM service that performs mappings described in Section 4.2 and Table 2.

Table 1. A summary of the services described. The variable URRSA represents the host domain name or
IP address (e.g. we give the hostname of our implementation in Section 6). The last service is requested
after an OTP has been received from the user and decrypted.

Modify Search for Replace with

Request Header {URRSA 1} www.paypal.com

Response Header www.paypal.com {URRSA 1}
Response Header domain=.paypal.com domain={URRSA 1}
Response Body www.paypal.com {URRSA 1}
Response Body www.paypalobjects.com {URRSA 2}
Response Body type=“password” type=“password” value=“roguePwd”

Request Header roguePwd Actual password as decrypted

Table 2. The translation rules applied to the request/response stream to reverse proxy between the two
hosts www.paypal.com and {URRSA 1}.

16

