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We present several improvements to the standard Trotter-Suzuki based algorithms used in the
simulation of quantum chemistry on a quantum computer. First, we modify how Jordan-Wigner
transformations are implemented to reduce their cost from linear or logarithmic in the number
of orbitals to a constant. Our modification does not require additional ancilla qubits. Then, we
demonstrate how many operations can be parallelized, leading to a further linear decrease in the
parallel depth of the circuit, at the cost of a small constant factor increase in number of qubits
required. Thirdly, we modify the term order in the Trotter-Suzuki decomposition, significantly
reducing the error at given Trotter-Suzuki timestep. A final improvement modifies the Hamiltonian
to reduce errors introduced by the non-zero Trotter-Suzuki timestep. All of these techniques are
validated using numerical simulation and detailed gate counts are given for realistic molecules.

One of the most natural applications of a quantum computer is to simulate quantum mechanics, as suggested by
Feynman1. There has been much work on constructing quantum algorithms to simulate various problems in quantum
mechanics, ranging from problems in condensed matter physics such as the Hubbard model to quantum field theory2

and quantum chemistry3–16.
A recent large-scale study of quantum chemistry on a quantum computer17 gave accurate gate counts for some of

the standard circuits in the literature when applied to problems in quantum chemistry. Unfortunately, this study
found that even modest molecules require enormously long simulation time. The reason for this is simple: in quantum
chemistry, we consider a basis with N spin orbitals. The Hamiltonian considered takes the form

H =
∑
pq

tpqc
†
pcq +

1

2

∑
pqrs

Vpqrsc
†
pc
†
qcrcs (1)

for a system of interacting electrons. Many of the two-body interaction terms Vpqrs are non-zero and so there are
roughly N4 separate, non-commuting terms in the Hamiltonian. The time requirements become large even for roughly
100 spin orbitals; since roughly 50-70 spin orbitals can already be simulated on a classical computer using exact or
approximate techniques18–22, clearly improvements are needed in the quantum algorithms to make them potentially
useful.

Typical quantum algorithms to simulate this system need to implement unitary time evolution under the Hamilto-
nian (1). Efficient ways to implement this evolution have thus been the object of intense research efforts23–30. Other
approaches that do not rely on time evolution have been proposed31,32. For the time evolution, a Trotter-Suzuki
approach33,34 is most common, where the evolution exp(iHδt) for a small time step δt (controlled by an additional
ancilla qubit used to perform the phase estimation) is implemented through a sequence of O(N4) unitary transforma-
tions exp(iAδt) where A is some term in Eq. (1). Standard implementations10 have an additional factor of N overhead
in gate count to implement the Jordan-Wigner transformation, which encodes the anticommutation relations of the
fermionic degrees of freedom, giving a time complexity O(N5). Further, as N increases, the Trotter time step must
become smaller to obtain a fixed, given accuracy, further worsening the performance of the algorithm. All these effects
combine to give poor scaling with N .

In this paper, we significantly alleviate these problems. One technique is a modified circuit which reduces the gate
count overhead for Jordan-Wigner strings to a constant without requiring additional qubits. This improves both on
the linear overhead of Ref. 10 and on the Bravyi-Kitaev scheme which has only a logarithmic overhead35. Further, we
show that with this modified circuit, many of the operations can be parallelized, leaving the total gate count unchanged
but reducing the parallel circuit depth. All these improvements significantly reduce the gate count and parallel circuit
depth both asymptotically and for small molecules. Further, we modify the Trotter-Suzuki decomposition in two
ways. First, we modify the term order to take into account special properties of a Hartree-Fock basis in quantum
chemistry. Second, we modify the Hamiltonian that we study in a way that corrects for having a nonzero Trotter step.
These improvements allow us to obtain accurate results at much larger Trotter step than one might obtain otherwise.

These improvements then take two forms. One type of improvement involves modifying the circuits to perform
the same simulation in a more effective way. The other type involves modifying the simulation done to obtain more
accurate answers at larger Trotter step. Below, we detail all these improvements. We explicitly check gate counts
for various real molecules, using LIQUi|〉, a quantum simulator developed at Microsoft Research36, so that we could
obtain precise numbers for the improvements over the original circuits, rather than just asymptotic estimates.
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To start, let us fix some terminology. We say that a term in Eq. (1) is an Hpq term if it is of the form tpqc
†
pcq for

p 6= q, while it is an Hpp term if p = q. A term is an Hpqrs term if it is of the form 1
2Vpqrsc

†
pc
†
qcrcs for p, q, r, s all

distinct. An Hpqqp term is of the form 1
2Vpqqpc

†
pc
†
qcqcp while an Hpqqr term is of the form 1

2Vpqqrc
†
pc
†
qcqcr, again for

p, q, r all distinct. Note that the Hpp and Hpqqp terms are diagonal. Since cpcq = −cqcp and similarly c†pc
†
q = −c†qc†p,

we will rewrite any term 1
2Vpqpqc

†
pc
†
qcpcq as an Hpqqp term and we will rewrite any term 1

2Vpqrqc
†
pc
†
qcrcq as an Hpqqr

term, while for an an Hpqrs term we will assume that that p < q and r < s.
For the molecules we studied, the terms with the largest magnitude are the Hpp terms. The Hpqqp terms are

typically next in magnitude, then the Hpq terms, next the Hpqqr terms, and finally the Hpqrs terms. This ordering is
not strict. Further, there is an important sum rule relating the Hpqqr and Hpq terms. After a basis transformation of
the single-particle states to find a Hartree-Fock ground state, one has

tpq +
∑
r

Vprrqnr = 0, (2)

where nr = 0, 1 is the occupation number in the Hartree-Fock state.

1. CANCELLING JORDAN-WIGNER STRINGS

We work in a second quantized basis, using one qubit per spin orbital. In the case of an Hpq term with p < q, the
desired controlled unitary is

exp(i(σXp σ
X
q + σYp σ

Y
q )(σZp+1σ

Z
p+2...σ

Z
q−1)θ), (3)

where the product of Zs implements the Jordan-Wigner string and where θ depends upon the coefficient tpq and on
δt. In the case of an Hpqrs term with p < q < r < s, there are several possible controlled unitaries, of the form

exp(i(σXp σ
X
q σ

X
r σ

X
s )(σZp+1...σ

Z
q−1)(σZr+1...σ

Z
s−1)θ) (4)

with Jordan-Wigner strings from p+ 1 to q− 1 and from r+ 1 to s− 1. In fact, for each p, q, r, s, it may be necessary
to implement several of these terms, with σXp σ

X
q σ

X
r σ

X
s replaced by other Pauli matrices, such as σXp σ

X
q σ

Y
r σ

Y
s , etc...,

in every case having an even number of σX operators and an even number of σY operators. We refer to these different
choices of σX , σY as different subterms.

Since the Hpqrs terms are the most numerous and thus dominate the computation time, we focus on speeding up
the implementation of these terms; while the techniques can be straightforwardly used to also speed up Hpq or Hprrq

terms, we prefer to execute those terms in a different order for reasons explained later. The standard circuit10 to
implement this is shown in Figure 1. The lines represent qubits, with the top line labelled “Phase” being used to
control the application of the term. We show only a single subterm here; the circuit will be replicated several times
with different subterms. Our notation in writing circuits is that two qubit gates with open circles denote CNOTs,
with the open circle representing the target of the CNOT. Boxes containing an H represent Hadamard gates, which
transform perform a basis change between the eigenbasis of σX and σZ operators and thus effective interchange
these operators, i.e. HσZH = σX . Y and Y † perform the analogous operation between σY and σZ operators, i.e.
Y †σY Y = σZ . We thus refer to these as basis changes, and they are given by

H =
1√
2

(
1 1
1 −1

)
Y =

1√
2

(
1 i
i 1

)
. (5)

We notice immediately that the length of the Jordan-Wigner string may be proportional to N , leading to a linear
overhead. However, as we now show, it is possible to replace this with a constant overhead. Consider the circuit of
Figure 2. The Jordan-Wigner string now appears outside all the basis changes, giving a constant factor improvement
since it appears only once per term, rather than once per subterm. The equivalence of the circuits Figure 1 and
Figure 2 can be worked out after some linear algebra. A brief explanation is as follows. Consider the subterm
consisting of σXp σ

X
q σ

X
r σ

X
s . If the product of the Zs appearing in the Jordan-Wigner string is equal to +1, then the

controlled-Z has no effect and the gate implements the transformation exp(iσXp σ
X
q σ

X
r σ

X
s θ). However, if the product

is equal to −1, then the controlled-Z applies the operation σZs . This σZs anti-commutes with σXs , so that instead the
gate implements exp(−iσXp σXq σXr σXs θ), agreeing with Eq. (4).

At this point, we have only achieved an improvement by a constant factor. However, a further improvement appears
when we implement several of these terms in succession. For the Trotter-Suzuki decomposition, we have to implement
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Phase

P H H

Q H H

R H H

S H −θZ0/8 H

FIG. 1. Standard circuit for Hpqrs
10. H represents Hadamard gate. Up to 8 copies of this circuit appear in succession, with

Hadamard gates replaced by other basis change gates to execute different subterms.

Phase

P H H

Q H H

R H H

S Z H −θZ0/8 H Z

FIG. 2. Alternative circuit for Hpqrs. The ... indicate several different subterms. The two-qubit gate with a box labelled Z is
a controlled-Z gate, executing σZ on the target if the first qubit is 1 and identity otherwise.

every single possible term Hpqrs. Let us order these terms lexicographically, meaning that we implement a given
Hpqrs term, then increment s and implement the next Hpqrs term; when s = N , we then increment r and reduce s to
its minimum value, and so on. In this case, the Jordan-Wigner strings largely cancel between successive terms; if we
follow a term with given p, q, r, s with a term with p, q, r, s + 1, then all but O(1) CNOTs can be cancelled between
the end of one term and the start of the next, using the fact that the square of a CNOT gate is equal to the identity.
If we follow the term with given p, q, r, s with a term other than p, q, r, s+ 1, then more of the string of CNOTs may
be left uncancelled; see Figures 3,4 for an illustration.

There is a string of uncancelled CNOTs when we increment r once s = N . However, since this occurs only
every O(N) steps, it leads to only subleading overhead. We can, however, cancel even these string by using the
modified circuit shown in Figure 5 where we show several successive Hpqrs terms. Here we show a circuit that uses an
additional ancilla (initialized to |0〉 at the start of the computation) to track the total parity of electrons on orbitals
p+ 1, ..., q − 1, r + 1, ..., s− 1. Then, it is possible to modify the lexicographic order by first increasing s to N , then
incrementing r by 1 and then decrementing s from N , alternately incrementing and decrementing s for each choice
of p, q, r. This particular modification of the lexicographic order is not shown; rather we show a particular ordering
that works well for parallelization as discussed later.

A further advantage of the ancilla circuit appears already without parallelization, in that it allows additional term
cancellations. Note that for many molecules studied, not all Hpqrs terms are non-zero. Hence, it will often not be
the case that given a particular p, q, r, s that there is a non-zero term p, q, r, s + 1. This at first seems to limit the
number of cancellations as we often have uncancelled strings. However, in studying parallelization, we found that the



4

Phase

P H H H H

Q H H H H

R H H

H H

S Z H −θZ0/8 H Z

Z H −θZ0/8 H Z

FIG. 3. Alternative circuit for Hpqrs shown for two successive choices of p, q, r, s. In this case, both r and s changed so that
some of the CNOT cannot be cancelled.

Phase

P H H

Q H H

R H H

H H

S Z H −θZ0/8 H Z

Z H −θZ0/8 H Z

FIG. 4. Equivalent circuit to Figure 3, with redundancies cancelled.

following serendipitous cancellation often was possible: we often encountered a string of qubits acting with CNOTs
on a given ancilla, with the qubits in that string in the order b1, b2, ..., bn, where bi labels a qubit. This string was
then followed by some other string of qubits c1, c2, .... If c1 = bn, c2 = nn−1, and so on, then we can straightforwardly
cancel successive CNOTs. However, note that since all the CNOTs in both strings have the same target ancilla, they
all commute with each other, and hence we can cancel any CNOT in the first string against any CNOT in the second
string, so long as they have the same source qubit (i.e., bi = cj for some i, j). See Figure 5,6.

The basic idea of all these techniques is simple: the Jordan-Wigner string computes the parity of a given set of
qubits. If we then compute the parity of a set of qubits which is almost the same (for example, incrementing s to
s+ 1, adding a single qubit to that set), then much of the work of computation is already done and we do not need
to do it again. In fact, similar improvements can be obtained using the original circuit of Figure 1 if, rather than
choosing a specific choice of p, q, r, s and then executing all needed subterms, we instead pick a given subterm and
then execute all p, q, r, s terms in lexicographic order using that subterm; however, this method does not allow the
parallelization technique discussed next.

2. PARALLELIZATION

In previous work on simulation of quantum chemistry using quantum computers17, it was found that the main
limitation for practical applications will likely not be the number of coherent qubits available, but the number of gates
that can be executed coherently. Therefore, approaches that reduce the gate count at the cost of a few additional
qubits may be highly useful. We now introduce such an approach, which allows significant parallelization at the cost
of using additional ancilla qubits.

Assume that we can execute gates in parallel that act on distinct qubits. There are many simple ways to parallelize
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Phase

P H H H H

Q H H H H

R H H

H H

S Z H −θZ0/8 H Z

Z H −θZ0/8 H Z

FIG. 5. Circuit with ancilla for Hpqrs shown for two successive choices of p, q, r, s.

Phase

P H H

Q H H

R H H

H H

S Z H −θZ0/8 H Z

Z H −θZ0/8 H Z

FIG. 6. Equivalent circuit to Figure 5, with redundancies cancelled. Compare to Figure 4 where, without ancillas, not as much
of the CNOT string could be cancelled.

the Trotter-Suzuki step. For example, we can clearly execute two Hpqrs terms with p, q, r, s and p′, q′, r′, s′ at the
same time if p < q < r < s < p′ < q′ < r′ < s′, since the unitaries in the different gates act on different qubits.
However, this can only lead to a constant factor parallelization improvement.

Using the circuit with additional ancilla qubits allows much better parallelization, improving parallel depth by a
factor of Θ(N) compared to the serial gate count (thus giving a total Θ(N2) improvement compared to the original).
Consider two Hpqrs terms. Given any choice of p, q, r, s and p′, q′, r′, s′ for which the sites p′, q′, r′, s′ intersect an even
number of sites in the Jordan-Wigner string of the p, q, r, s term, the p′, q′, r′, s′ term does not change the parity and
hence can be moved through the Jordan-Wigner string. We refer to this as nesting, since we can execute terms in
parallel when one sits inside another (for example, when p < p′ < q′ < q and r < r′ < s′ < s), as illustrated in
Figure 7. For a specific illustration, Figure 9 shows the circuit of Figure 8 after nesting and CNOT cancellation; both
of these equivalent circuits show a few terms in succession from a real molecule. Different orderings are possible and
we have not fully explored the optimum ones, but up to Θ(N) terms can be executed in parallel this way with an
appropriate term ordering.

3. IMPLEMENTATION ON LIQUi|〉

To determine gate counts, the circuit for a single Jordan-Wigner step was specified by giving a sequence of p, q, r, s
and then the various circuits described above were used to implement each such term; then, LIQUi|〉 automatically
looked for cancellation of successive gate using rules such as the square of a CNOT or a Hadamard being equal to
the identity and also automatically looked for possible nestings. LIQUi|〉 also used the commutation rule discussed
at the end of the above section to look for possible cancellations between CNOTs appearing in different orders.
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FIG. 7. Schematic illustration of nesting procedure. Top left panel: Nesting the terms h16 and h35. Top right panel: Nesting
the terms h1436 and h25. This is allowed because the lines cross an even number of times. Bottom panel: Nesting of three hpqrs

terms, each with several subterms. This is a schematic representation of the example shown below in Figs. 8 and 9.

The results are summarized in Figure 10 for a sequence of simple molecules, showing the improvement over the
original circuit, as a function of the number of spins orbitals, for a number of real molecules. The Hpq and Hpqrs

terms were obtained using PyQuante37, an open source quantum chemistry program. While the number of Hpqrs

terms scales as N4, many of them are zero due to symmetries of these simple molecules; we expect that the gains
would be even larger for larger and less-symmetric molecules when all Hpqrs terms were non-zero because when many
of the terms are zero, the string cancellation is only partial.

For all cases of gate counts shown, the count shown is the parallel depth, where LIQUi|〉 used the rule that it can
execute gates in parallel which act on distinct qubits. Further, we allowed the execution of gates in parallel even if
more than one of them is controlled by the phase estimation ancilla, so long as all the other qubits in the gates are
distinct; that is, we allow the phase estimation ancilla to control more than one rotation at a time. To justify this
last choice, suppose that we had not allowed the execution of such controlled rotations in parallel; we will now show
that at the cost of a small number of additional ancilla qubits, we could still obtain exactly the same parallel depth
as in the case where we allow the phase estimation ancilla to control multiple rotations. To do this, immediately
before performing any of the Trotter-Suzuki evolution steps, we would copy (in the Sz basis) the state of the phase
estimation ancilla onto some number of additional ancilla qubits. Then, we would use these additional ancillas to
control the rotations so that every controlled rotation was controlled by a distinct qubit and the gates did not overlap.
Finally, at the end of all the Trotter-Suzuki evolution steps we would apply CNOT gates from the phase estimation
ancilla onto the additional ancillas to restore them all to the |0〉 state, obtaining the desired unitary evolution.

The Θ(N) gains due to removing Jordan-Wigner strings and parallelization do lead to only modest improvement
for these size molecules, but they are indeed seen to increase with N . The Θ(N2) improvement is not obvious in these
figures, but we have found that the ratios in gate count (when going from the Whitfield et. al. circuit to the ancillas,
or when adding nesting to the ancillas) can be approximately fit to a linear function of N , a + b ∗ N with b << a,
suggesting that at larger N the relative gains will indeed become more significant.

At the same time, some seemingly minor improvements led to a large constant factor improvement in gate depth.
One was to change the ordering of the qubits, from the order of Ref. 17 where the qubits corresponded to (in order)
the up and down spin states on the first orbital, then the up and down spin states and the second orbital, and so on,
to a different order where first all up spin states were encoded and then all down spin states; this new order is referred
to as “HalfUp” in Figure 10. Another improvement is to change the sequence of subterms from that in Ref. 10 to a
sequence which minimized the number of ways in which the basis changed at each step. Thus, rather than executing
in the order

σXσXσXσX , σY σY σY σY , σXσXσY σY , σY σY σXσX

we change to

σXσXσXσX , σXσXσY σY , σY σY σY σY , σY σY σXσX ,

allowing further cancellation of the basis change gates since two basis changes cancel at each step. This modified
sequence is referred to as “Optimized PQRS sub-terms” in Figure 10.
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H H Y Y † Y Y †

H H H H Y Y †

Y Y † H H H

Z Y −θZ1/8 Y † Y −θZ3/8 Y † H −θZ1/8

H H

H H Y

H H H

Y Y †

H Y Y †

Y Y † H

Z Y −θZ1/8 Y † Y

H H −θZ3/8 H Z

Y † Y Y † H H

H

H

H Y Y † Y Y †

H H H Y Y †

Y

Y −θZ1/8
−θZ3/8 Y † H −θZ1/8 H H −θZ3/8 H Z

H Y Y † Y Y † H H

H H H Y Y † Y Y †

Y † H H H H Y Y †

Y † Y −θZ3/8 Y † H −θZ1/8 H H −θZ3/8 H

FIG. 8. Example of a sequence of unnested Hpqrs terms.

All simulations were implemented using a first order Trotter-Suzuki decomposition. Similar improvements occur
using a second order Trotter-Suzuki decomposition, but in fact in this case the first order Trotter-Suzuki gives the
same error scaling as a second order one, as shown in App. A.

4. TROTTER-SUZUKI TERM ORDERING

There are many possible orderings of the terms in the Trotter-Suzuki decomposition (lexicographic, by magnitude,
etc...) and certain term orderings can greatly reduce the error at a given Trotter step δt. In the standard Hartree-Fock
approach to a quantum chemistry problem, a variational state is constructed by finding a basis of single-particle states
and then occupying certain orbitals, while others are empty. A variational optimization is then performed over the
single-particle states and occupation vectors. Let nr = 0, 1 be the occupancy of the r-th orbital in the lowest-energy
solution. Then, in the Hartree-Fock basis for all p 6= q,38

tpq +
1

2

∑
r

Vprrqnr = 0. (6)

That is, the “effective” hopping (tpq corrected by interaction terms) becomes diagonal in this basis.
One finds that for many molecules, the Hartree-Fock solution is a reasonable approximation, with the occupancies

of the Hartree-Fock orbitals in the full ground state obtained by FCI being close to 0 or 1. Hence, the above equation
holds to reasonable approximation in expectation. This suggests the following “Interleaved Term Order”:

1. Execute all Hpp and Hpqqp terms.
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H H Y

H H Y

H H Y

H

H

H H Y

Y Y † H

Y Y † H

Y Y † H

Y −θZ1/8
Z Y −θZ1/8

Z Y −θZ1/8 −θZ3/8 Y † H

Y † H H

Y † H H

Y † H H

H Y Y †

H Y Y †

Y †

H Y Y †

H Y Y †

H Y Y †

−θZ3/8 Y † H −θZ1/8 −θZ3/8 H

−θZ3/8 Y † H −θZ1/8 −θZ3/8 H Z

−θZ1/8 −θZ3/8 H Z

FIG. 9. Circuit that implements the same unitary as Figure 8, after nesting to reduce parallel depth.

2. For each p, q do

a. Do Hpq and all Hprrq terms.

3. Do all Hpqrs terms.

The terms in 1 commute with each other, as do those in 2a, and thus can be executed in any order. Since the terms
in 3 are the most numerous by far, we execute them in an order to minimize parallel depth as described above.

Unfortunately, we do not yet have a theory that allows us to understand the scaling of the error for large molecules,
but we empirically find consistent large reductions in Trotter error using this ordering, largely because the Hpq terms
are much larger than the others. Figure 11 shows the reduction in Trotter error for H2O. Similar though slightly
smaller, improvements were seen for other molecules; one notable exception was for N2, where the Hartree-Fock basis
found by PyQuante poorly captured the occupied orbitals in the real molecule. We expect that working in the correct
single-particle basis would lead to a large gain there as well.

In general, this approach relies on working in a basis in which Eq. (6) holds, and thus it is most applicable to
quantum chemistry; for problems such as the Hubbard model, it is possible to find such a basis of course (using a
basis of Fourier modes), but this leads to a large overhead by increasing the number of terms in the Hamiltonian. On
a speculative note, it may be possible in the Hubbard model to use a wavelet basis which would preserve approximate
locality while still approximately satisfying Eq. (6).
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Spin Orbitals

Comparison of Quantum Chemistry Circuits

Whitfield: Original

Whitfield: HalfUp,No Duplicates

Ancilla: HalfUp

Ancilla: HalfUp,No Duplicates

Ancilla: HalfUp,No Duplicates,Nested

Optimized PQRS sub-terms

H2O

N2
H2CO

CO2

CO2

H2O

CO2

Fe2S2

FIG. 10. Gate counts for various circuits, as a function of number of spin orbitals, for various molecules. Horizontal axis
indicates number of spin orbitals; each point is labelled by the corresponding molecule and certain molecules appear multiple
times as the same molecule was studied with different basis sets. Vertical axis denotes gate depth. The lines marked Whitfield
denote the original Whitfield et. al. circuit10. “HalfUp” denotes a change in ordering of the qubits (see text). Ancilla denotes
the use of the ancilla circuit. “No Duplicates” means that LIQUi|〉 searched for gates that could be cancelled, such as pairs
of CNOTs that square to the identity. “Nested” refers to the use of nesting. The bottom line, marked “Optimized PQRS
sub-terms” is “Ancilla: HalfUp, No Duplicates, Nested” with a modified sequence of subterms, described in text.

5. CORRECTED HAMILTONIAN

The final improvement leads to only a minor improvement (see Figure 11), but the idea may be useful more generally.
For a given δt, rather than simulating Hamiltonian H, we simulate a different Hamiltonian, in which the coefficients
tpq and Vpqrs are modified in a way that goes to zero as δt → 0.

To define the modification, we separate the Hamiltonian into diagonal (Hpp and Hpqqp) terms, and off-diagonal
terms. We make an approximation in the spirit of Hartree-Fock, defining an effective diagonal term ωp = tpp +
(1/2)

∑
q Vpqqp. We then calculate for a Hamiltonian H = Hdiag +Hoff-diag the effect of the off-diagonal term to second

order in perturbation theory. The shift in energy Ei of eigenstate i is given by
∑
j 6=i(Ei −Ej)−1|〈ψj |Hoff−diag|ψj〉|2.

However, using a second-order Trotter-Suzuki expression, the energy shift is instead
∑
j 6=i(Ei − Ej)

−1f(δt(Ei −
Ej))

−2|〈ψj |Hoff-diag|ψj〉|2, where

f(x) =

√
2(1− cos(x))

sin(x)
. (7)

To compensate, we make the modification

Vpqrs ← Vpqrsf(δt(ωp + ωq − ωr − ωs)), (8)

and tpq ← tpqf(δt(ωp − ωq)).
While only justified to second order, we find that this expression gives a slight consistent improvement in all cases.

See the lines labelled “Diagonal Fix” in Figure 11. The function f is slightly larger than 1 for x 6= 0, so it increases the
off-diagonal terms and goes to 1 as δt → 0. Heuristically, this can be justified as follows: for large Ei −Ej , the effect
of the off-diagonal term should produce only a virtual transition lasting time ∼ (Ei − Ej)−1; however, the minimum
time of the transition is δt, removing certain short-time transitions; hence we increase the magnitude of the term to
compensate.
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FIG. 11. Trotter error for H2O, as a function of Trotter number n, for time step δt = 1/n. Lexicographic (Lex) and Interleaved
(Int) orders; Fix is explained in section 5. y-axis is base-10 logarithm of error in ground state measured in Hartrees.

This modification can be thought of as using a “renormalization group corrected Hamiltonian”. Perhaps a more
general approach can allow the addition of other terms to the Hamiltonian to compensate; however, we would like
to avoid adding any terms involving six or more Fermi operators as they would be computationally expensive to
implement.

6. DISCUSSION

We have described several improvements to the basic Trotter-Suzuki approach used in the quantum simulation of
quantum chemistry. The cancellation of Jordan-Wigner strings and the nesting improve the N9 scaling of the gate
depth found in Ref. 17 to O(N7). Using approaches based on teleportation, it is possible to execute a sequence
of measurements in parallel to implement in time O(1) a CNOT string39 and even to implement, in certain coding
schemes, an arbitrary Clifford operation40; with these approaches the gate depth using previous circuits scales as N8.
Thus, even if all Clifford operations are assumed to be free (i.e., the cost of a Clifford operation is negligible compared
to the cost of an arbitrary rotation), it is still worth using the circuits here as they enable additional parallelization
of the rotations using nesting, reducing the time from N8 scaling to N7 scaling.

Assuming that the improvement from the interleaved term ordering continues to hold for larger molecules, we obtain
a combined reduction in gate depth of two to three orders of magnitude for molecules such as Fe2S2 in a basis with
112 spin orbitals, with larger improvements arising if we insist upon smaller Trotter error (see Figure 11). Other
schemes other than Trotter-Suzuki are certainly possible, with the two schemes with best theoretical scaling being
Refs. 28 and 30. However, Trotter-Suzuki has advantages of allowing improved parallelism, especially when each term
commutes with many of the other terms. Also, the possibility of choosing different orderings allows us to exploit
the ability to choose a Hartree-Fock basis in which the errors due to larger terms partly cancel. Future work using
LIQUi|〉 will allow accurate gate count comparisons using other schemes.
Acknowledgments— We thank B. K. Clark for useful discussions and collaboration on previous work.

Appendix A: Error Scaling in First Order Trotter-Suzuki

Given a Hamiltonian H written as a sum of terms

H =

Nterms∑
j=1

Hj , (A1)
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and given the ability to construct small quantum circuits to implement exp(iHjδt) for any j and any δt, the standard
first order Trotter-Suzuki approximation for exp(iHδt) is

exp(iHδt) ≈ exp(iH1δt) exp(iH2δt)... exp(iHNterms
δt), (A2)

while the second order Trotter-Suzuki approximation is

exp(iHδt) (A3)

≈ exp

(
iH1

δt
2

)
exp

(
iH2

δt
2

)
... exp

(
iHNterms

δt
2

)
exp

(
iHNterms

δt
2

)
... exp

(
iH2

δt
2

)
exp

(
iH1

δt
2

)
.

As one may guess from the names, the first expression is exact to order δt, giving an error of order δ2
t , while the

second is exact to order δ2
t , giving an error of order δ3

t .
Ultimately, the goal is to approximate exp(iHt) for some large t. One does this by writing exp(iHt) = exp(iHt/n)n

for some integer n ≥ 1, and then using a Trotter-Suzuki approximation for exp(iHδt) with δt = t/n. Taking into
account that the we have decomposed the evolution for time t into n smaller steps, and using the error estimates for
each time step above, one would expect that the error from first order Trotter-Suzuki scales as 1/n and that from
second order Trotter-Suzuki scales as 1/n2. In fact, in practice we have observed that both give errors in the ground
state energy scaling proportional to 1/n2; that is, first order Trotter-Suzuki has better error scaling than expected.

In this appendix we explain why this occurs, showing that this better error scaling is to be expected assuming that
the Hamiltonian is real and has a non-degenerate ground state, both of which are true for the Hamiltonians considered
in quantum chemistry. If instead we had a non-zero magnetic field, the Hamiltonian would not be real, and such
better error scaling would not be expected.

Before explaining this, we note that the result holds trivially if Nterms = 2, as then the first order and second order
approximations to the unitary exp(iHδt) have the same set of eigenvalues (to verify this, conjugate the first order
approximation by the unitary exp(iH2

δt
2 ) and this gives the second order approximation). However, our result holds

for arbitrary Nterms.
To show the result, an explicit computation using commutators gives

exp(iH1δt) exp(iH2δt)... exp(iHNtermsδt) (A4)

= exp(i(H + ∆)δt +O(δt)
3),

where

∆ = i
∑
j<k

[Hj , Hk]
δt
2
. (A5)

Hence, up to an error which is O(δ3
t ), the first order Trotter-Suzuki formula computes the evolution under a modified

Hamiltonian, H+∆. Let E0 be the ground state energy of H and let E′0 be the ground state energy of H+∆, so that
the error in ground state energy using a first order Trotter-Suzuki formula is equal to E′0 −E0 +O(1/n2). Assuming
H indeed has a non-degenerate ground state, then E′0 − E0 is given by first order perturbation theory, up to error
O(δ2

t ). However, if H is real and has a non-degenerate ground state, then the ground state expectation value of ∆
vanishes. Hence, E′0 − E0 is O(δ2

t ). So, in this case, indeed first order Trotter-Suzuki gives the correct energy up to
error 1/n2. To see that the ground state expectation value of ∆ vanishes, let ψ0 be the ground state wavefunction,
which is real, while ∆ is pure imaginary. Hence, the expectation value 〈ψ0|∆|ψ0〉 is pure imaginary; however, this
expectation value is a real number, being the expectation value of a Hermitian operator, hence it equals zero.

It is interesting to observe that the non-degenerate ground state is necessary. Consider a single qubit with H1 =
σx, H2 = σz, H3 = −σx, H4 = −σz so that H = 0 and E0 = 0. One may verify that first order Trotter-Suzuki gives
an error proportional to 1/n in this case.
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