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Abstract

We present the Scalable Nucleotide Alignment Program
(SNAP), a new short and long read aligner that is both more ac-
curate (i.e., aligns more reads with fewer errors) and 10-100x
faster than state-of-the-art tools such as BWA. Unlike recent
aligners based on the Burrows-Wheeler transform, SNAP uses
a simple hash index of short seed sequences from the genome,
similar to BLAST’s. However, SNAP greatly reduces the num-
ber and cost of local alignment checks performed through sev-
eral measures: it uses longer seeds to reduce the false posi-
tive locations considered, leverages larger memory capacities
to speed index lookup, and excludes most candidate locations
without fully computing their edit distance to the read. The re-
sult is an algorithm that scales well for reads from one hundred
to thousands of bases long and provides a rich error model that
can match classes of mutations (e.g., longer indels) that today’s
fast aligners ignore. We calculate that SNAP can align a dataset
with 30x coverage of a human genome in less than an hour for
a cost of $2 on Amazon EC2, with higher accuracy than BWA.
Finally, we describe ongoing work to further improve SNAP.

1 Introduction

As massively parallel sequencing methods become com-
mon in biological research, high throughput sequence in-
formation is making its way into a variety of fields, from
plant biology to human infectious disease, cancer re-
search, and clinical medicine. With the advent of newer
sequencing machines, hundreds of millions to billions of
short nucleotide fragments are now generated in a single
experiment.

Given recent trends and the current demand for these
technologies, monitoring the cost of sequencing pro-
vides a good measure of the amount of sequence gen-
erated (lower cost means more sequencing). That cost
is decreasing vanishingly fast. Resequencing a human
genome cost several billion dollars at the turn of the mil-
lennium, reduced to $10,000 at the start of 2011 [15]].
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By year’s end, the equivalent genome is projected to
cost only $2,000. Far outstripping Moore’s Law, the
amount of generated sequence threatens to overwhelm
current storage and compute infrastructures. Laborato-
ries and sequencing centers are turning to “the cloud”:
renting machines and storage from companies like Ama-
zon, Rackspace, and Microsoft. However, given the rate
of decrease in cost and increase in the amount of se-
quence data, simply scaling out across more machines
cannot keep pace with these advances. New algorithms
are required to handle this data.

The most popular traditional algorithms for sequence
alignment are Smith-Waterman and BLAST [1]. By
themselves, these algorithms are quite accurate, but they
take an inordinate amount of time to perform adequate
alignments. As a result, many new aligners have been
developed for the purpose of handling large amounts of
short read data over the past two to four years. BWA,
SOAP, Bowtie and SSAHA [7, (10} 16, [13] are but a few
recent examples of such tools.

While these aligners outperform Smith-Waterman and
BLAST by several orders of magnitude, they are still
computationally expensive, taking multiple CPU-days to
align a single human genome. Furthermore, the faster
aligners’ speed comes at the cost of accuracy: these
aligners only support limited numbers and types of er-
rors, e.g., one insertion/deletion (indel) of limited size
per read. They can thus miss larger differences between
sequences that are biologically significant. For example,
short insertions and deletions are thought to comprise be-
tween 15-30% of known genetic variation [12] and to
contribute to common diseases [[17]. Additionally, hu-
man cancer cells often contain a host of anomalies [3]],
including important base substitutions and short indels.
As DNA repair mechanisms degrade in tumor cells, ac-
cumulation of these mutations is thought to drive cancer
progression. Accurate identification of these changes is
therefore critical to understanding these diseases.

In this article, we present SNAP, a new aligner that is
both substantially faster and more accurate than the cur-
rent state-of-the-art algorithms. SNAP has several prop-
erties that make it attractive and broadly applicable for



truly high throughput sequence analysis:

1. It runs 10-100x faster than existing tools on reads
from current sequencing technologies, while pro-
viding higher accuracy (more reads aligned with
fewer errors).

2. It supports a rich error model: SNAP can find align-
ments with an arbitrary number of substitutions, in-
sertions, or deletions from the reference genome, as
long as there is one contiguous “seed” of ~20 bases
matching exactly.

3. It can run on readily available hardware, such as
several Amazon EC2 server types.

4. The same algorithm can be used across a wide range
of read lengths (from 100 to 10000 base pairs) and
error rates, making it applicable to both current an
upcoming sequencing technologies.

Surprisingly, unlike the fastest current aligners
(e.g., Bowtie and BWA), which search a trie index of the
genome encoded using the Burrows-Wheeler transform,
SNAP uses a simple hash index similar to BLAST’s,
based on short “seed” substrings of the genome. How-
ever, SNAP leverages several observations to run faster
than previous hash-based aligners. First, read lengths
have increased since the advent of BLAST: whereas se-
quencers used to produce 25-30 base pair reads, they are
now producing reads of 100 bp or more. This lets us use
longer seeds (~20 bases as opposed to BLAST’s 10-12),
which have a higher probability of containing an error
and thus not being found in the index, but match far fewer
“false positive” locations by chance. Second, we elim-
inate most of these locations without fully computing
their edit distance from the read, by using a local align-
ment algorithm that can quickly reject locations with a
higher edit distance than the best we found so far [16] and
eliminating some locations based on number of matching
seeds. This gives us a 10-50x speedup over the textbook
O(n?) edit distance check [18]. Third, SNAP leverages
the higher memory capacities on today’s servers to index
more seeds and perform fewer hash lookups

Combined, these optimizations yield an algorithm that
would not have performed well on the ultrashort reads
available when BLAST was introduced, but is highly ef-
fective on the 100+ bp reads available today, as well as
next-generation 1000+ bp long read technology (e.g., Pa-
cific Biosciences). Indeed, we were able to align a 100 bp
read dataset with 30-fold coverage of a human genome

I'The current version uses 39 GB for an index of the human genome,
which is readily available on commodity servers and on cloud services.
We believe that the memory usage could be reduced with little loss in
speed, as most of the algorithm’s time is spent in local alignment rather
than index lookup.

in 20 minutes on a 32-core server that cost $11,000 in
November 2011, using parameters that provide higher
accuracy than BWA, and we estimate that the same
dataset could be aligned in less than an hour for $2.40
on a “cc2.8xlarge” Amazon EC2 server. More impor-
tantly, since trends in both current and next-generation
sequencing technologies indicate that read lengths will
keep increasing, we believe that the techniques in SNAP
will continue to be relevant in the future.

2 Results

Before presenting the SNAP algorithm in detail, we start
with a speed and accuracy comparison against existing
aligners. We evaluated the algorithms using simulated
reads, for which we can know the true genome location
and can compute error rates. We computed three metrics:

o Aligned reads: Percent of reads that the aligner con-
fidently mapped to a location.

e Errors: Percent of confidently aligned reads that are
mapped to the wrong location.

e Speed: Reads per second aligned on a single CPU
core. All the aligners parallelize on machines with
multiple cores.

To determine confident reads, we used a quality
threshold of 10 for the aligners that report quality scores.
This value was also used in the evaluation of BWA [[7]].

We start by showing results for short simulated reads
(100 and 200 bp) with mutation frequencies matching
human data (Section 2.I). These reads are representa-
tive of current sequencing technologies, such as I[llumina.
Next, we compare performance on simulated long read
data with high indel rates from sequencing errors, con-
sistent with “third-generation” sequencing technologies
(Section[2.2). Finally, we report preliminary results for a
multicore version of SNAP (Section[2.3). Unless other-
wise noted, the measurements are from an “m2.4xlarge”
Amazon EC2 machine with 6§ GB RAM.

2.1 Short Reads

We compared SNAP’s performance on short reads
against Bowtie [6], SOAP2 [10] and BWA [7]. We cre-
ated one million simulated reads of 100 and 200 bp from
the hgl9 human reference genome, using the wgsim
program in SAMtools [14]]. We simulated a 0.1% muta-
tion rate (0.09% SNPs and 0.01% indels) representative
of human data, and base sequencing error rates of 2%,
5% and 10%, similar to the evaluation in [7].

Table |1| reports our results. We see that the exist-
ing aligners vary in terms of speed and accuracy, with



Error rate | Program 100 bp 200 bp
% Aligned | % Error | Reads/s | % Aligned | % Error | Reads/s
BWA 90.8 0.04 942 91.7 0.02 430
2% SOAP2 93.7 1.53 1,920 87.9 1.14 570
Bowtie 88.7 1.08 368 91.8 0.40 935
SNAP 92.0 0.05 | 28,400 94.4 0.03 | 35,800
BWA 529 0.16 782 27.8 0.06 702
59 SOAP2 73.4 1.92 665 18.2 1.15 215
Bowtie 76.4 2.18 241 85.7 0.78 624
SNAP 87.4 0.09 | 11,300 92.3 0.04 | 13,700
BWA 4.6 0.42 2,000 0.1 0.10 6,250
10% SOAP2 17.9 2.16 665 0.1 1.19 423
Bowtie 40.5 5.67 161 53.7 2.18 416
SNAP 70.7 0.48 4,600 82.7 0.14 5,170

Table 1: Results from aligning short reads with various tools. One million simulated reads were generated from the human genome
using a 0.09% SNP mutation rate, 0.01% indel mutation rate, and varying sequencing error rates. The metrics show fraction of
reads aligned, fraction of misalignments out of the aligned reads, and speed on a single CPU, averaged over three runs.

SOAP?2 being the fastest but the least accurate, and BWA
being slightly slower but more accurate. However, SNAP
performs 10-50x faster than these tools while also align-
ing more reads and making fewer errors. Furthermore,
SNAP continues to perform well when the error rate in-
creases, whereas the number of reads aligned by BWA,
SOAP2 and Bowtie drops substantially because these al-
gorithms are designed for small numbers of errors per
read. In practice, this means that SNAP can also match
reads with more mutations collected using lower-error
sequencing technologies.

For a direct comparison with other reports of aligner
performance, we also ran a test with 125 bp reads sim-
ulated as in the BWA paper [7]. The paper reports that
BWA aligned 93.0% of the reads at 0.05% error and 662
reads/s, while we found that SNAP aligned 94.1% of the
reads at 0.05% error and 34100 reads/s.

2.2 Long Reads

Third-generation sequencing technologies, such as Ion
Torrent or Pacific Biosciences, will generate long reads
of several thousand base pairs with a high frequency
of indels due to sequencing errors. Intuitively, SNAP
should work well for these types of reads: a larger read
length allows us to safely use long seeds in hashtable
lookups (see Section and find good candidate loca-
tions quickly, while the change to indels from substitu-
tions does not affect our edit distance algorithm.

To evaluate SNAP for this type of data, we generated
reads with varying sequencing error rates, in which 20%
of the sequencing errors were indels and the other 80%
were substitutions, as in the evaluation of BWA-SW [8]].
We then compared SNAP against BWA-SW.

Table 2] shows the results. We see that SNAP performs
substantially faster than existing tools—from as much

as 164 x faster for the 1000 bp reads with 2% error, to
3.6x faster for 10,000 bp with 10% error. We have not
yet optimized SNAP’s local alignment performance for
very long reads, so we believe that we can further im-
prove performance in these cases. Crucially, however,
SNAP’s accuracy also exceeds that of existing tools: it
often aligns 0.5% to 1% more reads, while achieving a
similar or smaller error rate.

2.3 Multi-Core Implementation

We built a parallel version of SNAP that runs alignments
on all of the cores of a multi-processor. It works by as-
signing a range of the input file to a core, having the core
process the entire range and then taking another. The size
of each the ranges is about half of the total remaining
work divided by the number of cores, with a minimum
size that is about a half second’s work. This scheme bal-
ances the efficiency of having large chunks (and so amor-
tizing the per-chunk overhead over more work) with the
desire to have all of the cores finish at the same time,
without having some exit early for lack of work while
others are still processing. Our preliminary implementa-
tion works well even though we’ve observed some cores
running at 1.7x the speed of some others.

Because alignments of different reads do not depend
on one another, one might think that running an align-
ment on multiple cores of a multiprocessor machine
would result in perfect speedup. However, while the in-
dividual alignments are logically independent, the com-
putational resources used to process them are not. The
cores contend for memory bandwidth to access the in-
dex, reference genome and input file; the cores on a sin-
gle chip contend for L3 cache; and, even though there
is almost no shared memory that is written, the memory
system still has to run a coherence protocol to verify that



Error rate | Program 1000 bp 10,000 bp

% Aligned | % Error | Reads/s | % Aligned | % Error | Reads/s

2% BWA-SW 96.2 0.02 49 97.1 0.00 7
SNAP 96.9 0.02 8020 98.3 0.01 313

5% BWA-SW 96.0 0.04 58 97.1 0.01 8
SNAP 96.6 0.04 2180 97.9 0.01 116

10% BWA-SW 95.8 0.03 81 97.5 0.19 9
SNAP 95.9 0.03 660 97.7 0.04 33

Table 2: Results for long simulated reads with varying sequencing error rates. 20% of the sequencing errors were indels.
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Figure 1: Scaling performance of SNAP in aligning one hun-
dred million 125-base simulated reads on multiple cores.

there have been no writes. All of these effects reduce the
scaling. We have not yet tried to quantify their relative
effects, nor have we tuned the parallel version of SNAP.

We ran tests on a Dell machine with four 8-core
2.6 GHz AMD Opteron 6140 processors, for a total of
32 cores. The machine has 256GB of memory and an IO
system consisting of 6 1TB 2.5” 7200 RPM SAS disks
attached to a PERC H700 RAID controller configured as
one drive for the operating system and a 5 disk RAID-0
stripe to hold the indices and read data. This machine
cost about $11,000 in November of 2011.

To measure scaling, we ran a simulated dataset con-
taining 100 million 125-base reads with a 2% error rate,
while varying the number of cores used. SNAP pro-
duced about 94% confident alignments with an error rate
of 0.05%. On a single core, SNAP ran at about 37,000
reads/s. On all 32 cores, it ran at 723,000 reads/s, just un-
der a factor of 20 faster, or about 60% of perfect speedup.
Figure|l|shows the scaling performance.

We also analyzed NA12878 (the mother) from the
CEPH Trio dataset [3], treating the data as single-end
reads. In total, there were 1.1 billion such reads, each
100 bp long. SNAP processed them at a rate of approxi-
mately 1M reads/s on 32 cores, and got through the entire
set of reads in under 20 minutes with a confident match

rate of about 79%. At this speed, we calculate that the
16-core, 60 GB RAM “cc2.8xlarge” server type avail-
able on Amazon EC2, which costs $2.40 per hour, can
align the dataset in about 40 minutes.

3 Methods

Like the original BLAST algorithm [1]], SNAP is based
on a hash index of short substrings of the genome (or
other reference database) called seeds, of a fixed size s.
Given a read to align, SNAP draws multiple substrings
of length s from it and performs an exact lookup in the
hash index to find locations in the database that contain
the same substrings. It then computes the edit distance
between the read and each of these candidate locations
to find the best alignment. Two features differentiate
SNAP from previous algorithms, however, and give it
its speed: the use of a larger index that trades memory
to reduce computation, and a set of optimizations for the
local alignment step that greatly reduce the cost of testing
a read against its candidate locations.

3.1 Hash Index

SNAP’s index is a hash table from seed strings of a fixed
length s to lists of positions in the reference database
where those strings occur. It differs from the indices in
BLAST in two ways:

1. Longer Seeds: We chose to index longer seeds than
most existing tools, with typical values of s being 20 base
pairs in contrast to BLAST’s 10-12 bp. Longer seeds
mean that it is less likely for a seed we extract from a
read to exactly match the reference database (e.g., with a
sequencing error rate of 2%, the probability that a 20 bp
seed is error-free is 0.982° = 0.67), but also drastically
reduces the number of false positive seed matches. For
example, given that the human genome is approximately
4'6 bp, we expect a seed of length 10, as in BLAST,
to match 46 = 4096 locations just by chance, result-
ing in many unneeded local alignment tests. In contrast,
with a seed of length 20, the expected number of hits by



chance is 4=* = 0.0039. Previous tools avoided long
seeds mostly due to reads being shorter (e.g., for a 35 bp
read with an error in the middle, all 20 bp seeds would
contain the error), but with 100 bp and larger reads, it is
possible to draw enough independent long seeds to have
a high chance of one being error-free. For example, from
a 100 bp read, we can draw five non-overlapping 20 bp
seeds, and with a 2% error rate, the chance that any one
seed has an erroris 1 —0.67 = 0.33; however, the chance
that all five seeds have errors is only 0.33°% = 0.004.

2. Overlapping Seeds: To save memory, many hash-
based aligners index only non-overlapping s-mers of the
reference database (e.g., the first 10 bases, then the next
10 bases, etc), so that with a seed length of s, only 1/s of
the locations in the database occur in the index. For ex-
ample, an index over the human genome with 20 bp seeds
would take about 2 GB of memory with non-overlapping
seeds. However, the disadvantage of this approach is that
one must try more seeds per read to find one that matches
the stride used in the index (e.g., only one in 20 seeds in
the read can match the seeds used in the index). While
the computational cost of additional hash table lookups
seems like it ought to be small, it is in fact substantial,
because each lookup will result in a CPU cache miss
due to the index being much larger than the processor’s
L3 cache A read from main memory, without going
through the processor cache, takes hundreds of cycles in
modern processors. SNAP avoids this cost by indexing
overlapping s-mers (i.e., sliding a window of length s
one base at a time over the database). This requires a
larger index, but one that is still well within the means of
modern servers; for example, SNAP requires 39 GB for
an index of the human genome

3.2 Local Alignment

Although our use of longer seeds and a large index sub-
stantially reduces the number of local alignment checks
SNAP performs, we still found that the algorithm spent
most of its cycles in local alignment—that is, in com-
puting the edit distance from the read to the candidate
locations where we found matching seeds. SNAP goes
further to reduce the number and cost of local alignment
checks by leveraging three observations:

1. With the longer seeds used in our index, there will
be few false positive hits, so we will find a good
alignment for each read quickly.

2 L3 caches in modern processors are only several MB in size.

3Note that it would also be possible to choose strategies in-between
SNAP’s fully overlapping windows and traditional disjoint windows.
For example, we could slide a window 2 bases at a time, resulting in a
2x smaller index but more hash table lookups. We chose to to index
all windows because the memory required was manageable.

2. For most applications, one only needs to find the
best and second-best alignments of a read, i.e., the
positions where the edit distance between the read
and the database is smallest and second-smallest.
If the best alignment is sufficiently better than the
second-best, then the read unambiguously maps to
that location, but if both alignments are good, the
read cannot be mapped confidently to either place.

3. We can eliminate some locations solely on the num-
ber of seeds that match there, without performing
an edit distance check. For example, if three of
the non-overlapping seeds from a read do not match
with a particular candidate location, then that candi-
date location must have at least edit distance 3 from
the read, because there must be at least one differ-
ence in each of the non-matching seeds. This obser-
vation was first made by Baeza-Yates [2].

Algorithm [T| shows the pseudocode for SNAP, which
uses all three observations to eliminate candidates. The
algorithm takes five parameters controlling which align-
ments it considers good and which seeds it tries, shown
in Table Bl It return one of three values for each read:
“single hit,” if it found only one good alignment for the
read; “multiple hits,” if it finds two or more alignments
that are too close in score; and “not found.’ﬂ

To leverage our first two observations, SNAP uses an
edit distance algorithm that runs faster when comparing
more similar strings, and can return without fully com-
puting the distance if it exceeds a given threshold. The
textbook dynamic programming algorithm for edit dis-
tance [18] takes O(n?) time to compare two strings of
length n. Instead, we use an algorithm by Ukkonen [[16]]
whose running time is O(nd), where d is the edit dis-
tance between the strings, and whose space cost is O(d).
Furthermore, if d exceeds a given threshold, djim;, the al-
gorithm returns a special value in O(ndjiy;) time using
O(diimit) space, without fully computing the distanceE]

This choice has two benefits. First, in many cases,
the first candidate location we find for a read is a good
alignment, so we will compute the edit distance to it
faster than in O(n?) time. Indeed, 80% of the time, the
first location we score for a read is the best, likely be-
cause many of our seeds match only one location in the
genome. Second, because we are only interested in the
best and second-best alignments, we can lower djjnj; as
we go along to check further candidate locations faster.

4 We differentiate between “multiple hits” and “not found” to let
SNAP be used for filtering in addition to precise alignment, e.g., to
filter out human reads from data collected in search for a pathogen even
if these reads match more than one location in the human genome.

5 The algorithm is roughly equivalent to filling in only the central
diagonals of the traditional n? size edit distance table, but it only tracks
the farthest distance one can travel on each diagonal to save space.



Parameter Meaning

Seed size (s) Length of seeds, in bases.

Seeds to try (n) | Number of seeds to try for each read.

Maximum edit distance from reference
sequence to allow for an alignment.

Maximum dis-
tance (dmax)

Difference in edit distances between a
read’s best and second-best alignments
needed to report it as confidently aligned.

Confidence
threshold (¢)

Max hits (hmax) | Maximum index locations to check for a
seed. Some seeds containing repetitive
strings (e.g., AAAAAR) hit thousands of

locations, so we ignore them.

Table 3: SNAP algorithm parameters.

In particular, SNAP takes a parameter c, the confidence
threshold, that represents the minimum difference in edit
distance scores between the best and second-best align-
ments that will let the algorithm return the best align-
ment rather than saying that the read maps ambiguously.
That is, if a read’s best alignment is at position p; with
edit distance d;, and its second-best alignment is at po-
sition po with edit distance do, then SNAP will return
position p; if do — d; > c or report the read as ambigu-
ous otherwise. Thus, if we have a best match at some
edit distance dpes;, We can limit our search to matches
within distance dyeqy + ¢ — 1, as any poorer matches will
not affect our result. Furthermore, if we find a second-
best match within this distance, then we can set dj;pj; to
dpest — 1, as our best hit so far cannot be reported con-
fidently and the only thing that would change our result
is that there is an undiscovered alignment with distance
at most dpey — ¢ and no alignments with distance within
c of that. With these optimizations, more than 90% of
SNAP’s edit distance calls after the first reach dj;n;; With-
out fully computing the distance and return early.

Finally, SNAP also counts the number of seeds that
matched at each database location to eliminate some can-
didates before scoring their edit distances. In particular,
if ¢t non-overlapping seeds from the read did not match
a given location in the database, then the reference se-
quence at that location must have edit distance at least ¢
from the read [2]. We use this observation in two ways.
First, after we have tested ¢t non-overlapping seeds, we
know that the edit distance to any location we have not
yet found as a candidate is at least ¢, so if our best align-
ment has distance dpey < t — ¢, we need not try other
seeds and can score all our candidates instead. Second,
as SNAP finds candidates, it only scores one after each
seed it tests (the one matching the most seeds), so it can
eliminate some candidates without ever scoring them.
We have also tried looking up more seeds before scoring
the first candidate, but surprisingly, this had little effect
on performance. We are still investigating whether it can

Algorithm 1 SNAP alignment algorithm.

dbeg[ <— OO
dsecond — 00
fori=1...ndo
S « i seed of read
if # of index entries for S < hnax then
for [ € locations of S in index do
p < | — offset of seed ¢ from start of read
SeedsHitting[p] < SeedsHitting[p] + 1
end for
p <— unscored location with the most seeds hitting
if dpest > dmax then
d]imit — dmax +c— 1
else if dsecond > dpest + ¢ then
limit < dest +¢— 1
else
limit +— dpest — 1
end if
d + EditDistance(Read, Reference[p], diimi)
update dpest and dsecond based on newly scored d
if dyest < ¢ and dsecond < dbest + ¢ then
return multiple hits (we have two hits within dis-
tance c and no better hit can be confident)
else if # non-overlapping seeds tested > dpest + ¢ then
score remaining locations and break (any unscored
location will have too high a distance)
end if
end if
end for
if dpest < dmax and dsecond > dpest + ¢ then
return single hit at location with best score
else if dpest < dmax or all seeds had > hmay entries then
return multiple hits
else
return not found
end if

be useful at some read lengths and error rates.
For simplicity, we have omitted a few other aspects of
the algorithm from the pseudocode:

1. When a read contains an insertion or deletion rela-
tive to the reference database, looking up different
seeds from it may give slightly different alignment
positions. For example, with a seed size of 20, per-
haps the first seed of the read matches position p,
while the second seed matches position p + 21 be-
cause there was a deletion between the two seeds.
In this case, it may appear that the read maps am-
biguously, either at position p or p + 1. We avoid
this by merging together results for positions that
are close-by and only considering the best resultE]

2. About half of the reads will be reverse complements
relative to the reference database. To match these,

6 Specifically, we group the positions in the genome into buckets of
size 32 and only track the best aligning location within each bucket.



we populate the index with both forward and reverse
complement versions of each string.

3. We choose the order of seeds from the read to min-
imize overlap between them. We start with as many
sequential non-overlapping seeds as possible, then
offset the next set of seeds by ‘%, then %, %, etc.

4 Ongoing Work

After implementing the basic SNAP algorithm, we ex-
plored how various properties of its search parameters
and input data affect its speed and accuracy. In this sec-
tion, we discuss our ongoing work to further improve
SNAP based on this analysis. We first outline obser-
vations about characteristics of the human genome that
inhibit faster and more accurate alignment, creating a
tradeoff between accuracy and speed. Then, we describe
our efforts to leverage knowledge about the genome to
retain high accuracy without sacrificing speed.

4.1 Observations

To identify what was resulting in the most computational
expense in our algorithm, we did a sweep over the al-
gorithm parameters listed in Table [3] We noticed that
the only parameter that greatly affected our metrics of
interest (reads aligned, error, and speed) was hp,x, the
maximum number of possible genome locations that we
were willing to consider for each seed. That is, explor-
ing candidate locations from seeds with more hits yielded
significantly more alignments and fewer errors, but at a
cost of throughput. Given that SNAP tries multiple seeds
per read, this means that the reads in question mapped
well to multiple locations. In other words, to align the
last few percent of reads, we must test them against tens
or hundreds of candidate locations. We plot this effect
for 125 bp reads with a 2% error rate in Figure 2]

Upon identifying this tradeoff between accuracy and
throughput, we decided to learn more about how reads
can match many locations. It is well known that the
human genome is characterized by a great deal of re-
dundancy. Some of this is exact duplication, often in
highly repetitive sequences. For example, in chromo-
some 1 alone, the string AAAAAAAAAAAAAAAAAAAA
occurs over 36,000 times. However, if a read matches
multiple locations equally well, it will quickly be dis-
carded by SNAP as ambiguous, so it should not affect
the rate of confident alignments.

There has been less discussion about the fact that
there is also substantial near-duplication in the genome.
It is possible to find large groups of substrings where
there are few exact duplicates, but all the strings
differ from each other by very little. An interesting

feature of near duplicate regions is that there is not
always a repetitive pattern. Consider an example from
chromosome 22. We found one cluster containing
over four hundred similar strings of length 100. The
“consensus” string for the cluster, obtained by taking
the most popular base at each position in the strings,
was GCAAGCTCCGCCTCCCGGGTTCACGCCATTCTCC
TGCCTCAGCCTCCCGAGTAGCTGGGACTACAGGCGCCC
GCCACCACGCCCGGCTAATTTTTTGTAT. This string
clearly has no repetitive pattern, but we found that on
average, the strings in the cluster differed from this
consensus string by only six bases

The simplest way to avoid spending time on reads that
match such clusters of similar regions is to impose a cut-
off. This is the idea behind restricting h.x, and it works
well for exact duplicates, where all the seeds have hun-
dreds of hits. However, this approach poses two prob-
lems with near-duplicates: we might set the threshold
too low, and miss some reads that actually align unam-
biguously to one location, or miss some locations where
a read aligns and return a confident result for it when it
is in fact ambiguous; or we might set the threshold too
high, and incur a high computational cost checking reads
against many locations. This leads directly to the trade-
off between accuracy and speed observed in setting fmax.-
To get around this constraint, our current work aims to
identify the similar regions in the reference database in
advance and treat matching against them specially.

4.2 Approach

To handle similar regions more effectively, we are pursu-
ing an approach consisting of two steps: (1) finding the
similar regions in the genome and (2) matching against a
cluster of such regions efficiently.

Finding regions of exact duplication is simple; we just
look for identical substrings of length r, where r is the
length of our reads. This can be done by simply hashing
these substrings. We can then save time in alignment by
comparing against each repeated string only once.

Finding regions of near-duplication is more compli-
cated, but parallels the approach taken for exact dupli-
cates. We still want to group substrings of length r
via hashing. However, since we are looking for near
duplicates rather than exact duplicates, we do not hash
on the entire substring. Instead, we hash on C' random
columns (positions in the string). Under this hashing
scheme, similar substrings are more likely to hash to-
gether than random substrings. However, the particular
set columns chosen will influence which pairs of sim-
ilar substrings hash together. Therefore, we repeat the

7 Interestingly, which of the six bases differ varies across strings,
and for almost all of the 100 possible positions, we found three or four
distinct bases present across the set of strings.
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Figure 2: Accuracy grows as we increase the number of locations we can check per seed, Amax, but throughput falls.

hashing many times, each time choosing an indepen-
dent set of C' columns to hash on. Then, any substrings
that hash together significantly more often than random
strings across these tests will be considered similar.
After finding the clusters of similar regions, how can
we use them during alignment? We are exploring several
approaches, but we believe that even simple techniques
will help. First, simply having the elements of a clus-
ter together will reduce the error rate at low values of
hmax by allowing us to check a read against all of the
strings in a cluster; that is, we will no longer miss some
good alignments because they happened not to be found
by our seeds, and mistakenly report a read as confident.
Second, putting the strings in the cluster in a contiguous
location in memory will significantly reduce CPU cache
misses during alignment, which will save time as each
cache miss costs the same amount of time as hundreds
of CPU cycles. Finally, we have developed several al-
gorithms that can match a read against a cluster of simi-
lar regions faster than matching against each string indi-
vidually, by exploring the inherent redundancy between
the strings in the cluster. Intuitively, the mere fact that
these strings are similar means that a significant amount
of computation can be shared in aligning against them.

5 Related Work

Since the development of shotgun sequencing methods,
sequence alignment has received considerable research
interest. We discuss the major approaches taken to align-
ment as well as several recent algorithms, but we refer
the reader to [9]] for a more comprehensive survey.

Most current aligners use one of two approaches:
hash-based seed-and-extend methods or prefix trie
methods based on the Burrows-Wheeler transform
(BWT). The seed-and-extend method was pioneered by
BLAST [1]], which builds a hash index of small sub-

strings (seeds) of the reference genome and checks seeds
from the reads against it for exact matchesﬂ It then uses
a local extension process at each seed hit to find good
alignments. While BLAST and various further tools
refining its approach have been highly successful, they
were found too slow for the short read data generated by
modern DNA sequencers, so they have generally been
replaced for these workloads by BWT-based aligners.

BWT-based aligners, including Bowtie, SOAP2,
BWA, and BWA-SW [6l [10l [7, 8]}, align reads against a
prefix trie of the reference genome, which is represented
compactly using the Burrows-Wheeler transform [4].
While a prefix trie allows for fast exact string match-
ing against a reference text, the main challenge these al-
gorithms address is inexact matching. Botwie, SOAP2,
BWA perform inexact matching through backtracking —
that is, by trying to insert errors at various positions in the
read as it is matched against the prefix trie — and cut the
potentially exponential cost of the search through various
heuristics, such as limiting the number and types of er-
rors considered. This approach therefore comes at a cost
of accuracy: certain types of errors and mutations cannot
be matched. For example, BWA assumes that there are
no errors in the first 20 bases of the read, while Bowtie
does not allow indels. In addition, backtracking scales
poorly with longer reads: as the number of errors one
wishes to tolerate per read increases, the cost of back-
tracking grows exponentially. BWA-SW addresses these
problems for long reads by using Smith-Waterman align-
ment of the suffix tree against a directed acyclic word
graph (DAWG) of the read. However, we found that
SNAP performs substantially better than BWA-SW and
BWA for both short and long reads, while also providing
higher accuracy.

SNAP is based on the seed-and-extend method, but it
gains its speed from several observations and optimiza-

8Alternatively, one can build seeds from the reads and check the
genome against them.



tions. First, SNAP uses longer seeds than previous hash-
based aligners, which is feasible with today’s sequencing
technologies because reads are getting longer. When al-
gorithms like BLAST were developed, short reads were
20 to 30 base pairs in length, so seeds necessarily had to
be short (e.g., 10 bp), leading to extraneous work to pro-
cess false positive hits. Today, short reads are at least 100
bp in length, and are expected to increase. This allows us
to use longer seeds, which reduce the number of align-
ments performed, as explained in Section @ Second,
SNAP uses an edit distance algorithm that runs faster
when the strings match closely [16], because with long
seeds, most reads will match well at any locations where
a seed hits. This substantially reduces the cost of local
alignment. Finally, SNAP takes advantage of the larger
memory capacities available today to reduce the number
of hashtable lookups for its index. The result is an algo-
rithm that runs faster than existing hash and BWT based
aligners without trading away accuracy. SNAP will find
alignments with arbitrary numbers and types of errors as
long as at least one contiguous seed in the read matches
the reference genome, which happens for long enough
reads even at relatively high error rates.

Finally, another recently developed aligner that takes
advantage of high memory is WHAM [11]. WHAM also
uses a hash-based index and eliminates some candidates
using the count of matching seeds, but it searches for
multiple small seeds from the read instead of a larger
seed like SNAP’s. The WHAM algorithm tolerates fewer
errors per read than SNAP — only up to 5 errors in total
and 3 gaps — resulting in lower accuracy. Furthermore,
its performance decreases quickly with the number of er-
rors and gaps. We tested WHAM version 0.1.2 against
a simulated dataset of 70 bp reads with 2% error from
the human genome and found that it only aligned 40%
of reads with its default setting of up to 3 errors, at a
speed of 30,000 reads/s. Increasing the number of errors
and gaps to the maximum supported raised the number
of reads aligned to 60% but reduced the speed to 4000
reads/s. In contrast, SNAP aligns 86.7% of this dataset
with 0.08% error at a speed of 52,000 reads/s.

6 Conclusion

As DNA sequencing technology continues to improve
faster than Moore’s law, it is opening up new medical and
scientific applications. However, processing the short
read data generated by this technology is a growing com-
putational challenge. To address this challenge, we have
presented SNAP, a new short and long read aligner that
runs 10—100x faster than state of the art tools while pro-
viding higher accuracy. SNAP derives its performance
from a careful cost analysis of the seed-and-extend align-

ment method and optimizations that greatly accelerate it
for today’s longer read lengths and larger memory ca-
pacities. We calculate that SNAP can align reads with
30x coverage of a human genome in less than an hour
on Amazon EC2, for a cost of $2 . Most importantly,
our experience with SNAP shows that a careful recon-
sideration of sequence processing algorithms in light of
today’s computer hardware and sequencing technologies
can yield substantial speedups.
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