QPL 2004, pp. 127-144

Toward a Software Architecture for Quantum
Computing Design Tools

K. Svore A. Cross A. Aho I. Chuang l. Markov
Columbia MIT Columbia MIT U. of Mich.
Abstract

Compilers and computer-aided design tools will be essential for quantum comput-
ing. We present a computer-aided design flow that transforms a high-level language
program representing a quantum computing algorithm into a technology-specific im-
plementation. We trace the significant steps in this flow and illustrate the transfor-
mations to the representation of the quantum program. The focus of this paper is on
the languages and transformations needed to represent and optimize a quantum algo-
rithm along the design flow. Our software architecture provides significant benefits
to algorithm designers, tool builders, and experimentalists. Of particular interest are
the trade-offs in performance and accuracy that can be obtained by weighing different
optimization and error-correction procedures at given levels in the design hierarchy.

1 Introduction

Just as they are for classical computing, compilers and design tools are going to be indis-
pensable for quantum computing. In this paper, we present a layered software architec-
ture for a four-phase computer-aided design flow mapping a high-level language source
program representing a quantum algorithm to a technology-specific implementation. We
trace the series of steps in this flow and show the corresponding transformations in the
intermediate representations of the quantum algorithm. We use results from our work on
optimization and simulation tools to illustrate the overall design flow and individual design
transformations.

We discuss the languages and notational representations needed to support this design
flow. Of particular importance is the high-level programming language used to specify
quantum algorithms. We also need optimizing compilers that will map the quantum pro-
gramming language programs into efficient and robust low-level programs that can be ex-
ecuted on a quantum device or simulated on classical computers using high-performance
tools.

In the next section we discuss the toolsuite and the benefits of the layered software ar-
chitecture and the design flow. We then describe properties needed in a quantum program-
ming language, a proposed quantum computer compiler, a quantum assembly language, a

*contact:kmsvore@cs.columbia.edu

128 K. Svore et al.

guantum physical operations language, and a simulator with layout tools. Sample design
flows for ion-trap computers illustrate what is practical today. In conclusion, we discuss
challenges in building software architectures for quantum design automation and point out
areas where software support may soon be required.

2 Quantum Design Tools

2.1 Toolsuite

We envision a layered hierarchy of notations and tools that includes programming lan-
guages, compilers, optimizers, simulators, and layout tools. The programming languages
and compilers at the top level of our toolsuite need to support the abstractions used to spec-
ify quantum algorithms and need to accommodate changes in technology-independent and
dependent optimizations as our understanding of new quantum technologies matures. The
simulation and layout tools at the bottom end need to incorporate details of the emerging
guantum technologies that would ultimately implement the algorithms described in the
high-level programming language. The tools need to balance tradeoffs involving perfor-
mance, minimization of qubits, and fault-tolerant implementations. For these reasons, we
propose a layered hierarchy of design tools with simple interfaces between each layer.

2.2 Benefits of an Open Software Architecture

There are several benefits to having a layered software architecture with well-defined inter-
faces for quantum computing. On the technical front, a layered architecture facilitates tool
interoperability and makes it easier to add new tools to an existing toolsuite. It also makes
it easier to maintain and add improvements to existing tools. At this time our knowledge
of how best to optimize quantum circuits for noise avoidance is limited as is our ability
to minimize errors and maximize speed. A layered architecture would allow researchers
to experiment with new algorithms and through simulation determine their benefits with
given quantum technologies before constructing actual physical device components. On
the economic side, no single group can afford the huge software development cost required
to develop all the tools needed to make quantum devices.

All stakeholders in quantum computing would benefit from the open software archi-
tecture, which allows wider community participation in the creation and use of needed
tools. Quantum algorithm designers can explore new algorithms in more realistic settings
involving actual noise and physical resource constraints. Researchers developing quantum
circuit optimizations can evaluate tradeoffs taking into account quantum noise and phys-
ical parameters. Experimentalists and device designers can do simulations of important
guantum algorithms on proposed new technologies before doing expensive lab experi-
ments. Tools designers can experiment with new algorithms and can evaluate their overall
impact on the design process. Researchers can also develop more refined noise models for
tailored-correction procedures.

Toward a Software Architecture for Quantum Computing Design Tools129

Design Flow:

Quantum T T) FI’ W
Program Front End D Simulator
ogra QR | optimizer | QASM|_optimizer | acpor | Simulato

Abstraction:

S, —— "0 — "o —— ok

Figure 1:PROPOSED DESIGN FLOW

2.3 The Design Flow

The design flow (Figure 1) is a four-phase process that maps a high-level program repre-
senting a quantum algorithm into a technology-specific implementation or simulation. The
first three phases of the design flow are part of the quantum computer compiler (QCC). The
last phase is a simulation or an implementation of the quantum algorithm on a quantum
device.

The representations of the quantum algorithm between the phases are the key to an
interoperable tools hierarchy. The first phase, the front-end of the compiler, maps a high-
level specification of a quantum algorithm into a quantum intermediate representation
(QIR). The most popular choice for the quantum intermediate representation is an en-
coding of quantum circuits where the gates are drawn from some universal basis set.

The second phase is a technology-independent optimizer, which maps the QIR repre-
sentation of the quantum algorithm into an equivalent lower-level circuit representation of
single-qubit and CNOT gates. We call the lower-level notation QASM, for quantum as-
sembly language. The second phase attempts to produce as good a QASM representation
as possible, where the metric of goodness can be varied, such as circuit size, circuit depth,
accuracy or fault tolerance.

The third phase performs optimizations suited to the quantum computing technology
used to simulate or implement the quantum algorithm. It outputs a physical-language rep-
resentation with technology-specific parameters called QCPOL, for quantum computing
physical operations language. The third phase is divided into several subphases. The first
subphase maps the QASM representation of single-qubit and CNOT gates into a QASM
representation using a fault-tolerant discrete universal set of gates. In mapping the gates
to a discrete set, we must approximate the original gate set using the Solovay-Kitaev
method [17]. In the second subphase, these gates are mapped into a QCPOL represen-
tation containing the physical instructions for the fault-tolerant operations, including the
required movements. Knowledge of the physical layout enters at this step.

The final phase includes technology-dependent tools such as circuit or physical opera-
tions simulators and layout modules, as well as execution on an actual quantum device.

Note that it is likely that any real design will be iterative in nature, requiring several
passes through one or more of these phases. Also, a fault-tolerant physical implementa-
tion of a quantum algorithm is crucial. At present, it is not known where in the design
flow is the best place to introduce error-correction circuitry but, as described in Section
8, this design flow can accommodate it at any level in the hierarchy. Particularly, it is
interesting to determine if the compiler can automatically introduce error-correction and

130 K. Svore et al.

produce a fault-tolerant QASM or QCPOL representation. The remainder of this paper
describes these phases in detail, focusing on the representations, algorithms, and design
issues relevant to each phase. Section 8 of the paper gives some example design flows.

3 Quantum Programming Source Languages

Designing a quantum programming language is a difficult task since there is currently a
limited repertoire of quantum algorithms. Moreover, at this point, we do not know whether

a quantum computer will be a special-purpose ASIC or a general processor. However,
we assume the communication between the quantum device and the classical processor
follows the QRAM model described in [5, 15].

The high-level quantum programming language must offer both experimental physi-
cists and algorithm designers the necessary abstractions to perform any quantum com-
putation. Many programming languages have been proposed for representing quantum
algorithms [5, 18, 19, 20, 23, 25, 38]. Most of these languages offer abstractions based
either on the quantum circuit model or on Dirac notation [17].

A quantum programming environment should possess several key characteristics [5].
First, the environment needs a quantum programming language that is complete in the
sense that every current and future quantum algorithm can be written and expressed in
the language. Basically, the language should support complex numbers and be capable of
expressing and composing unitary transforms and measurements, as well as describing the
classical pre- and post-processing calculations. The enviroment should also have reusable
subroutines or gate libraries that can be called by the programmer to implement a quantum
algorithm. The exact modularization of a quantum programming environment, however,
is an open research question.

Second, it is advantageous if the language and environment are based on familiar con-
cepts and constructs. This way, learning how to write, debug and run a quantum program
will be easier than if a totally new environment were used.

Third, the environment should allow easy separation of classical computations from
guantum computations. Since a quantum computer has noise and limited coherence time,
the separation can help determine and limit the length of time needed to implement the
guantum computations on the quantum device. The compiler for a quantum programming
language should be able to translate a source program into an efficient and robust quantum
circuit or physical implementation; it should be easy to translate into different gate sets or
optimize with respect to a desired cost function using algorithms that are simple, efficient
and effective.

Fourth, the high-level programming language should be hardware independent since
the source program should be able to run on different quantum technologies. However, the
language and environment should allow the inclusion of technology-specific modules.

Lastly, it would be advantageous to have a language that supports high-level abstrac-
tions that would allow the easy development of new algorithms using quantum-mechanical
phenomena such as entanglement and superposition. Although there are several existing
guantum programming languages, such as QCL [18, 19], Q [5], and others [20, 23, 25, 38],
the abstractions captured in these languages do not take full advantage of the quantum-
mechanical principles used in quantum computations. For example, QCL [18, 19] is an

Toward a Software Architecture for Quantum Computing Design Tools131

interpreted language that contains many usual programming constructs such as arrays and
subroutines. It allows the implementation of new procedures by the programmer and pro-
vides a universal set of gates. However, the descriptions of the operators and states are
based on matrices and vectors, and thus provides us with no further insight beyond the
usual Dirac notation. Q [5] is an extension of C++ that is designed with a clear separation
of quantum and classical procedures. It builds a quantum operator as a data object rather
than as a function to allow for run-time optimizations and easy compositions. But again,
this language is based on Dirac notation and does not provide us with further insights.

By incorporating appropriate abstractions into a language and environment for quan-
tum computing, we will hopefully develop an environment that makes both the design and
programming of quantum algorithms an easier task. In addition, we seek a language from
which robust, optimized target programs can be easily created.

4 Quantum Computer Compiler (QCC)

We now investigate the compilation steps of our quantum computer compiler (Figure 1).

A generic compiler for a classical language on a classical machine consists of a sequence
of phases, each of which transforms the source program from one representation into an-
other [3]. The lexical analyzer tokenizes the source program into logical sequences of
characters. The tokens are passed to the syntax analyzer to translate into a syntax tree.
This representation is passed to the semantic analyzer, which further analyzes the rep-
resentation for semantic errors and compatible operations on types. The output is then
sent to the intermediate code generator to create an intermediate representation for the
program being compiled. The intermediate code optimization phase searches for possible
machine independent optimizations to improve the efficiency of the code. After these opti-
mizations, the code generation phase produces the target code for the machine to execute.
Before outputting a target program, machine dependent optimizations are performed.

This partitioning of the compilation process into a sequence of phases has led to the
development of efficient algorithms and tools for building components for each of the
phases [3]. Since the front-end processes for quantum compilers are similar to those of
classical compilers, we can use the algorithms and tools for building lexical, syntactic and
semantic analyzers for QCCs. However, the intermediate representations and the opti-
mization and code generation phases of QCCs are very different from classical compilers
and require novel approaches, such as a way to insert error-correction operations into the
target language program. This section describes the current state of the art concerning
intermediate representations, code generation, and optimization.

4.1 Front End and the Quantum Intermediate Representation

In the first phase of our QCC, a high-level specification of a quantum algorithm is mapped
into a quantum intermediate representation (QIR) that is based on the quantum circuit
model [17]. Since other representations of quantum computation, such as adiabatic quan-
tum computing, can be converted to the quantum circuit model, this is an appropriate
formalism. In particular, by choosing the circuit formalism, we can consider fault-tolerant
constructions at various phases in our design flow (see Section 8). Also, by using the

132 K. Svore et al.

guantum circuit model, we can incorporate circuit synthesis and optimization techniques
in both the technology-independent and technology-dependent phases of our design flow.

4.2 Circuit Synthesis and Optimization

The second and third phases of our QCC synthesize and optimize a QASM representa-
tion of a quantum circuit. In this section, we discuss possible optimization and synthesis
procedures that can be applied in these two phases, by analogy with classical chip design
techniques. Algorithms for classical logic circuit synthesis [13] map a Boolean function
into a circuit that implements the function using gates from a given gate library. These
algorithms are typically applied after high-level synthesis or in conjunction with compil-
ers in traditional chip design methodologies. Similarly, we can talk about quantum circuit
synthesis, where a quantum circuit is created that “computes” a given unitary matrix, up
to a relative phase or up to a prescribed quantum measurement.

Given the truth table of a Boolean function, a two-level circuit, linear in the size of the
truth table, can be constructed immediately. Yet, the optimization of the circuit structure
is nontrivial. In contrast, given 8" x 2" unitary matrix, it is not even easy to find a
good quantum circuit to implement it. Only very recently have constructive algorithms
been developed that yield an asymptotically optimal circuit wWithgates for &2™ x 2™
unitary matrix [30]. However, the constant numerical factor between the lower and upper
bounds remains high, except for special cases, such as two-qubit circuits [26] and for
diagonal circuits [6]. An arbitrary two-qubit operator requires up to three CNOT gates,
and either six additional generic (basic) single-qubit gates or fifteen additional elementary
single-qubit gates.

The difference between basic and elementary gates deserves particular attention. Basic
gates can be decomposed, up to phase, into a product of one-parameter rotations accord-
ing to the Euler-angles formula [17]. Therefore we view only one-parameter rotations as
elementary. Some results in terms of such elementary gates can be reformulated in terms
of coarser gates, but coarser gates do not always correspond to realistic costs of physical
implementations. It is thus necessary in the third phase to map the representation into a
universal set of gates depending on the choice of a particular technology. For example,
single-qubit basic gates appear equally cheap in many NMR implementations [17]. How-
ever, when working with ion trap$?. gates are significantly easier to implement tign
andR, gates [35].

When developing reusable software for automating the design of quantum circuits, it is
desirable, to some extent, to avoid such fundamental dependence on technology. Indeed,
this problem is not new. Recall the standard choice of elementary logic gates in classi-
cal computing AND-OR-NO7 was suggested in the9?” century by Boole for abstract
reasons rather than based on specific technologies. TodiyiKBgate is easier to imple-
ment than thé&NDgate in CMOS-based integrated circuits. This fact is addressed by com-
mercial circuit synthesis tools by decoupliligraryless logic synthesiom technology-
mapping[13]. The former uses an abstract gate library, sucAMB-OR-NOT and em-
phasizes the scalability of synthesis algorithms that capture the global structure of the
given computation. The latter step maps logic circuits to a technology-specific gate li-
brary, often supplied by a semiconductor manufacturer, and is based on local optimiza-
tions. Technology-specific libraries may contain composite multi-input gates with opti-

Toward a Software Architecture for Quantum Computing Design Tools133

mized layouts such as th&OIl gate AND/OR/INVERTER). From a theoretical point of

view, re-expression of circuits in terms of a different set of universal gates may increase
circuit sizes by at most a constant, under certain reasonable assumptions about the gate
libraries involved.

We expect the distinction between technology-independent circuit synthesis and tech-
nology mapping to carry over to quantum circuits as well. To this end, the work in [26]
shows that basic-gate circuits can be simplified by temporarily decomposing basic gates
into elementary gates, so as to apply convenient circuit identities. This is precisely our rea-
son, in the second phase, for mapping the quantum algorithm into a QASM representation
consisting of single-qubit and CNOT gates. Indeed, all lower bounds for two-qubit cir-
cuits from [26] and also their lower bound for the number of CNOTS im-ajubit circuit
([(4™—3n—1)/4]) rely on such circuit identities. Additionally, temporary decompositions
into elementary gates may help optimizing pulse sequences in physical implementations.
In terms of technology mapping in the third phase, the work in [26] shows how to map
a CNOT gate into a specific implementation technology by appropriately timing a given
two-qubit Hamiltonian and applying additional single-qubit operators. Circuits resulting
after such substitutions may potentially be optimized further.

Ongoing work in quantum circuit synthesis and optimization involves automatically
instantiating error-correction, a potentially key feature for scalable quantum computing.
Additionally, circuit synthesis and optimization with discrete gate libraries, required for
the technology-dependent optimization phase, remains largely unexplored. To this end,
we point out that the Gottesman-Knill theorem [11] suggests a mapping between stabi-
lizer circuits, key to quantum error-correction, and classical reversible circuits consisting
of CNOT and Toffoli gates. Optimizing the latter [27] could help optimizing stabilizer
circuits. An alternative approach to optimizing stabilizer circuits was suggested by Aaron-
son [1] and entails partitioning them into eight groups of Phase, Hadamard and CNOT
gates (H-P-C-P-H-P-C-P). Given that the Phase and Hadamard are single-qubit gates, the
respective groups cannot have more than linear size (in the number of qubits) after can-
cellations. Thus, all the complexity is concentrated in two CNOT groups, to which the
asymptotically optimal algorithm from [21] can be applied to find circuits with at most
en?/log,(n) gates. Another interesting observation is that the work in [27] proposes to
partition classical reversible circuits into four groups Toffoli, CNOT, NOT, Toffoli (T-C-N-

T). The study of such universal circuit partitions may lead to canonical forms, potentially
useful in optimizing compilers. Additionally, circuit partitions suggest cirucit layouts and
can lead to new architectures for reprogrammable circuits. Methods such as those dis-
cussed above will be needed in the second and third phases of our QCC to produce good
circuits for implementation on a quantum device.

5 A Quantum Assembly Language (QASM)

The technology-independent phase of our QCC maps a representation of the quantum algo-
rithm into an equivalent set of quantum assembly language (QASM) instructions. QASM

is an extension of a RISC assembly language with the classical RISC instruction sets and a
set of quantum instructions based on the quantum circuit model of quantum computation.
Just as the quantum circuit model contains qubits and classical bits (cbits), QASM uses

134 K. Svore et al.

gubits and cbits as the basic units of information. To ensure the usability of the classical
RISC instruction set, each cbit is stored in a separate classical register. However, there are
no quantum registers in QASM. Each qubit and classical register used in a QASM program
is a static resource and must be declared at the beginning of the program.

Quantum operations consist solely of unitary operations and measurements. In QASM,
each unitary operator is expressed in terms of an equivalent sequence of single-qubit and
CNOT gates. We have chosen these gates as the universal gate set since it can express
any quantum circuit exactly. The single-qubit operations are stored as a triple of rationals,
since single-qubit operations are specified by three Euler-angles. We assume that each
rational number in the triple is implicitly multplied by. The non-reversible measurement
operation on a single-qubit copies the measurement result to a classical register by first
zeroing out the classical register and then copying the measurement result into the classi-
cal register. The qubit is also set to the resulting value of the measurement. In QASM,
classical control of a qubit is performed by conditioning off of the classical register with
an OR of the bit values. Thus, in order to classically control with the result of multiple
measurements, the bits must be masked and shifted into a single register.

6 A Quantum Physical Operations Language (QCPOL)

The quantum physical operations language (QCPOL) describes precisely how a given
guantum circuit should be executed on a particular physical system. The instruction set of
a physical operations language is specific to the target system and contains enough low-
level information to execute the quantum circuit unambiguously. We now describe the
general properties of a QCPOL and proceed to a specific example of a physical language
for the trapped-ion quantum processor.

6.1 General Properties of a QCPOL

We classify physical operations as initialization, computation, communication, classical
control, and system-specific instructions. This classification admits devices that have real-
ized quantum information processing to date and is general enough to admit future devices.

Initialization instructions specify how to prepare the initial state of the system. These
include operations to load qubits into the system and put those qubits into a valid, known
starting state. In practice this requires manipulating the physical qubit carriers and con-
trolling the carrier’s degrees of freedom that might affect an internal qubit or the ability to
control an internal qubit.

Computation instructions include both gates and measurements. For most physical
systems gates correspond to controlled electromagnetic pulses. Gate types and speeds
depend strongly on the interaction that couples qubits, so typical systems permit only a
limited set of gates. Measurement methods rely on coupling to a measurement apparatus
and will be limited to particular operators in practice as well.

Movement instructions control the relative distance between qubits, bringing groups
of qubits together to participate in local gates. Some systems have stationary qubit carriers
and will spend a majority of their time performing swap gates. Other systems have mobile

Toward a Software Architecture for Quantum Computing Design Tools135

qubit carriers, or perhaps a mixture of mobile and immobile carriers. These systems will
have machine-specific movement instructions.

Quantum information processors will contain at least a subset of classical logic oper-
ations. In the simplest case, quantum processors will be controlled by external computers
and have access to a complete classical instruction set. Future quantum processors, how-
ever, may have integrated classical logic with specific low-level functions and interfaces.

Finally, a physical operations language includes system-specific instructions that may
not fall into general categories. These instructions are likely to control other degrees of
freedom of the qubit carriers or nondestructively detect the presence or absence of carriers.

QCPOL instructions are organized into a coherent program by specifying the starting
time and duration of each instruction. If the machine can operate in parallel, instructions
can be organized into streams or groups that execute simultaneously. Essentially, physical
constraints yield further semantic constraints.

6.2 QCPOL Example: Trapped-ion QCPOL

Physical operations languages may vary considerably over different physical systems. This
section describes one example of a physical operations language for the operation of a
trapped-ion quantum computer system.

Trapped-ion devices use charged, electromagnetically trapped atoms as qubit carriers.
Each qubit is represented by internal electronic and nuclear states of a single ion. Laser
pulses of specific frequencies addressing one or more ions apply single and multi-qubit
guantum gates. Laser pulses, appropriately tuned, can also perform measurement, by caus-
ing ions to fluoresce when they are in fog state. Two or more ions can be contained in a
single trap, where they couple to each other through Coulomb repulsion, thus providing a
qubit-qubit interaction through their collective vibrational modes. These modes can serve
as a “bus” qubit, as long as ion temperatures are kept low, and vibrational states controlled.
We say that ion-qubits a@hainedif they are close enough to interact using the bus qubit.
This bus qubit is also manipulated optically ussigebandaser pulses.

Trapped-ion systems have shown considerable potential as a future technology for
guantum information processing. Several groups have demonstrated a universal set of
gates and measurements for trapped-ion quantum information processing [16, 24], in-
cluding basic multi-qubit quantum algorithms, and recently, quantum teleportation. Fur-
ther, experiments have demonstrated that static voltages can move ion-qubits between
traps [22]. Together these experiments offer a route toward a scalable system, possibly
configured in a large microarray akin to charge-coupled-devices [14].

We have designed an instance of QCPOL targeted to ion traps, consisting of initializa-
tion, computation, movement, classical control, and system-specific instructions.

Initialization of an ion trap processor has two stages: loading of multiple ions into a
special loading region, and laser cooling to reduce ion temperatures. Measurement is then
performed, followed by conditional rotations, to put all qubits in [hestate.

Computationwith quantum gates is naturally described in terms of single-qubit rota-
tions in thei — gy plane, achieved using pulsed laser excitation, and a controlled-phase
gate between ions in the same trap, implemented using three sideband pulses. Chained
ions may also participate in a multiply-controlled phase gate, useful for creating large en-
tangled states [28]. Qubit readout with a readout laser pulse is described by a projective

136 K. Svore et al.

measurement.

Movemenbf ions is accomplished into and out of traps (and chains) using electrostatic
fields. We assume a set of movement instructions sufficient for a planar rectangular trap
configuration with “T” and “X” junctions. Additional splitting and joining instructions
separate and rejoin chains.

Classical controlof ions is assumed to be universal, and implemented by a fast, ex-
ternal classical processor. In practice, this can either be a remote control PC, or a local
microprocessor chip integrated nearby the trap.

System-specific instructiorier trapped ions are necessary to deal with the heating
and decoherence of ion-qubits and bus qubits caused throughout a computation, in the
movement, splitting, and joining operations. In the worst case, high temperatures may
eject ions from the trap. Thus, the instruction set includes a system-specific method to
reinitialize the bus qubit, using recooling pulses. These are also sideband pulses like those
used in multi-qubit gates, but they are applied differently and must be treated specially by
the design tools.

7 High-performance Simulation of Quantum Circuits

The intrinsic computational difficulty of simulating quantum computation on classical
computers was pointed out by Richard Feynman in the 1980s [8]. Moreover, this led
him to suggest the use of quantum-mechanical effects to speed up classical computing.
Even though such speed-ups have been theoretically identified by Shor and Grover, nu-
merical simulation of quantum computers on classical computers remains attractive for
engineering reasons. Similarly, in classical Electronic Design Automation, chip designers
always test independent modules and complete systems by simulating them on test vectors,
before costly manufacturing. Numerical simulations can also help to evaluate “quantum
heuristics” that defy formal worst-case analysis or only work well for a fraction of inputs.

For the numerical simulation phase, the quantum circuit formalism seems most suitable
for reasons discussed in Section 4.1. Mathematical models of quantum states and circuits
involve linear algebra [17]n-qubit quantum states can be representedbgimensional
vectors, and gates by square matrices of various sizes. The parallel composition of gates
corresponds to the tensor (Kronecker) product, and serial composition to the ordinary ma-
trix product. A quantum circuit can be simulated naively by a sequerZe:of™ matrices
that are applied sequentially to a state vector. This reduces quantum simulation to stan-
dard linear algebraic operations with exponentially sized matrices and vectors. Quantum
measurement is also simulated via linear algebra. A key insight to efficient simulation
is to use structure in matrices and vectors that may arise from quantum circuits. To this
end, polynomial-time simulation techniques were proposed for circuits with restricted gate
types [11] and for “slightly entangled” quantum computation [33]. The Gottesman-Knill
technique [11] targets circuits used for quantum error-correction and states that can be pro-
duced with such circuits (stabilizer states). In the next sections, we describe two possible
simulation tools for use in the fourth phase of our design flow.

Toward a Software Architecture for Quantum Computing Design Tools137

7.1 QuiDDPro: A Generic Graph-based Simulator

Viamontes et al. [31] proposed a generic simulation technique based on data compression
using the QuIDD data structure. Its worst-case performance is no better than what can be
achieved with basic linear algebra, but it can dramatically compress structured vectors and
matrices, including all basis states, small gates and some tensor products. A QuiDD is a
directed acyclic graph with one source and multiple sinks, where each sink is labeled with
a complex number. Matrix and vector elements are modeled by directed paths in the graph;
any given vector or matrix can be encoded as a QuIDD, and vice versa (subject to mem-
ory constraints). Surprisingly, all linear-algebraic operations can then be implemented as
graph algorithms in terms of compressed data representations.

QuIDDs simulate a useful class of quantum circuits using time and memory that scale
polynomially with the number of qubits [31]. For example, all the components of Grover's
algorithm, except for the application-dependent oracle, fall into this class. Furthermore,
QuIDD-based simulation of Grover’s algorithm requires time and memory resources that
are polynomial in the size of the oragl¢) function represented as a QuIDD [31]. Thus,
if a particularp(-) for some search problem can be represented as a QuIDD using poly-
nomial time and memory resources (including conversion of an original specification into
a QuIDD), then classical simulation of Grover’s algorithm performs the search nearly as
fast as an ideal quantum circuit. That is because the complexity of Grover’s algorithm is
dominated by the number of iterations.

Unlike other simulation techniques proposed in the physics literature and tied to the
state-vector representation, QuIDDs are a formal data structure for compressed linear al-
gebra operations used in quantum computing. Extending QuiDDs to simulate density
matrices only requires implementing several additional operations, such as trace-overs, in
terms of graph traversals. Such extensions have been described in [32], along with em-
pirical performance results on several types of circuits up to 24 qubits. For a comparison,
straightforward modelling of any 16-qubit density matrix would require 64TB of memory.
For a reversible 16-qubit adder circuit that uses CNOT and Toffoli gates, the QuIDDPro
package requires less than 2MB of memory. This package is currently available from the
authors with an ASCII front end that supports input language similar to Matlab.

7.2 Layout Tools, Scheduling Tools, and the Trapped-lon Simulator

This section discusses initial tools that we have implemented for studying trapped-ion
systems. Layout, scheduling, and simulation tools can be used to aid in design and testing
of large-scale devices or device components. Layout tools use the structure of a quantum
network to infer both an initial geometric arrangement of qubits and the valid locations
that qubits can be moved to during computation. Scheduling tools determine movement
patterns during a computation and insert machine-specific operations related to movement.
Finally, simulation tools evaluate the layout and movement sequence.

A general layout tool that we have implemented maps an arbitrary quantum circuit
onto a Turing machine with a single head and a circular tape (Figure 2(a)). The simple
structure of the single-headed Turing machine makes scheduling operations particularly
simple. Qubits are moved into the head before each multi-qubit gate and returned to the
tape after the gate.

138 K. Svore et al.

(@) (b)

Figure 2:(a) TURING MACHINE LAYOUT FOR A TRAPPED ION PROCESSOR PRODUCED BY AN
AUTOMATIC LAYOUT TOOL . (h) SNAPSHOT OF THE SIMULATOR GRAPHICAL DISPLAY SHOWING
AN H-TREE LAYOUT. QUBITS ARE IONS REPRESENTED BY SPHERE®\IND GATES ARE APPLIED
USING LASER PULSES REPRESENTED BY LINES THE QUBITS CAN MOVE WITHIN THE BLACK
REGIONS OF THE FIGURE AND ARE PROHIBITED FROM MOVING INTO THE SUBSTRATE WHICH
IS DRAWN USING LIGHT SQUARES IN THE RIGHT WINDOW THE SIMULATOR DISPLAYS FEED
BACK REGARDING THE CURRENT OPERATIONSNOISE INDUCED FAILURES AND ESTIMATED
EXECUTION TIME.

We have also implemented a more specialized layout tool that maps circuits con-
structed from concatenated quantum codes onthl-éee. An H-tree is constructed re-
cursively in the same way as a Koch curve or other fractal. Concatenated quantum codes
have a self-similar structure, so fewer movement operations are required per gate because
qubits for the inner codes are kept near one another. We currently schedule operations onto
the H-tree by specifying paths for basic operations, but expect that this procedure can be
automated by use of more sophisticated techniques.

Both of these layout and scheduling methods lead to physical operation sequences that
can be simulated to verify correctness, reliability, and total running time. For large-scale
trapped ion systems, we have developed a simulation tool that implements the model of
a trapped-ion quantum computer described in Section 6. The simulator accepts a layout
and a QCPOL program implementing a quantum circuit, each generated by scheduling
and layout tools. Simulator output includes the final quantum state, single-shot measure-
ment and failure histories, total execution time, and overall circuit reliability. In addition,
the simulator can graphically display the QCPOL instructions as they are simulated. An
example of this output is shown in Figure 2(b).

We believe that the performance of quantum-circuit simulators and layout tools can
be significantly improved in the near future. These improvements will stem from better
algorithms and from deeper understanding of structure present in useful quantum circuits.
A particularly interesting approach suggested recently by Aaronson [1] is to automatically
restructure a given quantum circuit so that the new circuit produces the same output, but
is easier to simulate (e.g., has fewer gates). We are currently exploring another connection
between simulation and synthesis where optimized simulation primitives directly support
only a small universal set of quantum gates. Simulating more complicated gates requires
decomposing them into low-level primitives [4, 26]. Such decompositions also appear cen-
tral from the physics perspective, where a given Hamiltonian can be numerically simulated

Toward a Software Architecture for Quantum Computing Design Tools139

after being decomposed into a quantum circuit.

8 Design Flow for a Fault-tolerant lon-trap Architecture

In this section, we introduce the concept of fault-tolerance and detail a process that inserts
fault-tolerant components. The process can be applied manually by a system architect
in a hardware-driven design flow, or it can be applied automatically by a compiler in a
software-driven design flow. Both of these design flows are being implemented specifically
for trapped-ion systems, though the principles may extend to other devices. The central
goal of both design approaches is to guarantee that the final stream of physical operations
will execute fault-tolerantly. These examples demonstrate the utility and generality of the
high-level design flow for organized study of quantum device design approaches.

8.1 Classical Fault-Tolerant Components

We begin by reviewing triple modular redundancy (TMR) as the canonical method for
implementing fault-tolerant computation in modern digital computers [34, 36]. If the basic
gates in digital computers were not naturally error-rejecting, this construction would be a
standard element of computer architectures. To construct a fault-tolerant gate, the inputs
are encoded using the TMR code and fed into three basic gates. The output lines of each
logic gate fan-out into three majority voting gates. The majority gates output the encoded
computation result.

By applying this fault-tolerant procedure recursivgliimes, as illustrated in Figure 3,
fault-tolerant components can be made to fail with probab(H:@/)Qk /c for a constant
determined by the number of ways basic gates in the component can fail. For the NAND
gate,c = 6 because there are 6 ways for two basic gate failures to cause a component
failure. If each basic gate fails with probability < 1/6 then the fault-tolerant NAND
can be made arbitrarily reliable in principle. We say that this construction exhifatsta
tolerance thresholg;, = 1/6. The fault-tolerant NAND component must then be placed
onto a layout in such a way that wire delays are not too long and cross-talk does not
introduce too much additional noise.

8.2 Fault-Tolerant Quantum Components

Fault-tolerant quantum components are constructed using similar procedures to those used
for classical fault-tolerance. Quantum information can be encoded gasrgum compu-
tation codeg?2] that allow fault-tolerant computation using a discrete universal set of gates.
The CSS codes [7, 29] are one family of quantum computation codes with the useful prop-
erty that CNOT gates can be appligdnsversally{9]. Transversal gates are always fault
tolerant since they are implemented in a bitwise fashion. Figure 4(a) illustrates transversal
Hadamard and CNOT gates.

Nontrivial fault-tolerant quantum gates such as the Toffoli gate (Figure 4(b)) can be
constructed using a general method based on quantum teleportation [37]. Fault-tolerant
gates constructed in this manner consist entirely of Clifford group gates and measurements,

140 K. Svore et al.

AN
X7
N

X

SO
%’h@»A\’A'

LS
>l

CERX

Figure 3: A TMR FAULT-TOLERANT NAND GATE AT THE SECOND LEVEL OF RECURSION
CONSTRUCTED FROM THREE FAULTTOLERANT NAND GATES. N AND M DENOTE NAND AND
MAJORITY GATES. ALL GATES ARE ASSUMED TO FAIL WITH PROBABILITY p, SUCH THAT THE
BOXED TMR NAND GATE (UPPER LEFT) FAILS WITH PROBABILITY < 6p?. THE ENTIRE CIR
CUIT SHOWN IN THIS FIGURE FAILS WITH PROBABILITY< 6°p*. IFp < 1/6 THEN THIS CIRCUIT
IS MORE RELIABLE THAN A BASIC GATE.

both of which can be applied transversally. These gates are applied to a tensor product of
input qubit states and a specially-prepared ancilla state.

Performing these gates in practice requires fault-tolerant preparation of several kinds
of ancilla. First, a specially-prepared ancilla state must be prepared for each nontrivial
gate, like the Toffoli gate or the /8 gate. These states can be prepared fault-tolerantly
through measurement. A recovery operation on each qubit has to follow each nontrivial
gate. The generic structure of a recovery operation is shown in Figure 5(a). Recovery op-
erations consume a syndrome extraction ancilla for every syndrome bit they acquire. This
ancilla must also be prepared fault-tolerantly and be available in great supply. Figure 5(b)
also shows the generic structure of a single syndrome bit extraction. The final ancilla, a
cold verification qubit, must be available for every extraction ancilla in order to check for
critical errors.

All of these operations must remain fault tolerant when qubits can only interact lo-
cally. If the target machine permits a geometry that allows freqirtatmediate error-
correction then movement errors can be corrected on each level of code concatenation
before becoming too large [12]. This can be true for a device with an engineered layout,
such as the “quantum CCD” proposal for a trapped ion quantum device [14].

8.3 Design flows

We now describe the software and hardware driven design flows in more detail. Both
approaches fundamentally apply the same replacement rules described in this section by
taking advantage of the conceptual separation of the logical and physical machine.

A software-driven design flow applies the replacement rules we have described to in-
sert fault-tolerance before technology-dependent code is generated. Scheduling algorithms
and layout tools like those in Section 7.2 both minimize movement and insert machine-
specific instructions to preserve fault-tolerance. The software approach relies on fine-
grained replacements and transformations at the lowest levels of the design flow. These

Toward a Software Architecture for Quantum Computing Design Tools141

7 Xj— X
a < —n] phi J@HE l y
—{H} @ — zZ+XYy
x i I
q2 y é%
— : —wA

(@ (b)

Figure 4: (a) TRANSVERSAL HADAMARD AND CNOT GATES ACTING ON TWO LOGICAL
QUBITS REPRESENTED BY3 PHYSICAL QUBITS. TRANSVERSALCNOT IS A VALID OPERATION
FOR A QUANTUM CODE IFF THAT CODE IS ACSSCODE [9]. TRANSVERSAL HADAMARD IS A
VALID OPERATION FOR A DOUBLY-EVEN SELFDUAL CSSCODE. (b) FAULT-TOLERANT TOF-
FOLI GATE CONSTRUCTED USING QUANTUM TELEPORTATION37]. EACH GATE IN THIS CIR-
CUIT CAN BE APPLIED TRANSVERSALLY WHEN USING A PUNCTURED SELFDUAL, DOUBLY-
EVEN CSSCODE SUCH AS THE[7,1,3] CODE[10]. THE GATE REQUIRES AN ANCILLA |¢)
THAT CAN BE PREPARED FAULFTOLERANTLY AS WELL BY APPLYING CLIFFORD GROUP OPER
ATORS AND FAULT-TOLERANT MEASUREMENTS OFCLIFFORD GROUP OPERATORS

data
data -~——~ H H H HR}— I C
anc +{P] (DHA
alaz,.. —+— \% q
v v
restart? syndrome bit

(@) (b)

Figure 5:THE LEFT NETWORK(a) IS A recovery networkA RECOVERY OPERATION INTERACTS
FAULT-TOLERANTLY WITH THE DATA VIA SYNDROME BIT EXTRACTION NETWORKS S;. EACH
SYNDROME BIT IS MEASURED POSSIBLY SEVERAL TIMES AND STORED TO A CLASSICAL REG
ISTER. A CLASSICAL COMPUTER PROCESSES THE REGISTER AND APPLIES THE APPROPRIATE
ERROR CORRECTIONR TO THE DATA. RECOVERY OPERATIONS MUST FOLLOW EVERY FAULT
TOLERANT GATE TO CORRECT ERRORS INTRODUCED BY THAT GATETHE RIGHT NETWORK (b)
IS A syndrome extraction netwarEXTRACTING A SINGLE SYNDROME BIT FAULT-TOLERANTLY
FIRST REQUIRES AN ANCILLA STATE |anc). THE ANCILLA IS PREPARED AND VERIFIED BY
THE NETWORK IN THE OUTLINED BOX. A VERIFICATION QUBIT INDICATES IF THE VERIF-
CATION FAILED. ONCE AN ANCILLA HAS BEEN SUCCESSFULLY PREPAREPTHE C' NETWORK
INTERACTS WITH THE DATA FAULT-TOLERANTLY TO COLLECT A SYNDROME BIT. THIS BIT IS
DECODED BY D AND MEASURED. SOME CLASSICAL POST PROCESSING MAY TAKE THE PLACE
OF THE QUANTUM NETWORK D.

142 K. Svore et al.

tools may operate in several stages but must ultimately generate physical operations in
the QCPOL language because moving qubits may make frequent use of device dependent
details.

In a hardware-driven design flow, a system architect creates universal, fault-tolerant,
technology-specific components through a combination of replacement rules and heuristic
methods. The set of components is published together with design rules for connecting
them. The lowest levels of the design flow then target the machine architecture rather than
the physical device. The hardware approach abstracts the technological details of fault-
tolerance into a machine architecture and supplies coarse component placement rules.

9 Conclusions and Important Challenges

This paper has presented a design flow in which a high-level language representing a
guantum algorithm is mapped into a quantum device or quantum device simulator. The
paper has focused on the languages and notations needed along the design flow and open
problems that need to be solved to make this design flow a reality. We conclude by listing
the most important challenges.

1. Design a high-level programming language for creating quantum algorithms that
encapsulates the principles of quantum mechanics such as superposition and entan-
glement in a natural way for physicissd programmers.

2. Find efficient technology-independent optimization algorithms that work well on
realistic classes of quantum circuits, and develop strategies for adapting generic
circuits to specific implementation technologies.

3. Develop simulation techniques for quantum circuits and high-level programs that
will allow designers to evaluate meaningful design blocks.

4. Identify fault-tolerant architectural strategies that can be used with emerging quan-
tum device technologies such as ion traps.

5. Find efficient optimization algorithms for fault-tolerant circuits that minimize the
number of fault paths, size of code and the number of gates.

As the scale of quantum computing increases, design verification and device testing
may also require software support, e.g., for circuit-equivalence checking and test-vector
generation. However, such topics have not been widely covered in quantum computing lit-
erature, and there still seems to be little empirical context for these aspects of automation.

AcknowledgementsThe authors are grateful to Stephen Edwards for many helpful
comments on computer-aided design flows.

References
[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circUitpub-
lished 2003.

[2] D. Aharonov and M. Ben-Or. Fault tolerant computation with constant eRooc.
ACM Symposium on the Theory of Computing (ST @&yes 176-188, 1997.

Toward a Software Architecture for Quantum Computing Design Tools143

[3] A. Aho, R. Sethi, and J. Ullman.Compilers, Principles, Technigues, and Tools
Addison-Wesley, 1986.

[4] A. Barenco et al. Elementary gates for quantum computaffivd 52:3457-3467,
1995. arXive e-print quant-ph/9503016.
[5] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for quantum program-
ming. Eur. Phys. J.25:181-200, 2003.
[6] S.S.Bullock and I. L. Markov. Asymptotically optimal circuits for arbitrary n-qubit
diagonal computation®Quantum Inf. and ComputatipA(1):27—47, January 2004.
[7] A.R. Calderbank and P. W. Shagood quantum error-correcting codes exiBhys.
Rev. A, 54:1098-1105, 1996.
[8] A. J. G. Hey ed. Feynman and Computation: Exploring the Limits of Computers
1999.
[9] D. Gottesman. Stabilizer codes and quantum error correcibi thesis, Cal. Inst.
Tech 1997.
[10] D. Gottesman. Theory of fault-tolerant quantum computatiBhys. Rev. A57:1,
January 1998.
[11] D. Gottesman. The Heisenberg representation of quantum compimgtr€onf. on
Group Theoretic Methods in Physjcd998. quant-ph/9807006.
[12] D. Gottesman. Fault-tolerant quantum computation with local gdtegublished
1999. arXive e-print quant-ph/9903099.
[13] G. Hachtel and F. SomenzBynthesis and Verification of Logic Circuit&luwer,
2000.
[14] D. Kielpinski, C. Monroe, and D.J. Wineland. Architecture for a large-scale ion-trap
quantum computelNature 417:709-711, 2002.
[15] E. Knill. Conventions for quantum pseudocodiechnical Report LAUR-96-2186,
Los Alamos National Laboratory1996.
[16] D. Leibfried et al. Experimental demonstration of a robust, high-fidelity geometric
two ion-qubit phase gatéNaturg 422:412—-415, 2003.
[17] M. A. Nielsen and I. L. ChuangQuantum computation and quantum information
Cambridge University Press, Cambridge, England, 2000.
[18] B. Oemer. A procedural formalism for quantum computifin.D. Thesis, Univ. of
Vienng 1998.
[19] B. Oemer. Quantum programming in QCMasters Thesis, Univ. of Vienn2000.
[20] M. Oskin and A. Petersen. A new algebraic foundation for quantum programming
languagesSecond Workshop on Non-Silicon Computi2@03.

[21] K. N. Patel, I. L. Markov and J. P. Hayes. Efficient synthesis of linear reversible
circuits. Intl. Workshop on Logic and Synthesikine 2004. arXive e-print quant-
ph/0302002.

[22] M. A. Rowe et al. Transport of quantum states and separation of ions in a dual RF
ion trap. Quantum Information and Computatiop:257-271, 2002. arXive e-print
guant-ph/0205094.

144 K. Svore et al.

[23] J. Sanders and P. Zuliani. Quantum programmingchnical report, Oxford Uniy.
1999.

[24] F. Schmidt-Kaler et al. Realization of the Cirac-Zoller controlled-NOT quantum gate.
Nature 422:408-411, 2003.

[25] P. Selinger. Towards a quantum programming languiigeh. Struct. in Comp. Sgci.
2004.

[26] V. V. Shende, I. L. Markov and S. S. Bullock. Finding small two-qubit circufc.
SPIE volume 5436, April 2004.

[27] V. V. Shende, A.K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible
logic circuits. IEEE Trans. on CAD22, pp. 710-722, June 2003.

[28] A. Sorensen and K. Molmer. Entanglement and quantum computation with ions in
thermal motion. 2000. arXive e-print quant-ph/0002024.

[29] A. M. Steane. Error correcting codes in quantum thed?hys. Rev. Lett.77:793,
1996.

[30] J. J. Vartiainen, M. Mottonen, and M. Salomaa. Efficient decomposition of quantum
gates.Phys. Rev. Lett92:177902, 2004.

[31] G. F. Viamontes, I. L. Markov, and J. P. Hayes. More efficient gate-level simulation
of quantum circuitsQuantum Info. Processing(5):347-380, 2003. arXive e-print
guant-ph/0309060.

[32] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Graph-based simulation of quantum
computation in the state-vector and density-matrix represent®tioo. SPIE 5436,
April 2004.

[33] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.
Phys. Rev. Lett(91):147902, 2003.

[34] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable component®utomata Studie$rinceton Univ. Press, 329-378, 1956.

[35] D. J. Wineland et al. Experimental issues in coherent quantum-state manipulation of
trapped atomic ionsJournal of Research of the National Institute of Standards and
Technology103:259-328, 1998.

[36] S. Winograd and J. D. Cowan. Reliable computation in the presence of noise. MIT
Press, Cambridge, MA. 1967.

[37] X.Zhou, D. Leung, and I. L. Chuang. Methodology for quantum logic gate construc-
tion. Phys. Rev. £2:52316, 2000.

[38] P. Zuliani. Quantum programminghD thesis, St. Cross, Oxford Uni2001.

