Adaptation: ThisWon't Hurt a Bit!

Rajesh Krishna Balan' Jodo Pedro Sousa', SoYoung Park', Tadashi Okoshi,
Jason Flinn™, Dushyanth Narayanan', Takahide Matsutsuka', Mahadev Satyanarayanan'*
TSchool of Computer Science, Carnegie Mellon University
*Intel Research Pittsburgh
{rajesh,jpsousa}@cs.cmu.edu

Abstract

With the prevalance of handheld devices, it is increas-
ingly necessary to build systems that adapt applications
according to the available resources. These systems offer
new and constantly changing interfaces for adaptation.
Integrating applications with these systems requires ex-
tensive modification and maintainence: this is painful!
In this paper, we present an approach that allows appli-
cation writers to easily integrate their applications with
an adaptive runtime system. This approach involves the
use of a high level description language coupled with
a runtime-specific stub generator. We present two case
studies of enhancing applications for adaptation using
our approach. Our case studies show that our approach is
viable and can help to ease the integration of applications
into adaptive runtime systems.

1 Introduction

Building a successful mobile application is a daunt-
ing task. While adaptation is now widely recognized as
essential for mobility [7, 11, 17], there is no consensus
yet on how best to build an adaptive mobile application.
A clean sheet design is often impractical — one cannot
ignore the enormous prior investment by developers in
authoring a popular application, and by users in learning
to use it effectively. Modifying the application to support
adaptation is often the only feasible solution.

Our first-hand experience with modifying existing ap-
plications for mobility in Odyssey [14] has revealed
many difficulties. First, it is necessary to gain an under-
standing of the application from the viewpoint of adap-
tation. Acquiring this knowledge is time consuming, and
there is no effective way to preserve it except in the form
of embedded code modifications. Second, the underly-
ing platform for adaptation may evolve over time as its
support for mobility is enhanced. This typically requires
changes to applications as well because the API provided
by the platform changes. Since research in mobile com-
puting is still very active, it would be unwise to freeze

this API and forego the benefits of future research ad-
vances. Third, applications also evolve and each new
release of an application requires re-examination and re-
integration of changes for mobility. Thus each major re-
lease of the application or underlying platform requires
the changes for adaptation to be revisited and reconsid-
ered. In a long-lived system where the identity of de-
velopers changes over time, these difficulties result in a
major software engineering headache. Can we alleviate
this pain?

We propose a solution that effectively amortizes the
effort involved in gaining a deep understanding of ap-
plications from the viewpoint of adaptation. The insight
behind our solution is that it is typically possible to cap-
ture this understanding in a compact external description
that is invariant across application and platform releases.
To conform to each such release, we use a stub genera-
tor that uses the external description to produce release-
specific code modules that are linked into the application
and the adaptation platform.

The benefits of our approach are threefold:

e It becomes much easier to preserve the adaptation
enhancements in new releases of the applications.
Since the changes made to the applications are small
and localized, it becomes feasible to use automatic
tools to insert the modifications at the appropriate
places in the applications code base. Alternatively,
the application’s original developer can insert stubs
for the modifications in the appropriate places, thus
making the application adaptation enabled. The
adaptation capabilities will become active when the
application is linked with the appropriate adaptation
libraries.

e The adaptation enhancements are protected, by the
stub generation process, from changes in the in-
terfaces supporting adaptation at operating system
level.

e It becomes easy to drive the adaptation mechanisms
inside the application by policies determined out-
side the application. Determining the appropriate

policies often involves detailed knowledge of the
nature of the user’s task and physical context, and
that knowledge is very hard to obtain at application
level.

The rest of this paper is organized as follows. In
Section 2, we discuss the difficulties in building adap-
tive applications and describe the main components of
our approach. Section 3 details our process for build-
ing adaptive applications. Section 4 and Section 5 illus-
trate our process through the use of case studies. The
first case study involves XAnim, a video playing appli-
cation. The second case study demonstrates adaptation
by remote execution in Pangloss-L.ite, a natural language
translator. Section 6 describes how we drive adaptation
policies with an explicit representation of user expecta-
tion. Section 7 describes our future work while Section 8
and Section 9 present related work and conclusions, re-
spectively.

2 Adaptation: heaven and hell

Consider the following scenario:

Joe is a new hire at his company. His manager pro-
claims him an ““adaptation expert”” and wants him to de-
velop an adaptive video player for handheld devices run-
ning Linux and X. Not being a video expert, Joe collab-
orates with domain experts to understand how to make
video players adaptive. As a result, he realizes that
adapting video playing can be done by adjusting image
quality and/or frame rate.

Joe decides to use the XAnim application as the base.
He modifies XAnim to adjust its image quality and frame
rate to the available resources. This is a tedious and
iterative process as Joe has to make extensive changes to
the XAnim source, while periodically reconsulting with
the video experts.

Finally, Joe achieves the desired modification: XAnim
now uses an underlying resource management layer to
adapt its behavior to the available resources. His man-
ager is delighted and demands a similar modification of
MediaPlayer, a video player for Windows CE. The func-
tionality of MediaPlayer is similar to that of XAnim; so
are the adaptive extensions to be added. However, the
code base is completely different, and so is the underly-
ing OS. Joe must redo for MediaPlayer all the painstak-
ing work that he put into XAnim.

Since his company uses five other OSs — Macintosh,
Solaris, IRIX, BSD and Windows 2000 — Joe anticipates
that he will have to enhance the video players in all of
them! His hell is just beginning!!

Why should modifying MediaPlayer and the other
video players be so difficult, given Joe’s previous ex-
perience with XAnim? First, Joe lacks a method that
allows him to reuse the mechanisms used in XAnim to
adapt image quality and frame rate. Second, since Medi-
aPlayer runs on WinCE, Joe has to port his modifications
to interface with this new OS. Furthermore, every time
the OS or runtime layer changes, Joe has to modify the
application to use the new interface.

In this paper we describe an approach that addresses
these problems. Our solution is based on:

e a description language for adaptive applica-
tions: a platform-independent and implementation-
independent representation of an application’s
adaptation capabilities. This allows us to reuse
XAnim’s description when modifying MediaPlayer
or any other adaptive video player.

e a stub generator that converts descriptions in this
language into code stubs tailored to the application
and to the underlying runtime system. This stub in-
sulates the application from the details of the run-
time system.

The specific runtime targeted by our stub generator is
Chroma: a resource management and adaptation layer
that we are building. Chroma provides generic support
for adaptation in applications, including remote execu-
tion: the ability to dynamically run portions of an ap-
plication’s functionality on a fast compute server [6].
Chroma is part of the Aura framework [18] for perva-
sive computing. This paper does not describe Chroma
or Aura in any detail; instead we focus on our platform-
independent approach to building adaptive applications.
The stub generator allows us to potentially use any other
OS or adaptation middleware [14, 1, 10, 2], with no
changes to the application source code or description
files.

3 Adaptation in 4 easy steps

How can one minimize the pain involved in adding
adaptive capabilities to applications? Figure 1 illustrates
our 4-step process:

1. The adaptation expert collaborates with a domain
expert to produce a application description that
captures the information necessary for the applica-
tion to be adaptive. For instance, the description
for XAnim contains the adaptive variables relevant
to adaptive video playing: frame rate, encoding,
frame quality, height, and width. This description is

D) (1)
‘ Collaborate 2)
Stub generator

Domain
expert

ea xanim.d

Application

Chroma Stub

y \ \ Application executable
‘| xanim [A

Application
description file _stub.cfi*
J L\| xanim | /
\J_stubhji—
(Adapt?f{fzexpert) Chroma stub code >©
: (4) Compiler
! xanimely, ()M odify |xanim.c P
! § qu »| 7%
Modified
L Ixanimihl source code

Applicition source code

Figure 1: Process for adding adaptation to an application

platform-independent, and can be reused for other
applications that provide adaptive video playing ca-
pabilities. l.e., it applies equally to XAnim and to
MediaPlayer, to Linux and to Windows.

2. A stub generator compiles the application descrip-
tion into a set of stubs that interface between the
application and the underlying runtime support.

3. The application is modified to invoke the functions
provided by the stub layer. This step is manual, and
must be done for each application. However, these
changes are small and localized as demonstrated in
our case studies, and this fact makes it easy to pre-
serve the adaptation enhancements in new releases
of the applications, as described in Section 1.

4. The application source code and stub are compiled,
and linked together to form the application binary.
When executed, this binary invokes the runtime
support layer to make adaptive decisions.

The case studies presented in this paper show how
steps 1 and 3 can be accomplished easily (Steps 2 and
4 are automated).

4 Casestudy: XAnim

In this section, we will show how Joe can use the pro-
cess described in Section 3 to make XAnim adaptive.

4.1 Creating the description file

The first thing that Joe does is to get in touch with
somebody who understands video well. Together with
this domain expert, Joe produces the description file for
XAnim that captures its adaptive behavior.

The version of XAnim that Joe is using receives video
streams from a server. The server can provide different
quality levels of the same video stream, which differ in
their frame rate and compression level. XAnim, to be
adaptive, should be extended to automatically change the
quality requested from the server according to the current
resource availability. This decision is made periodically
every few video segments.

APPLICATION XAnim;

0OUT DOUBLE frame_rate FROM O TO 60;
0UT DOUBLE compression FROM O TO 100;

IN STRING video_name;

IN ENUM encoding MPEG, MPEG2, QTCinepak;
IN INTEGER video_height;

IN INTEGER video_width;

Figure 2: Description file for XAnim

Figure 2 shows the description file for XAnim. XAnim

barams = xanim_playsegment_initiaize ();

/* Main loop of video playback
This loop retrieves n segments of the video at a time
from the video server. 7/

while (video_needs_to_be played) {

xanim_playsegment_set_video_height (params, height);
xanim_playsegment_set_...
xanim_playsegment_find_fidelity (params);

frame_rate = xanim_playsegment_get_frame rate (params);
./ * Retrieve video from video server using frame_rate */

} / * Exiting video playing loop */

xanim_playsegment_cleanup (params);

Figure 3: Source code for the modified XAnim

has two “OUT” variables and four “IN” variables. An
OUT variable is a parameter that can be adapted by the
runtime. To make good adaptive decisions, the runtime
needs additional information from the application. For
example, the runtime will need to know the size of the
video before it can decide what frame rate is appropriate
given the current bandwidth. IN parameters are used to
specify this necessary information.

4.2 Modifying the application

Joe has his description file after talking with the do-
main expert. He now has to modify XAnim to work with
the underlying runtime system (Chroma in this case).
Usually, this would be a lot of work to try to figure out
the underlying runtime system and things look bleak for
Joe. But help is at hand!! A stub generator is available to
process the description file for XAnim and automatically
generate XAnim-specific code which will make Joe’s life
a lot simpler. Joe eagerly uses the stub generator and
then modifies XAnim in less than an hour. Life is good
again!

Figure 3 shows the modifications that Joe will have to
make to XAnim. The shaded lines are the lines that Joe
added. Note that all Joe needed to do was place these
calls in the correct places in XAnim!

The bulk of the modifications takes place in the part
of the application that does the work that can be adapted.

In the case of XAnim, this is the video playing loop.The
methodology used for the modifications is as follows:

1. An initialize function is called at the start of
the application to create and initialize all necessary
variables for interfacing with Chroma. The initial-
ize call returns an opaque data structure that con-
tains all the information relevant to XAnim. This
data structure is provided as an input to all the func-
tion calls that the stub generator generates.

2. In the video playing loop, a call to the
find fidelity function is made. This func-
tion queries Chroma and figures out the fidelity
level that the application should use, given the
current application settings (the IN parameter
values) and the current resource availability.

3. The application sets all the IN parameters via set
function calls before calling find fidelity.

4. After calling find fidelity, the application reads
the values of all the OUT parameters via get func-
tion calls. Using these values, the application per-
forms a chunk of work at the appropriate fidelity
level.

5. This process of setting the IN parameters, calling
find fidelity, reading the OUT parameters and
then doing a chunk of work at the appropriate fi-
delity level continues until the application exits.

The stub generator automatically generates the
initialize, cleanup and find fidelity functions
and the application specific params data structure. It also
automatically generates all the set and get functions re-
quired to manipulate the IN and OUT parameters. Using
a stub generator to automatically create application spe-
cific code greatly reduces the amount of work involved
in modifying an application to be adaptive.

5 Case Study: Pangloss-Lite

One important way that applications can adaptis to run
pieces of code on remote servers [6], taking advantage
of computational resources in pervasive computing envi-
ronments. Natural language translation applications are
well suited for remote execution as they are CPU and
memory intensive . In this second case study, we show
how to extend Pangloss-L.ite, a natural language transla-
tor, to adapt using remote execution. Remote execution
services are accessed through an RPC [4] interface.

APPLICATION panlite;

RPC server_gbt

RPC server_ebmt

RPC server_1lm
0UT STRING translation);

TACTICS gbt OR ebmt OR gbt_ebmt;

DEFINE gbt = server_gbt & server_lm;
DEFINE ebmt

server_ebmt & server_lm;

IN INTEGER nwords FROM O TO infinity DEFAULT 1;

(IN STRING line, OUT STRING gbt_out);
(IN STRING line, OUT STRING ebmt_out); // RPC spec.
(IN STRING gbt_out, IN STRING ebmt_out,

// glossary engine followed by language modeler
// ebmt engine followed by language modeler
DEFINE gbt_ebmt = (server_gbt, server_ebmt) & server_lm; // both engines run in parallel

// RPC spec. for the glossary engine

for the ebmt engine

// RPC spec. for the language modeler

Figure 4: Description file for Pangloss-Lite

5.1 Creating the Description File

Pangloss-Lite [8] translates text from one natural lan-
guage to another. It can use multiple translation engines
with varying degrees of accuracy and speed. Each en-
gine returns a set of potential translations for phrases
contained within the input text. A language modeler
combines the output of the engines to generate the final
translation. Since each translation engine consumes dif-
ferent amounts of resources, Pangloss-Lite is enhanced
for adaptation by choosing the translation engines to use
depending on the available resources. In addition, the
translation engines and the language modeler can also be
remotely executed. The translation engines can also be
executed in parallel. For the purpose of this case study,
we will use just two engines: EBMT (example-based ma-
chine translation) and GBT (glossary-based translation).

Describing how an application can use remote execu-
tion requires two components: enumerating the functions
that can be remotely executed and the permitted execu-
tion tactics. Each execution tactic specifies a way of exe-
cuting the functions in some parallel or sequential order.

The description file for adaptive Pangloss-Lite is
shown in Figure 4. There is one IN variable that speci-
fies the number of words in the input string. Chroma uses
this value to decide how much resources the translation
will require. The RPC definitions of the three functions
that can be remotely executed are given on the next three
lines. These functions handle the GBT engine, EBMT
engine and the language modeler.

The possible remote execution possibilities for
Pangloss-Lite are specified on the TACTICS line. As
shown, Pangloss-Lite has three tactics: gbt, ebmt and
gbt_ebmt. A tactic is a specific way of executing the
functions in some parallel or sequential order. Pangloss-
Lite has three tactics for remote execution. The gbt tac-

tic executes just the GBT engine and sends the output
to the language modeler. The ebmt tactic executes only
the EBMT engine and sends the output to the language
modeler. Finally, the gbt_ebmt tactic executes both of the
engines in parallel and sends the output to the language
modeler.

5.2 Modifying the Application

Figure 5 shows the modifications that were made to the
Pangloss-Lite source. The methodology used to modify
Pangloss-Lite to make it adaptive is similar to XAnim.

1. An initialize call is made at the start of the ap-
plication with a corresponding cleanup call at the
end of the application.

2. The single IN variable for Pangloss-Lite is set via a
set function call before calling find fidelity.

3. A call to find fidelity is made to determine
which tactic to use. This choice is made by check-
ing the resource availability of the local and remote
servers and the value of the IN parameter.

4. The main difference is a do_tactics function call
which is inserted after the find fidelity call.
The do_tactics function call (this function is also
automatically generated by the stub generator) per-
forms the remote execution of Pangloss-Lite using
the tactic decided by find fidelity.

By separating the decision making of which tactic to
use (done in find fidelity) from the actual execution
of the tactic (done in do_tactics), we allow the appli-
cation to cache the selected tactic. Deciding which tactic
to use can be potentially expensive as Chroma needs to

params = panlite_trandlate initialize_params ();

while (do_translation) {
/* read input into "line" and do other processing */
panlite trandate set_nwords (params, value);
panlite_translate find_fidelity (params);
panlite_trandate do_tactics (params, line, translation);

/* display translation and do other processing */

panlite_translate cleanup_params (params);

Figure 5: Modifications to Pangloss-L.ite

search through all possible tactics and decide on the op-
timal one given the values of all the IN variables and the
resource availability on the local and remote machines.
Caching the result thus allows the application to tradeoff
the overhead of computing a new tactic for every transla-
tion against the agility of adaptation to changing resource
conditions.

6 Driving adaptation

Even the most efficient adaptation mechanisms are not
very useful unless they are driven by an appropriate pol-
icy. The question then becomes what would be an appro-
priate policy. The answer to this question is not trivial
since the user often perceives more than one quality at-
tribute, and hence there is more than one degree of free-
dom for the adaptation policy. For instance, would the
user of a language translator prefer accurate translations
or snappy response times? Should an application run-
ning on a mobile device use power-save modes to pre-
serve battery charge, or should it use resources liberally
in order to complete the user’s task before they run off to
board their plane?

The key observations here are that, first, user expec-
tations ultimately determine which adaptation policies
are appropriate. Second, these expectations change as a
function of the nature of the user’s task and of the phys-
ical context around the user. Although describing how
user expectations are captured is beyond the scope of this
paper, we briefly describe our approach to this problem,
and give some detail on how user expectations are repre-
sented and used to drive the adaptation mechanisms.

The novelty in our approach is threefold:

e User expectations are captured outside the adaptive
application, in a layer that is aware of the user’s task
and surrounding context. That layer builds models
of user expectations that can be passed to adaptive
applications [19].

e User expectations are represented in an application-
independent way, making it easy to reuse models of
user expectation across multiple applications. For
instance, a model of the expectations of the user
when watching a video can be used to drive adapta-
tion in every video playing application equipped to
work in this framework.

e The representation we adopt is easy to pass to a run-
ning application, making it easy to adjust adaptation
policies on the fly to changes in user expectations.

6.1 Defining the adaptation policy

We use a simple model of user expectations based on
utility functions. These functions take the user-perceived
quality attributes as inputs and return a value indicat-
ing their appropriateness. The higher the value the more
appropriate the combination is relative to the user’s ex-
pectations. For instance, utility functions for watching a
video would take frame-update rate and video quality as
inputs. Now, if the user is watching a sports video, an ap-
propriate utility function is one that is more sensitive to
the frame-update rate than the video quality. However, if
the user is watching a tour of a museum, an appropriate
utility function is one that is more sensitive to the video
quality, and not as sensitive to frame-update rates.

APPLICATION XAnim;

0OUT DOUBLE frame_rate FROM O TO 60;
0UT DOUBLE compression FROM O TO 100;

UTILITY = WSIGMOID(frame_rate) *

WSIGMOID (compression);

IN

Figure 6: Description of the utility function for XAnim

The adaptation policy is implicitly defined by maxi-
mizing utility functions. The values that maximize these
utility functions give the fidelities that the application
should run at. These values are returned by the calls to
find_fidelity (in Figures 3 and 5) as values for the OUT

<utility combine="mult">

</utility>

<wSigmoid attribute="frame_rate" bad="5" good="20" weight="0.8"/>
<wSigmoid attribute="compression" bad="0" good="100" weight="0.2"/>

Figure 7: XML passed between the layer modeling the user and XAnim

parameters. Naturally, the maximization of the utility
functions is constrained by the available resources.

The description for XAnim in Figure 6 extends the
description in Figure 2 by defining the generic form of
the utility functions driving the adaptation in XAnim
(and in fact in any video playing application that fol-
lows this model of user expectations.) Each of the user-
perceived quality attributes has a model of utility: in this
case a weighted sigmoid function. Sigmoid functions are
step-like functions that have a “bad” threshold, below
which the function is exponentially close to zero, and a
“good” threshold, above which the function is exponen-
tially close to one. Between the “good” and “bad” thresh-
olds the function grows smoothly (and is roughly linear).
A weighted sigmoid is raised to a power, its weight, be-
tween 0 and 1. The overall utility is obtained by multi-
plying the two weighted sigmoids. Note that assigning
a small weight to a sigmoid tends to make it flat, and
hence reduces the sensitivity of the overall utility to the
corresponding quality attribute.

The big advantage of such a representation is that a
particular utility function can be encoded in a totally
parametric way. For the example in Figure 6, a util-
ity function is encoded by six numeric parameters: the
“good” and “bad” thresholds and the weight for each of
the sigmoids.

6.2 Enacting the adaptation policy

The stub generator takes the description of utility in
the application description file and generates an interface
that allows an external source to set the corresponding
parameters. In our work, the information exchanged be-
tween the layer modeling the user and the applications
is encoded in XML [19]. Therefore, the interface pro-
duced by the stub generator includes a parser for the
specific XML format we are using. Note that the im-
plicit assumption here is that the language to build utility
functions in the application description file is expressive
enough to represent the possible forms of user expecta-
tion for the relevant quality attributes. In the case studies
we analyzed so far we had no difficulty expressing the
form of utility functions using sigmoids for continuous
attributes and simple tables for discrete attributes.

To give a concrete example, suppose that the user is

watching a sports video and that the layer in charge of
capturing the user expectations has empirically deter-
mined the range of quality attributes that makes the user
happy in those circumstances. Suppose that the range is
as follows: the user is happy as long as the frame-update
rate is above 20 frames per second, and really unhappy
if it drops below 5 frames per second. Video quality is
expressed by the “compression” parameter in Figure 6.
Although higher quality is better, it is of secondary im-
portance.

This knowledge is encoded in a utility function com-
posed of two weighted sigmoids with the following pa-
rameters: for the frame-rate sigmoid, set “bad” to 5,
“good” to 20 and weight to 0.8. For the compression
sigmoid set “bad” to 0, “good” to 100 and weight to 0.2.
Note that the sigmoid for the compression attribute de-
generates into a linear function by placing the thresholds
at the extremes of the scale for the attribute. Note also,
that the relative weights of the two sigmoids are empir-
ically set by observing what makes the user happy. The
XML that encodes this utility function is given in Fig-
ure 7.

7 Futurework

We are developing a new runtime system called
Chroma that builds on our past experience with
Odyssey [14]. Currently we are still using Odyssey as
our adaptive runtime system as Chroma is still being de-
veloped. Chroma will have many features currently not
found in Odyssey. These include:

e The ability to easily enhance applications for adap-
tation using the process described in this paper.

e The ability to accept application-specific stubs.
These stubs will be automatically generated by the
stub generator based on the application’s descrip-
tion file. They will provide Chroma with the nec-
essary logic to handle the application’s resource re-
quirements.

e Integration with Prism (see below).

e Better handling of global constraints like battery
powver.

One of the key observations of our work is that de-
termining appropriate adaptation policies is critically de-
pendent on the ability to capture user expectations. Cap-
turing user expectations is a hard problem that we plan to
address in a layer called Prism. Prism treats user tasks as
first class entities and interacts with context-aware com-
ponents to assess the physical context around the user. It
determinines the most accurate models of user expecta-
tions using stochastic techniques to correlate the current
user context to past experiences. By capturing user ex-
pectations outside of applications, we enabled the reuse
of user expectation models. This paves the way for the
migration of user tasks in pervasive computing environ-
ments [19].

Chroma and Prism are being developed as part of the
Aura framework [18]. Aura aims to provide a complete
pervasive computing environment ranging from better
user interfaces to low level intelligent networking.

Additionally, we plan to do more case studies using
our process to evaluate its effectiveness for a larger class
of applications. This will allow us to refine our process
and tools where necessary.

8 Reated work

As mentioned in Section 1, our current work builds
on previous experience with Odyssey [14]. Odyssey
provides support for mobile information access through
application-aware adaptation, a collaborative partner-
ship between the operating system and applications.

The technique of using stubs and a stub generator is
derived from RPC [4]. RPC has shown the effectiveness
of stubs in insulating system details from applications
and the usefulness of a stub generator for automated code
generation. We have simply applied these techniques to
the realm of adaptation in pervasive computing.

The application description language addresses some
of the same issues as 4GLs [12] and “little lan-
guages” [3]. The latter are task-specific languages that
allow developers to express higher level semantics with-
out worrying about low level details. Our description
language is similar as it allows application developers to
specify the adaptation capabilities of their applications at
a higher level without needing to worry about low level
system integration details. Our stub generator converts
this high level description into low level code for inter-
facing the application with the runtime. Another system
that uses this method is CORBA [15, 20]. However, our
approach is focused towards adaptive systems.

Initial research [5] on adaptive multimedia applica-
tions was concerned with low-level system parameters,

whereas concern for user-perceived quality attributes ap-
peared later [13]. Expressing user satisfaction took an
econometric slant, and new expressive power, with the
introduction of utility functions in resource allocation
systems in [16]. Capturing user goals and using that
knowledge to drive systems is a cornerstone of recent
work on expert systems that provide assistance to com-
puter users. For example, Horvitz [9] uses Bayesian net-
works to perform inference on user goals and utility func-
tions to evaluate the relative merit of alternative system
actions.

9 Conclusions

In this paper we have shown a painless approach to
extend applications for adaptation. Specifically, our ap-
proach is based on:

e A description language for representing the adap-
tation features of applications in a platform and
implementation-independent fashion. The descrip-
tion language is rich enough to describe features for
adaptation by remote execution and for driving the
adaptation policies based on user expectations.

e Astub generator that produces an interface between
the application and the underlying runtime support
for adaptation. Although the design of such inter-
faces is applicable to a broad class of adaptive ap-
plications, the stub generator tailors each generated
interface to the specific adaptation features of the
application, thus making it easier to extend each ap-
plication.

o A methodology that guides experts in extending ap-
plications for adaptation.

We have implementated this approach for a video
player (Xanim), a language translator (Pangloss-L.ite), a
speech recognizer (Janus) and a 3-D viewer (GLVU). We
have reported two of these experiments as case studies in
this paper (Xanim and Pangloss-Lite). Although more
case studies are needed to further validate the applicabil-
ity of the approach, we are confident that the mechanisms
that we have created so far can be used to extend a broad
class of applications for adaptability.

References

[1] Amiri, K., Petrou, D., Ganger, G., and Gibson, G. Dy-
namic function placement for data-intensive cluster com-
puting. Proceedings of the USENIX 2000 Annual Techni-
cal Conference, San Diego, CA, June 2000.

(2]

(3]

[4]

5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Basney, J. and Livny, M. Improving goodput by co-
scheduling CPU and network capacity. Intl. Journal of
High Performance Computing Applications, 13(3), Fall
1999.

Bentley, J. Little languages. Communications of the ACM,
29(8):711-21, 1986.

Birrell, A. D. and Nelson, B. J. Implementing remote
procedure call. ACM Transactions on Computer Systems,
2(1):39-59, Feb. 1984.

Clark, D. D., Shenker, S., and Lixia, Z. Supporting real-
time applications in an integrated services packet net-
work; architecture and mechanism. ACM SIGCOMM ’92,
22(4):14-26, aug 1992.

Flinn, J., Narayanan, D., and Satyanarayanan, M. Self-
tuned remote execution for pervasive computing. Pro-
ceedings of the 8th Workshop on Hot Topics in Operat-
ing Systems (HotOS-VIII), Schloss EImau, Germany, May
2001.

Forman, G. and Zahorjan, J. Survey: The challenges of
mobile computing. IEEE Computer, 27(4):38-47, April
1994.

Frederking, R. and Brown, R. D. The Pangloss-Lite ma-
chine translation system. Expanding MT Horizons: Pro-
ceedings of the Second Conference of the Association for
Machine Translation in the Americas, pages 268-272,
Montreal, Canada, 1996.

Horvitz, E. Principles of mixed-initiative user interfaces.
Proceedings of CHI 99, ACM SIGCHI Conference on
Human Factors in Computing Systems, Pittsburgh, PA,
May 1999.

Hunt, G. C. and Scott, M. L. The Coign automatic dis-
tributed partitioning system. Proceedings of the 3rd Sym-
posium on Operating System Design and Implemetation
(OSDI), pages 187-200, New Orleans, LA, Feb. 1999.

Katz, R. H. Adaptation and mobility in wireless informa-
tion systems. IEEE Personal Communications, 1(1):611-
17, 1994.

Martin, J. Fourth-Generation Languages, volume 1: Prin-
ciples. Prentice-Hall, 1985.

McCanne, S. and Jacobson, V. Vic: A flexible framework
for packet video. ACM Multimedia, pages 511-522, Nov.
1995.

Noble, B. D., Satyanarayanan, M., Narayanan, D.,
Tilton, J. E., Flinn, J., and Walker, K. R. Agile
application-aware adaptation for mobility. Proceedings
of the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 276-287, Saint-Malo, France, Oc-
tober 1997.

Object Management Group. The Common Object Request
Broker: Architecture and Specification, 1999. Revision
2.3.1, ftp://ftp.omg.org/pub/docs/formal/99-10-07.ps.
Rajkumar, R., Lee, C., Lehoczky, J., and Siewiorek, D.
Practical solutions for QoS-based resource allocation.
The 19th IEEE Real-Time Systems Symposium (RTSS’98),
pages 296-306, Dec. 1998.

[17]

(18]

[19]

[20]

Satyanarayanan, M. Mobile Information Access. IEEE
Personal Communications, 3(1), February 1996.

Satyanarayanan, M. Pervasive computing: Vision and
challenges. IEEE Personal Communications, 8(4):10-17,
Aug. 2001.

Sousa, J. and Garlan, D. Aura: From computers every-
where to tasks anywhere. Submitted for publication at the
Working IEEE/IFIP Conference on Software Architecture
(WICSA 2002), Montreal, Canada, Aug. 2002.

Vinoski, S. CORBA: Integrating diverse applications
within distributed heterogeneous environments. |IEEE
Communications, 35(2):46-55, Feb. 1997.

