
Cover Fe ature

	 26	 computer	 Published by the IEEE Computer Society	 0018-9162/13/$31.00 © 2013 IEEE

others, provide timely information more conveniently,
and enhance our leisure time. The IoT is estimated by
some to constitute 100 billion devices as soon as 2020.2,3

One anticipated consequence is that the software
running within the embedded devices constituting the
IoT will increasingly be complemented by cloud-based
Web services, made accessible via built-in network inter-
faces leveraging Web-based protocols such as HTTP and
XML. Web services will dramatically extend the effective
processing and storage capabilities of these connected
devices—relatively cheap embedded processors will rou-
tinely leverage sophisticated data processing and access
large datasets in the cloud. Ultimately, a new class of ap-
plications might emerge in which groups of devices act
as the I/O elements of potentially global-scale distributed
services and applications.

Although the IoT vision has tremendous potential, many
complex technical, social, and economic questions remain
unaddressed. With so many possibilities across the broad
IoT realm, the role of hardware and software platforms
that expedite the reduction of ideas to working prototypes
is an intriguing consideration. We outline here some of
the currently available hardware tools and services that
facilitate the prototyping of networked embedded devices.
We illustrate the possibilities these tools afford by focus-
ing specifically on Microsoft .NET Gadgeteer (http://netmf.

T oday, devices such as personal computers and
smartphones form a significant fraction of
Internet-connected devices globally.1 However,
in the Internet of Things (IoT) vision, network

connectivity extends to the very simplest electronic
devices—to the point where almost anything can con-
nect to the Internet. Indeed, analysts predict that simpler
embedded devices will increasingly complement the
established platforms as peers on the Internet in a grow-
ing machine-to-machine communication paradigm.1-3
In addition to networked versions of commonplace
devices—washing machines, alarm clocks, doorbells, and
so on—new applications are predicted. Pundits imagine
embedded devices that continuously communicate with
each other and improve our productivity, help us manage
daily activities, let us more easily keep in touch with

Tools like Microsoft .NET Gadgeteer offer
the ability to quickly prototype, test, and
deploy connected devices, providing a key
element that will accelerate our under-
standing of the challenges in realizing the
Internet of Things vision.

Steve Hodges, Stuart Taylor, Nicolas Villar, and James Scott, Microsoft Research Cambridge, UK

Dominik Bial, University of Duisburg-Essen, Germany

Patrick Tobias Fischer, University of Strathclyde, Glasgow, UK

Prototyping
Connected
Devices for
the Internet
of Things

 	 February 2013	 27

com/gadgeteer), a general-purpose device development
platform which we have developed.4 Key elements of tools
like Gadgeteer include rapid construction and reconfigura-
tion of electronic device hardware, ease of programming
and debugging, and the ability to leverage online Web
services for additional storage, communication, and pro-
cessing. We believe the ability to quickly prototype, test,
and deploy devices will be a key element in accelerating
our understanding of the challenges and benefits of net-
worked things.

CONNECTED-DEVICE PROTOTYPING TOOLS
Several tools for turning embedded machine-to-ma-

chine communication concepts into working systems
exist. One of these is the Arduino platform (http://arduino.
cc),5 a family of embedded processors that can be pro-
grammed with the C language via an accessible, minimalist
integrated development environment (IDE). Debugging
with Arduino is typically supported via simple communi-
cations over a serial line interface. In terms of electronic
hardware, Arduino processors are complemented by an
ecosystem of “shields”—add-on circuit boards that extend
the platform’s basic capabilities (http://shieldlist.org).

From a hardware perspective, shields that provide
Ethernet, Wi-Fi, and GPRS connectivity enable Arduino’s
use for connected-device development. On the software
side, developers commonly use the representational state
transfer (REST) technique6 because it is a lightweight,
easy-to-debug way to communicate between connected
devices such as those built with Arduino, shown in
Figure 1a. With REST, services are exposed and accessed
using HTTP, which is readily supported by Arduino librar-
ies that implement the relevant networking protocols and
enable simple webserver operation. Moreover, Arduino’s
widespread use has formed a vibrant community of users
who create, share, and support additional libraries and

examples online, further facilitating the development of
new applications.

Figure 1b shows another popular tool, mbed (http://
mbed.org), an embedded electronics development plat-
form available as two different microcontroller products.
Both of these are small rectangular modules with protrud-
ing pins that developers can use to insert the device into a
breadboard for prototyping. This form factor also allows
the module to be subsequently integrated into a custom
printed circuit board (PCB) if necessary.

A key difference from Arduino is mbed’s online IDE,
accessible via a Web browser without the need to install
any software. Extensive documentation and libraries are
available through the IDE, which also supports the sharing
of user-generated code samples and libraries.

To support connected-device development, one mbed
variant includes built-in Ethernet connectivity, and the
mbed code repository includes a comprehensive set of
networking libraries and examples. Support for debugging
code running on the mbed has been limited to date, but it
is possible to transition to a more traditional PC-based IDE,
and an upcoming version of mbed should provide better
support for debugging via the online IDE.

In addition to microcontroller-based platforms such
as Arduino and mbed, several small-form-factor devices
that run Linux are available. These devices offer the op-
portunity to leverage an extensive set of preexisting tools
and software components such as Node.js (http://nodejs.
org), which simplifies the implementation of REST-like
asynchronous Web-based application programming in-
terfaces (APIs). These platforms are powerful and flexible,
but they can expose more complexity to the user and are
typically less cost-effective than Arduino for lightweight
device development. However, new products with low
price points, such as Raspberry Pi (http://www.raspberrypi.
org) and BeagleBone (http://beagleboard.org/bone), are

(b)(a)

Figure 1. Connected-device prototyping tools: (a) Arduino device prototyping platform with Ethernet shield and (b) the mbed
embedded development platform.

	 28	 computer

Cover Fe ature

gaining popularity and consequently have growing online
communities.

One final system that illustrates how simple the pro-
totyping of connected devices can be is Microsoft .NET
Gadgeteer. A modular platform that facilitates construc-
tion of digital-device prototypes,4 Gadgeteer comprises a
central “mainboard” containing a CPU and several sockets
that developers can connect to a large number of differ-
ent modules, including sensors, actuators, displays, and
communication and storage elements. The solder-less com-
posability of hardware components allows developers to
quickly construct, reconfigure, and extend prototypes.

The Gadgeteer system is tightly integrated with the
Microsoft Visual Studio IDE, which provides support
throughout the prototyping process. Visual Studio’s Intelli
Sense feature performs dynamic syntax checking and
continually provides hints and prompts to ease coding.
The IDE also aids debugging via breakpoints, single step-
ping, variable watches, and execution traces.

MICROSOFT .NET
GADGETEER DESIGN CHOICES

When we created Gadgeteer, a primary design goal
was to simplify application development as much as pos-
sible, even if this occurs at the expense of performance.
Developers use C# or Visual Basic to program device
functionality—although using managed code is unusual
for embedded device development where C-like lan-
guages are firmly established, in our experience it tends
to reduce the time and expertise needed for prototyping.7
In a preproduction environment, this more than offsets the
increased processor and memory requirements. Similarly,
Gadgeteer uses an event-based model wherever possible,

which further simplifies the creation of many applications
and helps developers familiar with event-based program-
ming on desktop and mobile platforms to transition to
embedded device development.

A software library encapsulates each physical Gadgeteer
module’s functionality through an intuitive high-level API.
The high abstraction level often allows modules to be used
in sophisticated ways with just a few lines of code, enabling
users with relatively little experience to build compelling
devices and applications. This approach lowers the bar-
rier to entry for device development, but doesn’t limit the
flexibility available to more-experienced developers. It is
possible to build on top of lower-level APIs to encapsulate
a different abstraction or functionality if this is required.

The .NET Micro Framework (http://netmf.com), an open
source platform that underpins Gadgeteer’s similarly open
software stack, contains extensive provision for network-
ing. The Gadgeteer networking API builds on this in a way
that supports a compact, easy-to-understand design pattern
for responding to REST-ful Web requests with text, images,
or byte streams. To simplify IoT application development,
when developing Gadgeteer we prioritized REST-ful sup-
port over other Web-related functionality, such as serving
a hierarchy of content as a traditional webserver does.

BUILDING A WEB-CONNECTED
DEVICE WITH GADGETEER

To illustrate how straightforward creating a connected,
REST-ful–interfaced device can be, Figure 2 shows a
simple “Internet webcam” that we built with Gadgeteer. As
Figure 2a shows, the process began with a graphical
design tool to specify the hardware components and how
to connect them to a mainboard. Having “wired these up”

(b)(a)

Figure 2. An Internet webcam constructed with .NET Gadgeteer. (a) The hardware configuration, which includes an RJ45 mod-
ule for a wired Ethernet connection, is entered graphically in Visual Studio. When a module connector is selected, compatible
mainboard sockets are highlighted in green to aid the user in wiring up the design. (b) The corresponding physical hardware
of the completed webcam.

	 February 2013	 29

graphically on-screen, constructing the corresponding
physical hardware took just a couple of minutes. The com-
pleted webcam, shown in Figure 2b, consists of a Gadgeteer
mainboard connected to Ethernet, camera, and power
supply modules. The code required to encapsulate the
hardware configuration was automatically generated and
the appropriate libraries were linked in.

With Gadgeteer, the developer only needs a single line of
code to set up a webserver once a network connection has
been established. Gadgeteer’s event-based programming
style lends itself to handling REST-ful requests by creat-
ing event handlers for each desired HTTP request path;
each handler simply responds to the associated incoming

request with the appropriate object. The Gadgeteer API
directly supports strings (including complete HTML pages),
images, and data streams.

In the case of the webcam, an HTTP request from a remote
client triggers the capture of a new image. The captured
image is returned to the Web client initiating the request.
Figure 3 lists the C# code required to implement the necessary
functionality using v4.1 of the Gadgeteer SDK—just 11 lines
of code excluding the autogenerated function prototypes.
Of course, a more robust implementation would cover a
variety of potential error conditions, such as lack of network
connectivity, but here we show the simplest implementation
for clarity.

WebEvent cameraWebEvent;
Responder currentResponder;

void ProgramStarted()
{
 // associate PictureCaptured event with its handler
 camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);

 // request DHCP address and associate handler for network setup
 ethernet.UseDHCP();
 ethernet.NetworkUp += new NetworkModule.NetworkEventHandler(ethernet_NetworkUp);
}

void ethernet_NetworkUp(GTM.Module.NetworkModule sender,
 GTM.Module.NetworkModule.NetworkState state)
{
 // start a webserver on port 80
 WebServer.StartLocalServer(ethernet.NetworkSettings.IPAddress, 80);

 // set up a handler for http ‘/picture’ requests
 cameraWebEvent = WebServer.SetupWebEvent(“picture”);
 cameraWebEvent.WebEventReceived += new
 WebEvent.ReceivedWebEventHandler(cameraWebEvent_WebEventReceived);
}

void cameraWebEvent_WebEventReceived(string path, WebServer.HttpMethod method,
 Responder responder)
{
 // initiate a picture and cache the responder to use when the picture is captured
 currentResponder = responder;
 camera.TakePicture();
}

void camera_PictureCaptured(GTM.GHIElectronics.Camera sender, GT.Picture picture)

{
 // respond to web request with the picture
 currentResponder.Respond(picture);
}

Figure 3. Just 11 lines of code are enough to create a webserver that responds to incoming requests with a new image. Note
that Visual Studio automatically generates all the function definitions in this example. This code was written using Gadgeteer
SDK v4.1.

	 30	 computer

Cover Fe ature

Figure 4 shows a more sophisticated Web-controlled
camera. In this case, the camera module is attached to a
servomotor-controlled arm, allowing remote panning as
well as image capture, again over a REST-ful interface. In
addition to a wired Ethernet connection, this device also

incorporates wireless Zigbee and Wi-Fi
network interfaces. The latter provides
an alternative way of connecting to the
Internet, should a wired connection
be unavailable or inconvenient. The
Zigbee interface supports a connection
to lighter-weight Gadgeteer devices such
as temperature and light-level sensors,
effectively giving them a presence on
the Internet via additional software run-
ning on the camera device that acts as
a bridge.

Storing, retrieving,
and sharing data

Although an embedded webserver
allows a device to expose state or func-
tionality over HTTP, the ability to store,
retrieve, and share data is a key element
of IoT applications, and an embedded
Web client API is equally important
for these applications. For this reason,
the Gadgeteer libraries were designed
to ensure that making a Web request
is as straightforward as receiving one.
When the details of the HTTP request
have been specified, an event handler
is created to deal with the anticipated
response, then the request itself is sent.

In addition to supporting true peer-to-
peer communication, the HTTP protocol
offers an intuitive way of providing
access to a growing number of hosted
Web services that support the process of
exchanging data between connected de-
vices. These tools, which include cosm
(formerly Pachube; https://cosm.com),
ThingSpeak (https://thingspeak.com),
and Nimbits (www.nimbits.com), use
HTTP and XML to implement REST-ful
APIs and are therefore readily accessible
to platforms like Gadgeteer.

Figure 5 lists the four lines of C# code
needed to upload a barometric pressure
reading to the online cosm repository.
Figure 6 shows a complete connected
device that continuously records and
uploads sensor readings, along with a
screenshot of the cosm Web interface for

visualizing the associated temperature and pressure data.

Cloud-based processing for connected devices
In addition to communication between devices via

online repositories such as cosm, a key benefit of con-

GHIElectronics.XBee

xBee

GHIElectronics.UsbClientDP

UsbClient

GHElectronics XBee
xBee

GHIElectronics.motorController298

motorController298

GHIElectronics.Wi-Fi_RS21

Wi-Fi

GHIElectronics.MulticolorLed

led

GHIElectronics.Ethernet_J11D

Ethernet

GHIElectronics.Camera

Camera

(a)

(b)

Figure 4. Web-controlled camera. (a) The remote-controllable networked camera
with servo-controller pan mechanism. (b) A 3D-printed plastic enclosure houses
the electronic modules.

	 February 2013	 31

nected operation is the potential to leverage
cloud-based computation. Services such as Amazon
EC2 and Microsoft Azure provide a mechanism to
deploy online compute services that developers can
use to offload computation from connected devices.
Project Hawaii from Microsoft Research (http://
research.microsoft.com/hawaii/) is a ready-to-use
Web services testbed built on Azure. It provides, for
free, varied functionality for noncommercial applica-
tions. This includes off-the-shelf services to support
certain computationally intensive processes, basic
communication between remote devices, and online
data storage.

To demonstrate how Project Hawaii can extend
Gadgeteer’s capabilities, Figure 7 shows another
camera device prototype. As with a traditional digi-
tal stills camera, this device captures an image when
the “shutter” button is pressed. At this point, rather
than simply displaying the image and storing a copy
locally, the camera sends the image to the Hawaii
optical character recognition (OCR) service. Any
text that is detected is returned and overlaid on the
display.

Figure 8 shows the C# code that forms the basis of
this example using v4.1 of the Gadgeteer SDK. When
the camera has captured and displayed a picture,
it creates an HTTP request to be sent to the Project
Hawaii service for OCR processing. This request in-
corporates the image, the appropriate authentication
information, and the necessary HTTP header fields.
The resulting response from the OCR service triggers
an event handler to process the XML-formatted results.

For simplicity, the code in Figure 8 simply selects the
first word the OCR service returns and includes no error
handling; a more complete implementation would pro-
cess all the text and associated metadata as well as resolve
error conditions. The .NET Micro Framework includes
native XML parsing and exception handling capabilities,
which simplifies implementing more complete and robust
decoding.

To further illustrate how developers can use Gadgeteer
to explore applications that leverage the ubiquitous con-

nectivity that underpins the IoT, we built and deployed
another camera-based application. Our motivation was
to replicate the work of Hideaki Kuzuoka and Saul Green-
berg,8 who explored the use of telepresence proxies,
devices that incorporate cameras and displays and that
are configured to share images between different physi-
cal locations.

We actually built several networked Gadgeteer de-
vices—each incorporated the same components but they
all had different form factors. We developed a simple
application that periodically took a photo and uploaded

HttpRequest request = HttpHelper.CreateHttpPutRequest(“http://api.pachube.com/v2/feeds/” + feedId +
 “.csv”, PUTContent.CreateTextBasedContent(locationId + “temperature,” +
 sensorData.Temperature.ToString() + “\n” + locationId + “pressure,” +
 sensorData.Pressure.ToString()), “text/csv”);
request.AddHeaderField(“X-PachubeApiKey”, apiKey);
request.ResponseReceived += new HttpRequest.ResponseHandler(req_ResponseReceived);
request.SendRequest();

Figure 5. A snippet showing the code required to upload a sensor reading to the cosm Web service.

(a)

(b)

Figure 6. Prototype device created with Gadgeteer. (a) The device
periodically stores temperature and pressure readings using the
cosm Web service via Wi-Fi. Note that the prototype is assembled us-
ing a perforated plastic baseboard; yellow plastic pop-rivets attach
the Gadgeteer modules to the baseboard. (b) Data plots collected
over a 24-hour period.

Cover Fe ature

	 32	 computer

it to an Azure-based Web service like the Hawaii Key-
Value Store. The Web service was configured to make
the most recent photo from each device available to all
the other telepresence devices. By displaying the latest
photos from other devices in a round-robin sequence, the
system maintained a level of mutual awareness between
users at different physical locations. Deploying these IoT
devices allowed us to experience a lightweight form of
telepresence while exploring the different device form
factors.

SELECTING AN IoT
DEVELOPMENT PLATFORM

We used Gadgeteer to build the prototype connected
devices presented here, but many factors must be con-
sidered when choosing a development tool. Key points of
differentiation include performance, debugging support,
cost, power consumption, and form factor. When we de-
signed Gadgeteer, we chose a high-performance processor
which supports managed code and real-time debugging.
The price premium compared to tools like Arduino and
mbed is modest. Power consumption was not a focus
during the initial development of the Gadgeteer platform,
but we are currently exploring this topic. Flexibility over
form factor, however, was a central consideration when
we were designing Gadgeteer. It influenced our decision
to add cables for interconnecting modules as opposed to
a “stacking” approach, in part because it supports using
a variety of physical prototyping approaches.

One premise behind the Gadgeteer software stack is
that concise code empowers less-experienced users to

create useful applications and, at the same time, allows
seasoned developers to build embedded-device proto-
types more quickly. The anecdotal evidence we have
collected at various Gadgeteer workshops bears out this
intuition: users report a low hurdle for creating simple
projects,7 yet they can build relatively sophisticated pro-
totypes of connected devices.9 Indeed, our experience
shows that the simplicity of hardware and software devel-
opment with Gadgeteer inspires students as young as age
13 to engage with the platform,10 and this may ultimately
prove valuable for educating a future generation of IoT
developers.

Of course, other platforms will also continue to be
relevant. For example, professionals and hobbyists alike
can leverage a growing set of samples and libraries for
connecting a networked Arduino to online services,
while educators have access to platforms like the Open
University’s SenseBoard (http://sense.open.ac.uk), which
has already been used to teach the IoT concept.11 In the
future, it might even be possible to use accessible devel-
opment environments like Scratch (http://scratch.mit.edu)
to create IoT devices and services. Community support
is a key element of any modern development platform.
Tools like Arduino, mbed, and Gadgeteer have online
forums which provide a mechanism for both new and
experienced users to pose questions, exchange experi-
ences, and share code.

No matter which tools are used for prototyping, even-
tually it becomes necessary to build and deploy a greater
number of devices, either for larger-scale deployments or
ultimately for mass production. In our work so far, we have

(a) (b)

Figure 7. Optical character recognition (OCR) device. (a) The OCR device has a camera facing down toward the surface it is
resting on. (b) The display on the OCR device shows an image of some printed text with the OCR'd characters correctly over-
laid in red. This is implemented using the Project Hawaii cloud-based OCR service.

	 February 2013	 33

used Gadgeteer for deployments of up to 50 instances of
a given device. This has been relatively straightforward
because of the ease of replication of a proven Gadge-
teer design and the robustness of the assembled units.
At some point, it becomes more cost-effective to move
to a custom PCB, which can be made more cheaply and
compactly through circuit integration. Like several of the
open hardware platforms, with Gadgeteer this process is
facilitated by freely available hardware designs from many
manufacturers.

More recently, tools specifically designed to facilitate
the mass production of connected devices have emerged,
such as the ioBridge (http://www.iobridge.com) and the
Electric Imp (http://electricimp.com). The latter includes a
programmable processor and Wi-Fi radio in a small pack-
age, and connects to applications through a hosted Web
service. In essence, these devices act as a single physical
component that provides a link between a hardware in-
terface and HTTP-based Web APIs.

A s the number of network-connected devices contin-
ues to grow, it is clear that no single technology will
prevail—the IoT’s success is inherently tied to het-

erogeneous devices, protocols, services, and applications.
Many open questions still remain within this broad scope,
and the tools presented here will not necessarily resolve
these issues directly. However, as the IoT vision gradually
becomes a reality, using connected-device prototypes to
explore the design space will be important. We imagine
that developers, researchers, designers, and hobbyists will
conceive and build these prototypes and that tools like
Gadgeteer will be valuable in this regard.

Although some applications will always be outside the
scope of a rapid-prototyping toolkit, we nonetheless antici-
pate that those working in this exciting field will be able
to build on the experiences and examples reported here
to explore relevant issues and prototype new applications
quickly, and in doing so bring the IoT vision ever closer to
reality.

void ProgramStarted()
{
 ethernet.UseDHCP();
 button.ButtonPressed += new Button.ButtonEventHandler(button_ButtonPressed);
 camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);
}

void button_ButtonPressed(Button sender, Button.ButtonState state)
{
 camera.TakePicture();
}

void camera_PictureCaptured(Camera sender, GT.Picture picture)
{
 // Show the picture on the display
 display.SimpleGraphics.DisplayImage(picture.MakeBitmap(), 0, 0);

 // create and send an HTTP request which will send the picture to the Hawaii OCR service
 HttpRequest request = HttpHelper.CreateHttpPostRequest(“http://157.55.188.73/OCR”,
 POSTContent.CreateBinaryBasedContent(picture.PictureData), “image/jpeg”);
 request.AddHeaderField(“Authorization”, “Basic “ +
 ConvertBase64.ToBase64String(Encoding.UTF8.GetBytes(“<insert your appID here>”));
 request.AddHeaderField(“Cache-Control”, “no-cache”);
 request.ResponseReceived += new HttpRequest.ResponseHandler(request_ResponseReceived);
 request.SendRequest();
}

void request_ResponseReceived(HttpRequest sender, HttpResponse response)
{
 // for this example we just display the first OCR’ed word returned by Hawaii
 // by looking between the “<Text>” and “</Text>” tags
 int start = response.Text.IndexOf(“<Text>”, 0) + 6;
 int end = response.Text.IndexOf(“</Text>”, 0);
 display.SimpleGraphics.DisplayText(response.Text.Substring(start, end - start),
 Resources.GetFont(Resources.FontResources.NinaB), GT.Color.Red, 0, 0);
 }

Figure 8. This complete code example shows how to program a Gadgeteer-based embedded device to use the Project Hawaii
OCR Web service. This code was written using Gadgeteer SDK v4.1.

Cover Fe ature

	 34	 computer

References
	 1.	 “Rise of the Embedded Internet,” Intel embedded pro-

cessors white paper, 2009; http://download.intel.com/
embedded/15billion/applications/pdf/322202.pdf.

	 2.	 Casaleggio Associati, “The Evolution of Internet of Things,”
Feb. 2011; http://www.casaleggio.it/pubblicazioni/Focus_
internet_of_things_v1.81%20-%20eng.pdf.

	 3.	 C.A. Valhouli, “The Internet of Things: Networked Objects
and Smart Devices,” The Hammersmith Group Research
Report, Feb. 2010; http://thehammersmithgroup.com/
images/reports/networked_objects.pdf.

	 4.	 N. Villar et al., “.NET Gadgeteer: A Platform for Custom
Devices,” Proc. Pervasive 2012, Lecture Notes in Computer
Science, Springer, June 2012, pp. 216-233.

	 5.	 M. Banzi, Getting Started with Arduino, O’Reilly, 2008.
	 6.	 L. Richardson and S. Ruby, RESTful Web Services, O’Reilly,

2007.
	 7.	 N. Villar, J. Scott, and S. Hodges, “Prototyping with Mi-

crosoft .NET Gadgeteer,” Proc. 5th Int’l Conf. Tangible,
Embedded and Embodied Interaction (TEI 11), ACM, 2011,
pp. 377-380

	 8.	 H. Kuzuoka and S. Greenberg, “Mediating Awareness and
Communication through Digital but Physical Surrogates,”
Proc. Conf. Human Factors in Computing Systems (CHI 99),
ACM, 1999, pp. 11-12.

	 9.	 P. Barden et al., “Telematic Dinner Party: Designing for
Togetherness through Play and Performance,” Proc. De-
signing Interactive Systems Conf. (DIS 12), ACM, 2012, pp.
38-47.

	10.	 S. Hodges et al., “.NET Gadgeteer: Experiences with a New
Platform for K-12 Computer Science Education,” Proc. 44th
SIGCSE Tech. Symp. Computer Science Education, ACM,
2013 (to appear).

	11.	 G. Korteum et al., “Educating the Internet-of-Things Gen-
eration,” Computer, Feb. 2013, pp. 53-61.

Acknowledgments
The authors acknowledge the Project Hawaii team behind
the Hawaii Web services described in this article, and the
extensive community of people who have contributed to the
development of the .NET Gadgeteer prototyping system. We
also thank the reviewers for their valuable feedback.

Steve Hodges is a principal hardware engineer at Microsoft
Research Cambridge, UK, where he leads the Sensors and
Devices Research Group. He is also a Visiting Professor at
the School of Computing Science, Newcastle University, UK.
His research interests include novel electronic devices and
new technologies and techniques for interaction. Hodges
received a PhD in computer vision and robotics from the
University of Cambridge. He is a senior member of IEEE and
a member of ACM. Contact him at shodges@microsoft.com.

Stuart Taylor is a research software development engineer
at Microsoft Research Cambridge, UK. He has extensive
experience in developing new hardware and software tech-
nologies in an industrial research environment. Taylor
received an MSc in computing science from the University
of London. Contact him at stuart@microsoft.com.

Nicolas Villar is a researcher at Microsoft Research Cam-
bridge, UK, where he focuses on the development of new
hardware platforms and tools to enable technical innova-
tion. Villar received a PhD in ubiquitous computing from
the University of Lancaster, UK. Contact him at nvillar@
microsoft.com.

James Scott is a researcher in the Sensors and Devices
Group at Microsoft Research Cambridge, UK. His research
interests span a wide range of topics in ubiquitous and per-
vasive computing, and include novel sensors and devices,
rapid prototyping, wireless and mobile networking, and
security and privacy. Scott received a PhD in communica-
tions engineering from the University of Cambridge. He is
a senior member of ACM and a member of IEEE. Contact
him at jws@microsoft.com.

Dominik Bial is a research assistant and PhD student at
Paluno, the Ruhr Institute for Software Technology at the
University of Duisburg-Essen, Germany, where he also
received an MSc in software systems engineering. His re-
search interests include future appliances and systems,
software engineering, and the future Internet, especially
the Internet of Things. Contact him at dominik.bial@stud.
uni-due.de.

Patrick Tobias Fischer is a PhD student in human-
computer interaction at the University of Strathclyde,
Glasgow, UK. His research focuses on situated public in-
terfaces in urban environments that have performative
aspects. Tobias Fischer received an MSc in novel input tech-
nologies from the Cologne University of Applied Sciences,
Germany. Contact him at fischer@cis.strath.ac.uk.

	 Selected CS articles and columns are available
	 for free at http://ComputingNow.computer.org.

