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others, provide timely information more conveniently, 
and enhance our leisure time. The IoT is estimated by 
some to constitute 100 billion devices as soon as 2020.2,3

One anticipated consequence is that the software 
running within the embedded devices constituting the 
IoT will increasingly be complemented by cloud-based 
Web services, made accessible via built-in network inter-
faces leveraging Web-based protocols such as HTTP and 
XML. Web services will dramatically extend the effective 
processing and storage capabilities of these connected 
devices—relatively cheap embedded processors will rou-
tinely leverage sophisticated data processing and access 
large datasets in the cloud. Ultimately, a new class of ap-
plications might emerge in which groups of devices act 
as the I/O elements of potentially global-scale distributed 
services and applications.

Although the IoT vision has tremendous potential, many 
complex technical, social, and economic questions remain 
unaddressed. With so many possibilities across the broad 
IoT realm, the role of hardware and software platforms 
that expedite the reduction of ideas to working prototypes 
is an intriguing consideration. We outline here some of 
the currently available hardware tools and services that 
facilitate the prototyping of networked embedded devices. 
We illustrate the possibilities these tools afford by focus-
ing specifically on Microsoft .NET Gadgeteer (http://netmf.

T oday, devices such as personal computers and 
smartphones form a significant fraction of  
Internet-connected devices globally.1 However, 
in the Internet of Things (IoT) vision, network 

connectivity extends to the very simplest electronic 
devices—to the point where almost anything can con-
nect to the Internet. Indeed, analysts predict that simpler 
embedded devices will increasingly complement the 
established platforms as peers on the Internet in a grow-
ing machine-to-machine communication paradigm.1-3 
In addition to networked versions of commonplace 
devices—washing machines, alarm clocks, doorbells, and 
so on—new applications are predicted. Pundits imagine 
embedded devices that continuously communicate with 
each other and improve our productivity, help us manage 
daily activities, let us more easily keep in touch with 
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com/gadgeteer), a general-purpose device development 
platform which we have developed.4 Key elements of tools 
like Gadgeteer include rapid construction and reconfigura-
tion of electronic device hardware, ease of programming 
and debugging, and the ability to leverage online Web 
services for additional storage, communication, and pro-
cessing. We believe the ability to quickly prototype, test, 
and deploy devices will be a key element in accelerating 
our understanding of the challenges and benefits of net-
worked things.

CONNECTED-DEVICE PROTOTYPING TOOLS
Several tools for turning embedded machine-to-ma-

chine communication concepts into working systems 
exist. One of these is the Arduino platform (http://arduino.
cc),5 a family of embedded processors that can be pro-
grammed with the C language via an accessible, minimalist 
integrated development environment (IDE). Debugging 
with Arduino is typically supported via simple communi-
cations over a serial line interface. In terms of electronic 
hardware, Arduino processors are complemented by an 
ecosystem of “shields”—add-on circuit boards that extend 
the platform’s basic capabilities (http://shieldlist.org).

From a hardware perspective, shields that provide 
Ethernet, Wi-Fi, and GPRS connectivity enable Arduino’s 
use for connected-device development. On the software 
side, developers commonly use the representational state 
transfer (REST) technique6 because it is a lightweight, 
easy-to-debug way to communicate between connected 
devices such as those built with Arduino, shown in  
Figure 1a. With REST, services are exposed and accessed 
using HTTP, which is readily supported by Arduino librar-
ies that implement the relevant networking protocols and 
enable simple webserver operation. Moreover, Arduino’s 
widespread use has formed a vibrant community of users 
who create, share, and support additional libraries and 

examples online, further facilitating the development of 
new applications.

Figure 1b shows another popular tool, mbed (http://
mbed.org), an embedded electronics development plat-
form available as two different microcontroller products. 
Both of these are small rectangular modules with protrud-
ing pins that developers can use to insert the device into a 
breadboard for prototyping. This form factor also allows 
the module to be subsequently integrated into a custom 
printed circuit board (PCB) if necessary.

A key difference from Arduino is mbed’s online IDE, 
accessible via a Web browser without the need to install 
any software. Extensive documentation and libraries are 
available through the IDE, which also supports the sharing 
of user-generated code samples and libraries.

To support connected-device development, one mbed 
variant includes built-in Ethernet connectivity, and the 
mbed code repository includes a comprehensive set of 
networking libraries and examples. Support for debugging 
code running on the mbed has been limited to date, but it 
is possible to transition to a more traditional PC-based IDE, 
and an upcoming version of mbed should provide better 
support for debugging via the online IDE.

In addition to microcontroller-based platforms such 
as Arduino and mbed, several small-form-factor devices 
that run Linux are available. These devices offer the op-
portunity to leverage an extensive set of preexisting tools 
and software components such as Node.js (http://nodejs.
org), which simplifies the implementation of REST-like 
asynchronous Web-based application programming in-
terfaces (APIs). These platforms are powerful and flexible, 
but they can expose more complexity to the user and are 
typically less cost-effective than Arduino for lightweight 
device development. However, new products with low 
price points, such as Raspberry Pi (http://www.raspberrypi. 
org) and BeagleBone (http://beagleboard.org/bone), are 

(b)(a)

Figure 1. Connected-device prototyping tools: (a) Arduino device prototyping platform with Ethernet shield and (b) the mbed 
embedded development platform.
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gaining popularity and consequently have growing online 
communities.

One final system that illustrates how simple the pro-
totyping of connected devices can be is Microsoft .NET 
Gadgeteer. A modular platform that facilitates construc-
tion of digital-device prototypes,4 Gadgeteer comprises a 
central “mainboard” containing a CPU and several sockets 
that developers can connect to a large number of differ-
ent modules, including sensors, actuators, displays, and 
communication and storage elements. The solder-less com-
posability of hardware components allows developers to 
quickly construct, reconfigure, and extend prototypes. 

The Gadgeteer system is tightly integrated with the 
Microsoft Visual Studio IDE, which provides support 
throughout the prototyping process. Visual Studio’s Intelli
Sense feature performs dynamic syntax checking and 
continually provides hints and prompts to ease coding. 
The IDE also aids debugging via breakpoints, single step-
ping, variable watches, and execution traces.

MICROSOFT .NET  
GADGETEER DESIGN CHOICES

When we created Gadgeteer, a primary design goal 
was to simplify application development as much as pos-
sible, even if this occurs at the expense of performance. 
Developers use C# or Visual Basic to program device  
functionality—although using managed code is unusual 
for embedded device development where C-like lan-
guages are firmly established, in our experience it tends 
to reduce the time and expertise needed for prototyping.7 
In a preproduction environment, this more than offsets the 
increased processor and memory requirements. Similarly, 
Gadgeteer uses an event-based model wherever possible, 

which further simplifies the creation of many applications 
and helps developers familiar with event-based program-
ming on desktop and mobile platforms to transition to 
embedded device development.

A software library encapsulates each physical Gadgeteer 
module’s functionality through an intuitive high-level API. 
The high abstraction level often allows modules to be used 
in sophisticated ways with just a few lines of code, enabling 
users with relatively little experience to build compelling 
devices and applications. This approach lowers the bar-
rier to entry for device development, but doesn’t limit the 
flexibility available to more-experienced developers. It is 
possible to build on top of lower-level APIs to encapsulate 
a different abstraction or functionality if this is required.

The .NET Micro Framework (http://netmf.com), an open 
source platform that underpins Gadgeteer’s similarly open 
software stack, contains extensive provision for network-
ing. The Gadgeteer networking API builds on this in a way 
that supports a compact, easy-to-understand design pattern 
for responding to REST-ful Web requests with text, images, 
or byte streams. To simplify IoT application development, 
when developing Gadgeteer we prioritized REST-ful sup-
port over other Web-related functionality, such as serving 
a hierarchy of content as a traditional webserver does.

BUILDING A WEB-CONNECTED  
DEVICE WITH GADGETEER

To illustrate how straightforward creating a connected, 
REST-ful–interfaced device can be, Figure 2 shows a 
simple “Internet webcam” that we built with Gadgeteer. As  
Figure 2a shows, the process began with a graphical 
design tool to specify the hardware components and how 
to connect them to a mainboard. Having “wired these up” 

(b)(a)

Figure 2. An Internet webcam constructed with .NET Gadgeteer. (a) The hardware configuration, which includes an RJ45 mod-
ule for a wired Ethernet connection, is entered graphically in Visual Studio. When a module connector is selected, compatible 
mainboard sockets are highlighted in green to aid the user in wiring up the design. (b) The corresponding physical hardware 
of the completed webcam.
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graphically on-screen, constructing the corresponding 
physical hardware took just a couple of minutes. The com-
pleted webcam, shown in Figure 2b, consists of a Gadgeteer 
mainboard connected to Ethernet, camera, and power 
supply modules. The code required to encapsulate the 
hardware configuration was automatically generated and 
the appropriate libraries were linked in.

With Gadgeteer, the developer only needs a single line of 
code to set up a webserver once a network connection has 
been established. Gadgeteer’s event-based programming 
style lends itself to handling REST-ful requests by creat-
ing event handlers for each desired HTTP request path; 
each handler simply responds to the associated incoming 

request with the appropriate object. The Gadgeteer API 
directly supports strings (including complete HTML pages), 
images, and data streams. 

In the case of the webcam, an HTTP request from a remote 
client triggers the capture of a new image. The captured 
image is returned to the Web client initiating the request. 
Figure 3 lists the C# code required to implement the necessary  
functionality using v4.1 of the Gadgeteer SDK—just 11 lines 
of code excluding the autogenerated function prototypes. 
Of course, a more robust implementation would cover a 
variety of potential error conditions, such as lack of network 
connectivity, but here we show the simplest implementation 
for clarity.

WebEvent cameraWebEvent;
Responder currentResponder;

void ProgramStarted()
{
       // associate PictureCaptured event with its handler
       camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);

       // request DHCP address and associate handler for network setup
       ethernet.UseDHCP();
       ethernet.NetworkUp += new NetworkModule.NetworkEventHandler(ethernet_NetworkUp);
}

void ethernet_NetworkUp(GTM.Module.NetworkModule sender, 
         GTM.Module.NetworkModule.NetworkState state)
{
       // start a webserver on port 80
       WebServer.StartLocalServer(ethernet.NetworkSettings.IPAddress, 80);

       // set up a handler for http ‘/picture’ requests
       cameraWebEvent = WebServer.SetupWebEvent(“picture”);
       cameraWebEvent.WebEventReceived += new 
         WebEvent.ReceivedWebEventHandler(cameraWebEvent_WebEventReceived);
}

void cameraWebEvent_WebEventReceived(string path, WebServer.HttpMethod method, 
         Responder responder)
{
       // initiate a picture and cache the responder to use when the picture is captured
       currentResponder = responder;
       camera.TakePicture();
}

void camera_PictureCaptured(GTM.GHIElectronics.Camera sender, GT.Picture picture)

{
       // respond to web request with the picture
       currentResponder.Respond(picture);
}

Figure 3. Just 11 lines of code are enough to create a webserver that responds to incoming requests with a new image. Note 
that Visual Studio automatically generates all the function definitions in this example. This code was written using Gadgeteer 
SDK v4.1.
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Figure 4 shows a more sophisticated Web-controlled 
camera. In this case, the camera module is attached to a  
servomotor-controlled arm, allowing remote panning as 
well as image capture, again over a REST-ful interface. In 
addition to a wired Ethernet connection, this device also 

incorporates wireless Zigbee and Wi-Fi 
network interfaces. The latter provides 
an alternative way of connecting to the 
Internet, should a wired connection 
be unavailable or inconvenient. The 
Zigbee interface supports a connection 
to lighter-weight Gadgeteer devices such 
as temperature and light-level sensors, 
effectively giving them a presence on 
the Internet via additional software run-
ning on the camera device that acts as 
a bridge.

Storing, retrieving,  
and sharing data

Although an embedded webserver 
allows a device to expose state or func-
tionality over HTTP, the ability to store, 
retrieve, and share data is a key element 
of IoT applications, and an embedded 
Web client API is equally important 
for these applications. For this reason, 
the Gadgeteer libraries were designed 
to ensure that making a Web request 
is as straightforward as receiving one. 
When the details of the HTTP request 
have been specified, an event handler 
is created to deal with the anticipated 
response, then the request itself is sent. 

In addition to supporting true peer-to-
peer communication, the HTTP protocol 
offers an intuitive way of providing 
access to a growing number of hosted 
Web services that support the process of 
exchanging data between connected de-
vices. These tools, which include cosm 
(formerly Pachube; https://cosm.com), 
ThingSpeak (https://thingspeak.com), 
and Nimbits (www.nimbits.com), use 
HTTP and XML to implement REST-ful 
APIs and are therefore readily accessible 
to platforms like Gadgeteer.

Figure 5 lists the four lines of C# code 
needed to upload a barometric pressure 
reading to the online cosm repository. 
Figure 6 shows a complete connected 
device that continuously records and 
uploads sensor readings, along with a 
screenshot of the cosm Web interface for 

visualizing the associated temperature and pressure data.

Cloud-based processing for connected devices
In addition to communication between devices via 

online repositories such as cosm, a key benefit of con-
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Figure 4. Web-controlled camera. (a) The remote-controllable networked camera 
with servo-controller pan mechanism. (b) A 3D-printed plastic enclosure houses 
the electronic modules.
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nected operation is the potential to leverage 
cloud-based computation. Services such as Amazon 
EC2 and Microsoft Azure provide a mechanism to 
deploy online compute services that developers can 
use to offload computation from connected devices. 
Project Hawaii from Microsoft Research (http:// 
research.microsoft.com/hawaii/) is a ready-to-use 
Web services testbed built on Azure. It provides, for 
free, varied functionality for noncommercial applica-
tions. This includes off-the-shelf services to support 
certain computationally intensive processes, basic 
communication between remote devices, and online 
data storage.

To demonstrate how Project Hawaii can extend 
Gadgeteer’s capabilities, Figure 7 shows another 
camera device prototype. As with a traditional digi-
tal stills camera, this device captures an image when 
the “shutter” button is pressed. At this point, rather 
than simply displaying the image and storing a copy 
locally, the camera sends the image to the Hawaii 
optical character recognition (OCR) service. Any 
text that is detected is returned and overlaid on the 
display.

Figure 8 shows the C# code that forms the basis of 
this example using v4.1 of the Gadgeteer SDK. When 
the camera has captured and displayed a picture, 
it creates an HTTP request to be sent to the Project 
Hawaii service for OCR processing. This request in-
corporates the image, the appropriate authentication 
information, and the necessary HTTP header fields. 
The resulting response from the OCR service triggers 
an event handler to process the XML-formatted results. 

For simplicity, the code in Figure 8 simply selects the 
first word the OCR service returns and includes no error 
handling; a more complete implementation would pro-
cess all the text and associated metadata as well as resolve 
error conditions. The .NET Micro Framework includes 
native XML parsing and exception handling capabilities, 
which simplifies implementing more complete and robust 
decoding.

To further illustrate how developers can use Gadgeteer 
to explore applications that leverage the ubiquitous con-

nectivity that underpins the IoT, we built and deployed 
another camera-based application. Our motivation was 
to replicate the work of Hideaki Kuzuoka and Saul Green-
berg,8 who explored the use of telepresence proxies, 
devices that incorporate cameras and displays and that 
are configured to share images between different physi-
cal locations.

We actually built several networked Gadgeteer de-
vices—each incorporated the same components but they 
all had different form factors. We developed a simple 
application that periodically took a photo and uploaded 

HttpRequest request = HttpHelper.CreateHttpPutRequest(“http://api.pachube.com/v2/feeds/” + feedId + 
     “.csv”, PUTContent.CreateTextBasedContent(locationId + “temperature,” + 
     sensorData.Temperature.ToString() + “\n” + locationId + “pressure,” + 
     sensorData.Pressure.ToString()), “text/csv”);
request.AddHeaderField(“X-PachubeApiKey”, apiKey);
request.ResponseReceived += new HttpRequest.ResponseHandler(req_ResponseReceived);
request.SendRequest();

Figure 5. A snippet showing the code required to upload a sensor reading to the cosm Web service.

(a)

(b)

Figure 6. Prototype device created with Gadgeteer. (a) The device 
periodically stores temperature and pressure readings using the 
cosm Web service via Wi-Fi. Note that the prototype is assembled us-
ing a perforated plastic baseboard; yellow plastic pop-rivets attach 
the Gadgeteer modules to the baseboard. (b) Data plots collected 
over a 24-hour period.
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it to an Azure-based Web service like the Hawaii Key-
Value Store. The Web service was configured to make 
the most recent photo from each device available to all 
the other telepresence devices. By displaying the latest 
photos from other devices in a round-robin sequence, the 
system maintained a level of mutual awareness between 
users at different physical locations. Deploying these IoT 
devices allowed us to experience a lightweight form of 
telepresence while exploring the different device form 
factors. 

SELECTING AN IoT  
DEVELOPMENT PLATFORM

We used Gadgeteer to build the prototype connected 
devices presented here, but many factors must be con-
sidered when choosing a development tool. Key points of 
differentiation include performance, debugging support, 
cost, power consumption, and form factor. When we de-
signed Gadgeteer, we chose a high-performance processor 
which supports managed code and real-time debugging. 
The price premium compared to tools like Arduino and 
mbed is modest. Power consumption was not a focus 
during the initial development of the Gadgeteer platform, 
but we are currently exploring this topic. Flexibility over 
form factor, however, was a central consideration when 
we were designing Gadgeteer. It influenced our decision 
to add cables for interconnecting modules as opposed to 
a “stacking” approach, in part because it supports using 
a variety of physical prototyping approaches.

One premise behind the Gadgeteer software stack is 
that concise code empowers less-experienced users to 

create useful applications and, at the same time, allows 
seasoned developers to build embedded-device proto-
types more quickly. The anecdotal evidence we have 
collected at various Gadgeteer workshops bears out this 
intuition: users report a low hurdle for creating simple 
projects,7 yet they can build relatively sophisticated pro-
totypes of connected devices.9 Indeed, our experience 
shows that the simplicity of hardware and software devel-
opment with Gadgeteer inspires students as young as age 
13 to engage with the platform,10 and this may ultimately 
prove valuable for educating a future generation of IoT 
developers.

Of course, other platforms will also continue to be 
relevant. For example, professionals and hobbyists alike 
can leverage a growing set of samples and libraries for 
connecting a networked Arduino to online services, 
while educators have access to platforms like the Open 
University’s SenseBoard (http://sense.open.ac.uk), which 
has already been used to teach the IoT concept.11 In the 
future, it might even be possible to use accessible devel-
opment environments like Scratch (http://scratch.mit.edu) 
to create IoT devices and services. Community support 
is a key element of any modern development platform. 
Tools like Arduino, mbed, and Gadgeteer have online 
forums which provide a mechanism for both new and 
experienced users to pose questions, exchange experi-
ences, and share code.

No matter which tools are used for prototyping, even-
tually it becomes necessary to build and deploy a greater 
number of devices, either for larger-scale deployments or 
ultimately for mass production. In our work so far, we have 

(a) (b)

Figure 7. Optical character recognition (OCR) device. (a) The OCR device has a camera facing down toward the surface it is 
resting on. (b) The display on the OCR device shows an image of some printed text with the OCR'd characters correctly over-
laid in red. This is implemented using the Project Hawaii cloud-based OCR service.
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used Gadgeteer for deployments of up to 50 instances of 
a given device. This has been relatively straightforward 
because of the ease of replication of a proven Gadge-
teer design and the robustness of the assembled units. 
At some point, it becomes more cost-effective to move 
to a custom PCB, which can be made more cheaply and 
compactly through circuit integration. Like several of the 
open hardware platforms, with Gadgeteer this process is 
facilitated by freely available hardware designs from many 
manufacturers.

More recently, tools specifically designed to facilitate 
the mass production of connected devices have emerged, 
such as the ioBridge (http://www.iobridge.com) and the 
Electric Imp (http://electricimp.com). The latter includes a 
programmable processor and Wi-Fi radio in a small pack-
age, and connects to applications through a hosted Web 
service. In essence, these devices act as a single physical 
component that provides a link between a hardware in-
terface and HTTP-based Web APIs.

A s the number of network-connected devices contin-
ues to grow, it is clear that no single technology will 
prevail—the IoT’s success is inherently tied to het-

erogeneous devices, protocols, services, and applications. 
Many open questions still remain within this broad scope, 
and the tools presented here will not necessarily resolve 
these issues directly. However, as the IoT vision gradually 
becomes a reality, using connected-device prototypes to 
explore the design space will be important. We imagine 
that developers, researchers, designers, and hobbyists will 
conceive and build these prototypes and that tools like 
Gadgeteer will be valuable in this regard.

Although some applications will always be outside the 
scope of a rapid-prototyping toolkit, we nonetheless antici-
pate that those working in this exciting field will be able 
to build on the experiences and examples reported here 
to explore relevant issues and prototype new applications 
quickly, and in doing so bring the IoT vision ever closer to 
reality. 

void ProgramStarted()
{ 
     ethernet.UseDHCP();
     button.ButtonPressed += new Button.ButtonEventHandler(button_ButtonPressed);
     camera.PictureCaptured += new Camera.PictureCapturedEventHandler(camera_PictureCaptured);
}

void button_ButtonPressed(Button sender, Button.ButtonState state)
{
     camera.TakePicture();
}

void camera_PictureCaptured(Camera sender, GT.Picture picture)
{
     // Show the picture on the display
     display.SimpleGraphics.DisplayImage(picture.MakeBitmap(), 0, 0);

     // create and send an HTTP request which will send the picture to the Hawaii OCR service
     HttpRequest request = HttpHelper.CreateHttpPostRequest(“http://157.55.188.73/OCR”,
        POSTContent.CreateBinaryBasedContent(picture.PictureData), “image/jpeg”);
     request.AddHeaderField(“Authorization”, “Basic “ + 
        ConvertBase64.ToBase64String(Encoding.UTF8.GetBytes(“<insert your appID here>”));
     request.AddHeaderField(“Cache-Control”, “no-cache”);
     request.ResponseReceived += new HttpRequest.ResponseHandler(request_ResponseReceived);
     request.SendRequest();
}

void request_ResponseReceived(HttpRequest sender, HttpResponse response)
{
     // for this example we just display the first OCR’ed word returned by Hawaii
     // by looking between the “<Text>” and “</Text>” tags
     int start = response.Text.IndexOf(“<Text>”, 0) + 6;
     int end = response.Text.IndexOf(“</Text>”, 0);
     display.SimpleGraphics.DisplayText(response.Text.Substring(start, end - start), 
         Resources.GetFont(Resources.FontResources.NinaB), GT.Color.Red, 0, 0);
    }

Figure 8. This complete code example shows how to program a Gadgeteer-based embedded device to use the Project Hawaii 
OCR Web service. This code was written using Gadgeteer SDK v4.1.
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