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Abstract—This paper demonstrates the use of qualitative probabilistic networks (QPNs) to aid Dynamic Bayesian Networks (DBNs) in

the process of learning the structure of gene regulatory networks from microarray gene expression data. We present a study which

shows that QPNs define monotonic relations that are capable of identifying regulatory interactions in a manner that is less susceptible

to the many sources of uncertainty that surround gene expression data. Moreover, we construct a model that maps the regulatory

interactions of genetic networks to QPN constructs and show its capability in providing a set of candidate regulators for target genes,

which is subsequently used to establish a prior structure that the DBN learning algorithm can use and which 1) distinguishes spurious

correlations from true regulations, 2) enables the discovery of sets of coregulators of target genes, and 3) results in a more efficient

construction of gene regulatory networks. The model is compared to the existing literature using the known gene regulatory

interactions of Drosophila Melanogaster.

Index Terms—Gene regulatory networks, reverse-engineering genetic networks, dynamic Bayesian networks, qualitative probabilistic

networks, qualitative reasoning.
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1 INTRODUCTION

THE past decade has witnessed the inception of computa-
tional problems concerned with making sense of the

massive influx of biological data generated by microarray
technology and extracting useful information and biological
insight from the data.

As a result, a variety of mathematical techniques and
computational models have been devised to solve the
problems at hand. One such model which has generated a
lot of research interest is concerned with finding means to
uncover the complex true gene-to-gene interactions govern-
ing the gene expression data obtained from microarrays [23]
and modeling the discovered connectivity through a net-
work, called a gene regulatory network (GRN) [23]. The
resulting computational problem, termed reverse-engineering
gene regulatory networks [4] from gene expression profiles, is
currently one of the central problems in Systems Biology as
it can provide great insight to the internal working of the
cell [27].

However, the nature of microarray gene expression data
makes reconstructing such a network from the available
data a difficult task. This is because microarray data are
highly dimensional, describing the expression levels of as
many as tens of thousands of genes for a small number of
samples or at relatively few experimental conditions or time

points [4]. Microarray data are also noisy, sparse and
governed by imprecision [8], making it difficult to make
informed judgement about the interactions of the genes and
how they affect each other. Needless to say, this does not
only make the convergence to a single network describing
the data at hand a more challenging task, but questions
arise on whether or not the learned model is representative
of the true genetic interactions governing the observed data
and if it can, in fact, be used to reach a functional
understanding of the mechanisms underlying the synergies
among the cellular genetic components [8].

The literature contains a variety of approaches to tackle
the task at different levels of detail [27] such as differential
equations [2], [25], Boolean networks [15], state-space
models [11], clustering methods [6], neural networks [30],
fuzzy systems [12], and Bayesian networks [18], [8]. While
each of these models has advantages and pitfalls, the
Bayesian approach has attracted special attention because of
its inherent capability of capturing the stochastic nature and
noise of microarray data [4], [8]. More specifically, Dynamic
Bayesian Networks (DBNs), which extend Bayesian Networks
to capture temporal information and cyclic relations, have
been successfully applied to extract regulatory information
from time-series microarray data [18], [31], [22] and learn
large-scale networks. The body of work focusing on the
DBN approach has also tackled issues such as the
incorporation of time lags [29], [32], improving the con-
vergence rates [18] as well as combining perturbation
experiments with time-series experiments in order to
improve the quality of the inferred network [5].

Along with these major efforts comes a great room for
improvement as there are two fundamental issues that are
being continuously studied with respect to DBNs. The first
pertains to the accuracy of the learned model to maximize
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the relations predicted that in fact correspond to true
regulations, while the second is due to the fact that DBNs
remain far from being efficient, specially given the data’s
large size [3].

This work is concerned with improving the results of
learning gene regulatory networks with Dynamic Bayesian
Networks using the aid of commonsense information
extracted from the gene expression data. More specifically,
we examine the use of Qualitative Probabilistic Networks
(QPNs) [26], [21], which are qualitative abstractions of
Bayesian Networks, in providing a better characterization
of gene regulation relations among genetic components.
QPNs are directed acyclic graphs (DAGs) that preserve the
independence and structure properties of Bayesian Net-
works but instead of keeping track of the local conditional
probability distribution of each node in the network, QPNs
only observe how the probabilities of the various nodes are
affected by changes in the probabilities of their immediate
parents. These effects are described in nonnumerical terms
such as increasing, decreasing, constant or unknown. In this
paper, we use these relationships to define the meaning of
gene regulation and use the resulting formalism to guide
the DBN learning algorithm for discovering the topology of
the regulatory network underlying the genetic data.

The paper is centered around the idea that having a
better-defined notion of regulation, which exploits higher
level commonsense information extracted from the gene
expression profiles, complements the analysis of the data.
Our argument is motivated by the many sources of
uncertainty surrounding the data, and the availability of
useful qualitative information awaiting to be mined. To
begin with, the numbers given in microarray experiments
represent outcomes of a single and nonrepeated experi-
ment. This is especially important in determining how
dependable the data are given the sparse nature of the
resulting measurements [7]. In addition, the dynamic nature
of the expression process, and the fact that it depends on
factors that may not be known [4], makes the numbers more
untrustworthy because it is currently not known whether
the variables affecting the expression at different intervals
are constant through the experiment [23]. Despite the
above, the uncertainty surrounding microarray data does
not prevent the extraction of useful qualitative information
that can be used to uncover the underlying genetic
interactions and effectively reason about them to obtain
biological insight. In fact, microarray data contain informa-
tion pertaining the conditional dependence among the
genes in question, variable time delays, and the combined
effects of complexes of end products over genes. Although
this information can be modeled correctly using the
Bayesian approach [16], there is other information of a
strictly qualitative nature that can be extracted due to the
monotonicity of genetic interactions. More specifically,
instead of using conditional probabilities to uncover the
type of regulatory relation present between two (or more)
genes (being of a stimulatory or an inhibiting nature),
defining the conditions under which seemingly condition-
ally dependent genes do, in fact, exhibit regulatory ties is
not directly derivable using the probabilistic model.
Instead, the qualitative relations defined by QPNs can
provide better clues to regulation as they have an explicitly
defined notion of influence, making one perfectly capable of

formally defining the behavior of regulation relations, and if
used properly, they can be used to either uncover the
network model or produce a candidate set of possible
regulators that can reduce the search space for a DBN,
which is the approach that we will follow here.

Another important motivation is the intricacy of biolo-
gical pathways and the ongoing challenge of their dis-
covery. It is now accepted that in order to obtain biological
insight, it is viable to examine data from different sources in
the aim of forming an integral examination of cellular
interactions, e.g., gene expression and protein-protein
interactions [8]. Integrating data from the various sources
brings about issues such as compatibility and standardiza-
tion of the numbers obtained from the different technolo-
gies. As a result, being able to extract higher level
information providing clues to the meaning of the numbers
may serve as a good vehicle for integration, given that the
focus of such qualitative information is on how the numbers
change instead of what they have changed to [14].

The contribution of the paper lies in presenting an
improved model for learning the structure of gene
regulatory networks from microarray data by incorporating
qualitative knowledge in the DBN learning algorithm. The
model presented here improves the quality of the learned
network and is computationally less costly.

The rest of the paper is organized as follows: we begin by
introducing Qualitative Probabilistic Networks as abstrac-
tions of Bayesian Networks, in Section 2. In Section 3, we
identify properties that QPNs lack and which must be
present if QPNs are to be useful for our purpose and devise
a new model which incorporates these properties. The
result is a new qualitative formalism we call Dynamic
Qualitative Probabilistic Networks (DQPNs) which we use for
the rest of the paper. Section 4 details the steps we followed
to construct DQPNs from time-series data, and how they
are used to enhance the process of learning the structure of
gene regulatory networks using Dynamic Bayesian Net-
works. The experimental evaluation of our approach is
given in Section 5, followed by a conclusion which provides
a summary and some future directions in Section 6.

2 QUALITATIVE PROBABILISTIC NETWORKS

Qualitative reasoning is now a well-established area in
Artificial Intelligence [28]. The field is concerned with
explaining and predicting the behavior of physical phe-
nomena without (or with the minimal use of) numerical
information. It is motivated by the observation that people
are capable of drawing subtle conclusions about many
aspects of the physical world using less data than numerical
and quantitative methods require. A subfield of qualitative
reasoning is concerned with modeling probabilistic systems
qualitatively and is based on the idea of building a
reasoning system that makes full use of the principles
underlying probabilistic reasoning but instead of using
exact probabilities, it captures how probabilities change
using categorial knowledge [26]. This is done by replacing
conditional probabilities by relations describing how a
variable’s likelihood changes given the probability of the
variables upon which it is conditionally dependent. The
change is modeled by qualitative terms such as increase,
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decrease, no change, or an unknown change [26]. The idea
has been extended to formulate qualitative equivalents of
Bayesian networks, termed as QPNs.

QPNs are DAGs that represent a qualitative abstraction
of Bayesian Networks [21], [26]. Formally, a QPN is given
by a pair G ¼ ðV ðGÞ; QðG)), where V ðGÞ is the set of nodes
capturing random variables and QðGÞ is the set of arcs
capturing the conditional dependence among the variables
as in Bayesian Networks. Instead of a known conditional
probability distribution however, the arcs of a QPN capture
qualitative relations by finding monotonic characteristics in
the local conditional probability distribution of each node
based on the idea of first-order stochastic dominance [21].
The resulting relations are used to establish properties over
the probabilities of events and are of two types, binary
qualitative influences and tertiary qualitative synergies [26].

Influences describe how the change of the value of a
single variable affects that of another, with the effect being
categorized as positive, negative, constant, or unknown.

A positive influence exists between a parent node X and
its child Y (X is said to positively influence Y , written as
IþðX;Y Þ) if observing higher values for X makes higher
values of Y more probable, regardless of the value of any
other node which may directly influence Y (i.e., any other
parent of Y , denoted by W ) as given in Definition 1. The
definition assumes that the variables X and Y are binary
and places a partial order on their values such that for a
variable X with two values x and :x, x > :x. Negative,
constant, and unknown influences are analogously defined
by replacing the > sign by < , ¼ , and ?, respectively. While
we use binary variables here to define influences for
simplicity, the definition can be easily extended for multi-
valued variables by placing the values in their appropriate
locations in the inequality.

Definition 1 (Positive Influence).

IþðX;Y Þ iff Prðyjx;WÞ > Prðyj:x;WÞ:

An example of a QPN illustrating influences is given in
Fig. 1. In the figure, V ðGÞ ¼ fGene A;Gene B;Gene C;
Gene D;Gene Eg and QðGÞ ¼ fðGene A;Gene DÞ; ðGene A;
Gene CÞ; ðGene B; Gene CÞ; ðGene C;Gene EÞg. The only in-
formation encoded in the arcs is the signs of the influences
from one node to another extracted from the conditional
probability tables of each node. For instance, the negative
influence exerted by Gene A on Gene D comes naturally
from Gene D’s conditional probability table given its parent
Gene A. A similar picture can be drawn to conclude Iþ(A,C)
and Iþ(B,C). In the case of Iþ(A,C), W of Definition 1 is the
set {B} and the sign of the influence is obtained by
comparing the probabilities Prðcja;BÞ (which is 1.05) and
Prðcj:a;BÞ (which is 1.0). With Iþ(B,C), W of Definition 1 is
the set {A} and the sign of the influence is the result of the
comparison of probabilities Prðcjb; AÞ (which is 1.7) and
Prðcj:b; AÞ (which is 0.35).

Although qualitative influences define the basic interac-
tions among variables, they are not always sufficient to
capture all the interactions that exist in the network. This is
the case when it is necessary to identify the combined effect
of a pair of parent nodes in union on another variable. For

this, the concept of qualitative synergies is created in order
to model the interaction among the influences between
three nodes in a network’s diagraph. Qualitative synergies
are essentially of two classes depending on the type of
interaction, mainly additive and product synergies, and can
be positive, negative, constant, or unknown as in the case
with influences. Since product synergies are not of direct
relevance to this work, we will do away with a discussion
about them.

Additive synergies describe the situations in which the
combined influence of the parents on their common child is
greater than the individual influence of each parent on the
child [26]. For example, a positive additive synergy of two
nodes X and Y on their common child Z, written as
SþðfX;Y g; ZÞ, exists if the sum of their joint influence on Z
is greater than the sum of their separate influences
regardless of the value of any direct ancestor W of Z other
than X and Y as given in Definition 2. As in the case of
influences, the definition is stated for binary variables but
can be similarly extended to multivalued ones.

Definition 2 (Positive Additive Synergy) [26].
SþðfX;Y g; ZÞ iff for any values x; y; z of X;Y ; Z, respec-
tively, and for any variable W such that W 2 paðZÞ= fX;Y g,
we have

Prðzjx; y;W Þ þ Prðzj:x;:y;WÞ >
Prðzjx;:y;WÞ þ Prðzj:x; y;WÞ:

where paðZÞ denotes the set of Z’s parents; therefore,
paðZÞ=fX;Y g is the set of all Z’s parents except for X and
Y . In Fig. 1, Gene A and Gene B exhibit a positive additive
synergy on their common child Gene C as the label S þ
placed over the node C shows. This relation can be verified
from Gene C’s conditional probability table given its
parents; in this case, W ¼ fg. Negative and constant
additive synergies are analogously defined.

Observed evidence is propagated through the network
via qualitative operators that combine influences and
produce their net effects. There are two such operators
serving different topologies of arcs. When evaluating the
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net effect of influences in a chain (such as the combined
influence of Gene A on Gene E), the sign multiplication
operator given in the left portion of Table 1 is used
(resulting in a negative net influence). On the other hand,
parallel connections (such as the individual influences of
Gene A on Gene C and that of Gene B on Gene C) are
evaluated using the sign addition operator given on the
right portion of the table (resulting in a net positive
influence). The signs propagate through the network until
the net effect of the evidence is observed by the polynomial-
time sign-propagation algorithm [24].

It is worth noting that QPNs suffer from coarseness,
which can result in many ambiguous signs as Table 1
shows. However, because our aim is to use QPNs to only
discover the topology of genetic networks, we will not
discuss means for resolving the conflicts that can arise. The
interested reader can refer to [21] for a general discussion
and to [13] for a more biologically relevant application of
conflict resolution.

3 QPNS FOR GENE REGULATION

Using the intuition that if some gene g1 is said to regulate
another gene g2, then observing higher expression values
for g1 renders higher expression levels of g2 more likely in
the case of upregulation or less likely in the case of
downregulation, one can map regulatory relations to
qualitative QPN influences and use QPNs to model the
topology of gene regulatory networks. Hence, the key to our
approach is formally establishing a mapping between QPN
constructs and gene regulation relations.

However, there are two crucial aspects in which QPNs
and gene regulatory networks differ. First, because QPNs
preserve the DAG structure of Bayesian Networks, they are
incapable of handling cyclic relations which are abundant
in gene regulatory networks. Second, in contrast to binary
influences and tertiary synergies, gene regulation relations
may hold between an arbitrary number of parents and their
children. To deal with these two limitations of QPNs, this
section defines additional properties and constructs for
QPNs to make them more usable for our purpose.

3.1 Handling Cyclic Relations: Dynamic Qualitative
Probabilistic Networks

Here, we present Dynamic QPNs (DQPNs) as a temporal
extension of QPNs to enable them to handle time-series data
and enable cyclic interactions. The model is an improvemnt
on the model prsented in [18] and an extension to our work
in [13].

3.1.1 Terminology

Let U be a set of n variables drawn from Pr, an unknown
probability distribution on U , and let T be a totally ordered

set of m temporal slices such that T1 . . .Tm 2 T . We denote

the set of variables in each temporal slice by Ut (1 � t � m)

and the set of n variables in Ut by Xt
i (1 � i � n).

Definition 3 (Temporal Snapshot). Let G ¼ ðV ðGÞ; QðGÞÞ be

a DAG such that G is the qualitative probabilistic network

representing U . An instance Gt of G represents a temporal

snapshot of G in time slice Tt such that Gt retains the DAG

structure of G.

Example 1. Consider Fig. 2 representing a fictitious graph G

capturing the I-map for Pr, the joint probability

distribution on U ¼ fA1; A2; A3; A4g. Each instance Gt

of G (1 � t � 3 in the figure) represents a snapshot of G,

where the variables in each temporal slice are given by

Ut ¼ fAt
1; A

t
2; A

t
3; A

t
4g.

Definition 4 (Dynamic Instance). Let Gt be as given in

Definition 3. Gt defines a dynamic instance of the QPN whose

structure is defined by G and is given by Gt ¼ ðV ðGtÞ;
fQðGtÞ

S
T ðGtÞgÞ,1 where V ðGtÞ and QðGtÞ are instances of

V ðGÞ and QðGÞ, respectively, at time slot t, and T ðGtÞ
describes the interslot conditional dependence between vari-

ables in V ðGtÞ and its immediate neighbor V ðGtþ1Þ.
Example 2. In the graph given in Fig. 2, for each Gt,

V ðGtÞ ¼ Ut;
QðGtÞ ¼ f

�
At

1; A
t
3

�
;
�
At

2; A
t
3

�
;
�
At

3; A
t
4

�
;
�
At

2; A
t
4

�
g;

and T ðGtÞ ¼ fðAt
4; A

tþ1
1 Þg.

Both QðGÞ and T ðGÞ encode a set of arcs for G to capture

the set of qualitative relations representing how variables

influence each other. For this, we redefine the concept of a

qualitative influence to capture not only within-slot rela-

tions, but also interslot ones. Before doing so however, we

first present the definition of a DQPN below.

Definition 5 (Dynamic QPN). Let ðG1 ¼ ðV ðG1Þ; QðG1ÞÞ;
. . . ; Gm ¼ ðV ðGmÞ;QðGmÞÞÞ be a total ordering of the m

instances of G such that T ðGtÞ 6¼ ;, 81 � t � m� 1. Then

the compound graph of G1; . . . ; Gm defines a Dynamic

Qualitative Probabilistic Network over G and is given by

[m
t¼1

Gt ¼
[m
t¼1

V ðGtÞ;
[m
t¼1

QðGtÞ
 !

:
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Sign Multiplication (

N
) and Sign Addition (

L
) Operators

Fig. 2. An example of G.

1. For readability purposes, we will refer to fQðGtÞ
S
T ðGtÞg as QðGtÞ in

this work.



3.1.2 Qualitative Influences in a DQPN

Definition 6 (Positive DQPN Influence). Let Gt and Gtþ1 be

two adjacent subgraphs of the DQPN defined over G. Further,

let X and Y be such that X;Y 2 V ðGÞ. A direct positive
influence is exerted by node X over node Y , written as

IþðX;Y Þ iff for all values xi of X and yj, :yj of Y , and for all
integer values i and j such that 1 � i; j � m and i� j 2
f0; 1g we have

Prðxijyj;WÞ > Prðxij:yj;WÞ:

The superscripts i and j denote the temporal slot to
which the instances x; y, and :y belong. Moreover, the
definition enforces a temporal order over its components by
requiring that variables can only directly influence other
variables that belong to the same temporal slot (i ¼ j) or
those that belong to the next immediate slot (i ¼ jþ 1). As
in QPNs, W represents all other direct influences on Y other
than X. Negative, zero, and unknown influences are
analogously defined.

As the influences defined for DQPNs preserve the
underlying principles of those defined for QPNs, they
respect the combinatorial properties defined in Table 1
and can therefore be propagated according to their rules
as in QPNs.

3.2 Generalized Joint Influences

As stated earlier, because regulation is a many-to-many
relationship, single influences and binary synergies are not
sufficient for their description. There must be a way to
establish the combined influence on many parent nodes
over their common child in order to be able to define those
relations. For this, we define the notion of a generalized joint

influence of a set of k variables X1; . . .Xk over a target
variable Y which describes the monotonic relationship
between the values of the variables X1; . . .Xk jointly and
that of Y . Definition 7 below illustrates a positive general-
ized joint influence JþðfX1; . . .Xkg; Y Þ. In the definition, the
superscript i denotes the time slots at which the value of the
child node y is observed while the superscripts j1; . . . ; jk
denote the time slots at which the influencing parents
X1; . . . ; Xk are observed.

Definition 7 (Positive Generalized Joint Influence).
JþðfX1; . . .Xkg; Y Þ iff for value y of Y observed at time slot
i and for any combination of values for variables X1; . . .Xk

observed at time slots j1; . . . ; jk such that j1; . . . ; jk � i:

Pr
�
yijx1

j;W
�
> Pr

�
yij:x1

j;W
�
;

when k ¼ 1;
Pr
�
yijxj1

1 ; ::; x
jk
k ;W

�
þ Pr

�
yij:xj11 ; ::;:x

jk
k ;W

�
; > }

when k > 1:

Where } is the sum of the conditional probability of Y given
any combination of values for X1; . . .Xk other than
xj1

1 ; . . . ; xjkk and :xj1

1 ; . . .:xjkk .
It can be seen that the case of binary synergies can be

directly extracted from the definition by setting k ¼ 2 and
that negative and zero joint generalized influences can be
analogously defined by replacing > by < and ¼ ,
respectively.

In our next steps, we will use generalized joint influences

of DQPNs to guide the process of identifying regulator

genes for a given target. When referencing the influences

defined above, we will use the notation J%ðfX1; . . .Xkg; Y Þ,
where % 2 fþ;�; 0g.

4 OUR APPROACH

In this section, we describe the use of DQPNs and the

generalized joint influences defined over them to aid the

construction of a DBN from microarray data. The approach

is based on 1) using DQPN generalized joint influences to

identify the set of regulators for each gene; 2) estimating

time lags of regulations from the expression data; and

3) infusing the qualitative knowledge in a DBN learning

algorithm by using the candidate set of regulators to reduce

the search space of possible models. The steps of our

approach are detailed below.

4.1 Constructing the Qualitative Model

This step makes use of the monotonic relations correspond-

ing to regulator-target interactions for the identification of

the set of potential regulators of a specific gene. The step is

twofold: first a quantitative analysis is performed based on

comparing the times of significant initial change in

expression levels of the genes to construct an initial set of

candidate regulators for each gene, and then another step

follows to discover those candidates that exhibit a mono-

tonic behavior with respect to the target gene and discard

spurious interactions by building the subsets of regulators

that jointly exhibit a generalized influence over the target

gene as described in Section 3.2.

4.1.1 Gathering Potential Regulators

The quantitative step is not unique to our work and is based

on the hypothesis that more often than not, regulators

exhibit an earlier up- or down-change in their expression

levels than that of the regulated genes [32]. This is of course

not always the case as will be clear in Section 5.2 but we

think that it is a good estimator of regulation relations that

can be improved and built upon later on.
A gene is said to be up- or downregulated if its

expression level goes up (in the case of up-regulation) or

goes down (in the case of downregulation) by a certain

fold change �. Since the aim of this step is to identify all

potential regulators, we decided to use modest cutoffs of

� ¼ 1:1 for up-regulation or � ¼ 0:9 for downregulation in

order not to overlook potential regulators.
Once the genes with significant fold changes have been

identified, then for each gene g, the genes with simulta-

neous or preceding fold changes are placed in the set of

potential regulators of g. Establishing this set for every gene

marks the completion of the quantitative part of this step.
A simple fictitious example illustrating this step is given

in Fig. 3. In the figure, gene g3 has both g1 and g2 as potential

regulators because its expression level had a significant

increase at time step 4, which follows the time steps for

which g1 and g2 had a significant increase in their

expression levels.
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4.1.2 Extracting Most-Likely Regulators

A quick critical examination of the procedure described
above reveals that 1) it can potentially incorporate many
spurious relations because it assumes that the change in
expression levels entails a regulatory relation and does not
consider a more well-defined notion of regulation (such as
the one we provided in Section 3.2), which is the case for all
stochastic approaches currently existing in the literature;
and 2) it does not distinguish between i) coregulation,
where several genes collectively activate or inhibit the
expression of a target gene and ii) simple regulation, where
a target gene has a set of regulators, each individually
regulating the gene without the need for the other
regulators to be present. This is where the qualitative
relations defined over our model come into the picture in a
procedure described in Algorithm 1. The idea is to find the
maximum number of potential regulators that exhibit
monotonic effects on the expression of the regulated gene,
and call the resulting set the most-likely regulators of the
gene. The algorithm receives as an input a gene g along with
the set R of its potential regulators identified using the
quantitative method described above. The output is a
collection O of subsets of R where each individual subset
contains the genes that together coregulate g.

Algorithm 1.

Require: Gene g and set R of its potential regulators.

Ensure: Set O contains the most-likely regulating sets of g.
1: for k ¼ jRj to 1 do

2: 8Rsub � R : jRsubj ¼ k
3: if 8ri11 ; . . . rikk 2 Rsub; J

%ðfri11 ; . . . ; rikk g; g) then

4: O Rsub

5: end if

6: end for

7: for Osub � O do

8: if 9 Osub2 � O : Osub2 � Osub then

9: O O�Osub2

10: end if

11: end for

Lines 1-6 of the algorithm construct the subsets of R of
decreasing size whose elements jointly exhibit a generalized
influence over g. For each subset Rsub of R of size k (line 2),
if the elements of Rsub satisfy some generalized influence J%

over g (condition in line 3), then Rsub is added to O, the set
of most-likely regulating sets of g (line 4).

The second phase of the algorithm (lines 7-11) removes
redundant subsets by making sure that any proper subsets
of Osub (denoted by Osub2) are not included in the set of all
potential regulators given that its superset is included
(line 8). This phase also establishes the distinction between
joint and individual regulators by ensuring that for every
subset of potential regulators Osub of O, one-element
subsets made of its individual members are not included
in the final output O as this corresponds to stating that
each element of Osub individually regulates g.

It is important to note that the time delays of the elements
of the collection O for every regulated gene g are directly
encoded in the construction of the set as the condition checks
for the generalized joint influence given in line 3.

Moreover, there are several points worth noting with
respect to the use of generalized joint influences of
Definition 7 and Algorithm 1 for discovering regulatory
relationships. They are as follows:

1. The temporal precedence properties of generalized
joint influences are more relaxed than in Definition 6
of DQPN influences. This is to allow the discovery of
regulation relations between genes that may not
belong to two consecutive time slots as fold changes
of regulating genes may occur much earlier than
those of target genes.

2. Generalized joint influences describe the combined
influence of multiple parents such that all the
influences yield the same sign, be it positive, negative,
or constant. As a result, a target gene node may have
two or more sets of generalized joint influences
exerted on it by different subsets of its regulators
according to how the elements of each subset satisfy
the definition of the corresponding generalized joint
influence.

3. Unknown influences generated by Definition 7
correspond to no regulation in the resulting gene
regulatory network.

4.2 Time-Lag Estimation

One issue with respect to the use of DBNs to model gene
regulatory networks is that DBNs construct conditional
distributions over fixed time intervals measured according
to the time series. This has been found to be problematic [29]
as it can miss potential regulation relations. However,
because our approach incorporates the time lag between
each gene’s expression and that of its potential regulators by
marking the difference between their significant fold
changes, the resulting model will not suffer from this
problem.

Hence, for each gene g, we collected 1) the sets of joint
regulator genes O and 2) their corresponding time lags. The
resulting adjacency list L of length N contains this informa-
tion for all N genes such that for each gene in the list L[j],
1 � j � N , a linked list containing L[j]’s set of most-likely
regulators O is added where each node of the list represents
one subset of joint regulators (Osub in Algorithm 1) along with
their times of significant fold changes as the algorithm has
shown.
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Fig. 3. A hypothetical example illustrating possible regulators.



4.3 Aided Learning with Qualitative Joint Influences

A score-maximizing learning algorithm that utilizes the
additional aid of the list L was used to construct the target
GRN. The corresponding criterion for maximizing the score
is composed of two quantities. The first is, the prior
structure of the network established by L which contains
the most-likely regulators of every target gene constitutes a
model that is used in this step as the base for a model search
using DBN learning. The second is the marginal likelihood
of the data, which measures how the model fits the
microarray data. For each target gene, its conditional
probability given its regulators is constructed from the
expression data and were used to compute marginal
likelihood scores.

5 EXPERIMENTAL RESULTS

5.1 Data and Preprocessing

We used the gene expression time-course data set of the
Drosophila Melanogaster genetic network obtained from the
Drosophila interaction database to compare our approach
with that of [32]. The data set contains 4,028 genes whose
expression levels were sampled at 74 time points covering
the four life cycle stages of embryonic, larval, pupal, and
adulthood [1].

The original data set is quantized into fold-change series
by computing the ratio of expression of each gene g at two
consecutive time points xt and xtþ�. The resulting set
contains the fold changes enabling the establishment of times
of significant change in expression for all the genes. Missing
values are computed using a simple linear interpolation by
obtaining the mean of the preceding and following neighbors
in the expression time series for the specific gene. When the
missing expression is a start or an end point in the time series,
it is replaced by the nearest observed neighbor’s value
(resulting in no significant fold change).

5.2 Accuracy Evaluation

In order to obtain an initial visual image of the performance
of our method, we first used it to construct the GRN of a
selected set of 12 genes from our data set. The selected
genes have been reported to describe the larval somatic
muscle development stage of Drosophila Melanogaster and
contain a total of 18 known interactions.

A comparison between our approach and that of [32] for
this set of genes is shown in Fig. 4. While our approach
successfully identified 15 interactions, using [32]’s approach
only identified 11 of the total 18 interactions. Upon a close
examination, we found that the missing interactions from
our network are due to the assumption of regulators having
an earlier or simultaneous expression time than regulated
genes. For instance, examining CG9843, which regulates
CG7447, it turns out that CG9843 has a much shorter half-
life than CG7447. As a result, the regulator’s mRNA will
take much longer in reaching a steady-state level of up- or
downregulation compared to the regulated gene, resulting
in an apparent later change of expression. Since this
assumption is also made by [32], the method did not
identify these interactions either. Moreover, our approach
identified coregulating genes using the synergetic definition
of the initial model. These coregulations along with

feedforward loops were largely missed by [32]’s method,
resulting in a smaller number of identified relations. Apart
from (G9843, G7447), our network is missing the interac-
tions (CG6972,CG2046) and (CG13501,CG17440).

Comparison of larger subsets of the networks is given in
Table 2. In the table, the experiments are labeled by
DBNqualðN; IÞ or DBNZNðN; IÞ denoting the approach used
(DBNqual refers to our method and DBNZN refers to the
method used in [32]) with N denoting the number of genes
involved in the network while I refers to number of known
interactions. The sizes of the networks were selected
randomly and the subset of genes involved being based
on the current interaction diagram of the Drosophila
genetic network.

For each network size, we conducted 10 runs and
reported the average performance measures of the number
of correctly identified edges or true positive edges (C), the
number of misidentified edges or false positive edges (F)
which have been identified by the learning algorithm but do
not exist in the real network, and the number of missed
edges (M) which are edges that exist in the real network but
were either unidentified or given the wrong regulator-
regulated gene direction in the inferred network. We
calculated precision as the ratio C=ðCþMÞ and recall as
the ratio C=ðCþMÞ and listed them accordingly in Table 2.

The results given in the table show the clear improve-
ment our approach presents in terms of both precision and
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Fig. 4. Muscle development network in Drosophila’s larval stage
(a) using [32]’s DBN, and (b) using our approach.



recall. Our improved precision is due to the discovery of

joint regulations and feedforward loop identifications as

discussed earlier. Our increased recall is due to the better

definition of regulation provided by the monotonic rela-

tions of the synergies and influences that QPNs provide.

The numbers clearly show that this definition helps in

eliminating many spurious correlations that do not corre-

spond to regulatory relations.

5.3 Efficiency Evaluation

Table 2 shows the average running time of the algorithms at

each experimental setup. The time taken by our algorithm

does not include the step of generating the most-likely

regulators in our algorithm, so that the actual learning time

of our algorithm can be compared with that of [32].
The improvement presented by our approach is con-

tributed to the fact that Algorithm 1 provides a candidate
set which minimizes the number of potential regulators so
that the only possible regulators are those that exhibit the
monotonicity of qualitative influences and synergies and
exclude those exhibiting a correlation that does not
correspond to a regulatory relation. This optimal candidate
set is the main contributor to the better performance
exhibited by our algorithm.

6 CONCLUSIONS

We have presented a model that uses qualitative probability
to discover monotonic relations among genes by comparing
their expression profiles and using the discovered qualita-
tive relations to aid the DBN learning algorithm in
constructing better and more efficient models of the
corresponding GRN. We presented an experimental study
that compares our results in terms of accuracy and
efficiency with the approach found in [32], which is an
accepted benchmark for DBN learning and found that the
added qualitative knowledge highly improves the type of
model inferred and the efficiency of the learning procedure.
The results were compared using the Drosophila Melano-
gaster gene regulation data set.

Future directions include the comparison of the algo-

rithm with non-Bayesian approaches for GRN construction

as well as the exploration of using qualitative knowledge

with other forms of high-throughput data. Another longer

term aim is to examine the use of QPN constructs in the

process of integrating data from multiple sources to form a

global view of the various cellular interactions.
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