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Abstract

Learning the underlying model from distributed data is
often useful for many distributed systems. In this paper,
we study the problem of learning a non-parametric model
from distributed observations. We propose a gossip-based
distributed kernel density estimation algorithm and analyze
the convergence and consistency of the estimation process.
Furthermore, we extend our algorithm to distributed sys-
tems under communication and storage constraints by in-
troducing a fast and efficient data reduction algorithm. Ex-
periments show that our algorithm can estimate underlying
density distribution accurately and robustly with only small
communication and storage overhead.

Keywords Kernel Density Estimation, Non-parametric
Statistics, Distributed Estimation, Data Reduction, Gossip

1 Introduction

With the great advance of networking technology, many
distributed systems such as peer-to-peer (P2P) networks,
computing grids, sensor networks have been deployed in
a wide variety of environments. As the scales of these sys-
tems grow, there is an increasing requirement for efficient
methods to deal with large amounts of data that are dis-
tributed over a set of nodes. Particularly, in many applica-
tions, it is often required to learn a global distribution from
scattered measurements. For example, in a sensor network,
we may need to know the distribution of some variable in
a target area. In a P2P system, we may want to learn the
global distribution of resources for indexing or load balanc-
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ing. In a distributed agent system, each agent may need to
know some global information of the environment through
collaborative learning and make decisions based on the cur-
rent knowledge.

In this paper, we focus on the distributed density esti-
mation problem, which can be described as follows: Given
a network consisting of IV nodes, where each node holds
some local measurements of a hidden random variable X,
the task is to estimate the global unknown probability den-
sity function (pdf) f(x) from all the observed measure-
ments on each node.

Recently, some distributed density estimation algorithms
based on parametric models have been proposed [12,14,18].
In these approaches, the unknown distribution is modeled as
a mixture of Gaussians, and the parameters are estimated by
some distributed implementations of the Expectation Maxi-
mization (EM) algorithm. However, we argue that the para-
metric model is not always suitable for distributed learning.
It often needs some strong prior information of the global
distribution such as the number of components and the form
of the distribution. Furthermore, the EM algorithm is highly
sensitive to the initial parameters. With a bad initialization,
it may require many steps to converge, or get trapped into
some local maxima. Therefore, for most distributed sys-
tems, a general and robust approach for distributed density
estimation is still needed.

Non-parametric statistical methods have been proven ro-
bust and efficient for many practical applications. One
of the most used nonparametric techniques is the Kernel
Density Estimation (KDE) [23], which can estimate arbi-
trary distribution from empirical data without much prior
knowledge. However, since KDE is a data-driven approach,
for distributed systems, we need an efficient mechanism
to broadcast data samples. Furthermore, to incrementally
learn the nonparametric model from the distributed mea-
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surements, the nodes need to frequently exchange their cur-
rent local estimates. Thus, a compact and efficient repre-
sentation of the local estimate on the node is also needed.
In this paper, we propose a gossip-based distributed ker-
nel density estimation algorithm to estimate the unknown
distribution from data. We also extend the algorithm to han-
dle the case where the communication and storage resources
are constrained. Through theoretical analysis and extensive
experiments, we show the proposed algorithm is flexible,
and applicable to arbitrary distributions. Compared with the
distributed EM algorithm, such as Newcast EM [14], we
find that our distributed estimation method based on non-
parametric statistics is much more robust and accurate.
Our main contributions are as follows:

e \We propose a distributed non-parametric density esti-
mation algorithm based on gossip-based protocol. To
the best of our knowledge, it is the first effort to gener-
alize the KDE to the distributed case.

e We prove that the distributed estimate is asymptoti-
cally consistent with the global KDE when there is no
resource constraint. We also provide rigorous analysis
on the convergence speed of the distributed estimation
protocol.

e \We propose a practical distributed density estimation
for situations of limited storage and communication
bandwidth. Experiments show that our distributed pro-
tocol can estimate the global distribution quickly and
accurately.

This paper is organized as follows: First, in Section 2,
we briefly review some related work on distributed density
estimation methods. We then discuss the problem of the
distributed density estimation and present our solution in
Section 3. The experimental results of our algorithm are
presented in Section 4. The conclusion is given in Section
5.

2 Related Work

Recently, distributed estimation has raised interest in
many practical systems. Nowak [18] uses the mixture of
Gaussians to model the measurements on the nodes, and
proposes a distributed EM algorithm to estimate the means
and variances of the Gaussians. Later in [14], Kowalczyk
et. al. propose a gossip-based implementation of the dis-
tributed EM algorithm protocol. Jiang et. al. [12] apply
similar parametric model and distributed EM algorithm in
sensor network and use multi-path routing to improve the
estimation resilience to link and node failure. However, the
EM-based algorithms depend on proper initialization of the

number and parameters of the Gaussian components. To al-
leviate this issue, in [24], a distributed greedy learning algo-
rithm is proposed to incrementally estimate the components
of the Gaussian Mixture. However, it requires much more
time to learn the model in this way and there is still possi-
bility of being trapped into local minimum because of the
greedy nature of the EM algorithm.

Some other research work focuses on extracting the
true signals from noisy observations in sensor networks.
Ribeiro et al. [20, 21] studied the problem of bandwidth-
constrained distributed mean-location parameter estimation
in additive Gaussian or non-Gaussian noises. Delouille et.
al. [4] used the graphical model to describe the measure-
ments of the sensor networks and proposed an iterative
distributed algorithm for linear minimum mean-squared-
error (LMMSE) estimation of the mean-location parame-
ters. These approaches put more effort on exploiting the
correlations between sensor measurements and eliminat-
ing the noise in observations, while we aim to discover
the completely unknown pattern from distributed measure-
ments without much assumption or dependency.

Nonparametric models [22, 23], which do not rely on
the assumption of the underlying data distribution, are quite
suitable for unsupervised learning. However, there is little
research on exploiting the usage of nonparametric statistics
for distributed systems, except that a few papers have ad-
dressed the decentralized classification and clustering prob-
lems using kernel methods [13,17]. To the best of our
knowledge, our work is the first effort to generalize the ker-
nel density estimation to the distributed case. We believe
that the distributed estimation technique is a useful build-
ing block for many distributed systems, and non-parametric
methods will play a more important role in distributed sys-
tems.

3 Distributed Non-parametric Density Esti-
mation

In this section, we first review some definitions about
kernel density estimation, and then present our distributed
estimation algorithm. We prove that the estimation pro-
cess unbiasly converges to the global KDE if each node has
enough storage space and communication bandwidth. Our
analysis shows that the estimation error decreases exponen-
tially as the number of gossip cycle increases. Based on the
basic distributed algorithm, we then extend it to a more flex-
ible version with constrained resource usage by introducing
an efficient data reduction mechanism.

3.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a widely used non-
parametric method for density estimation. Given a set of
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i.i.d data samples {x;,i = 1,..., N,x; € R, } from some
unknown distribution f, the kernel density estimation of f
is defined as [23]

N
Fx) =" wiKu, (x — xi), (1)
i=1

where
Ku,(x —x) = [H| P K(H, > (x - x;)) (2

is the ¢-th kernel located at x;. Here, H; is named band-
width matrix, which is symmetric and positive. w;, ¢ =

1,..., N are sample weights satisfying
N
> wi=1. (3)
i=1

The kernel function K (-) is a d-variate non-negative,
symmetric real-value function. In this paper, we use the
following Gaussian kernel due to its simplicity.

1 1
Wexp(—axTx). (4)

It has been proved that, given enough data samples, the
Kernel Density Estimate (1) can approximate any arbitrary
distribution with any given precision [22], i.e. KDE is
asymptotically consistent with the underlying distribution.
In practice, it usually requires only a few samples for KDE
to generate the estimate which can approximate the under-
lying distribution very well.

K(x) =

3.2 Gossip-based Distributed KDE Algo-
rithm

Consider a distributed network consisting of n dis-
tributed nodes. Initially, each node i has a local measure-
ment x;, which can be regarded as i.i.d. samples of a ran-
dom variable X with unknown distribution F'. The problem
of distributed density estimation is how to let each node get
an estimate of the global distribution F', or alternatively the
probability density function f, quickly and efficiently. In
the following discussion, we assume that there is an under-
lying communication mechanism for any two nodes in the
system to establish a communication channel (physical or
virtual) and exchange messages.

The basic idea of our distributed kernel density estima-
tion method, is to incrementally collect information and ap-
proximate the global KDE through a gossip mechanism. To
achieve this goal, we maintain a local kernel set on each
node i as follows,

Si :{<wi,l’xi,l,Hi,l>,l: 1,"'7Ni}7 (5)

where N; is the current number of kernels on node 4, and
(wig, x5, H; ) is the I-th kernel. x;,; is referred as the
location of the kernel. w;; and H;; are the weight and
bandwidth matrix of the kernel. Initially, each node i only
has one kernel (w; 1,x;1,H;1) , the weight w, ; = 1, and
x;1 = X; is its local sample, and H; ; = H; is the corre-
sponding bandwidth matrix.

According to (1), the local estimation of the pdf on node
1 can be calculated as

N;
fix) = wii K, , (x — i) (6)
=1

The gossip-based distributed estimation algorithm is il-
lustrated in Algorithm 1. In the estimation process, ev-
ery node periodically selects a random node from all other
nodes on the network, and exchanges kernels with it. After
exchanging, both the initiating node and target node merge
their new received kernels into their local kernel sets and
update their own local estimate.

During the above process, the size of local kernel set ona
node grows quickly. Intuitively, each node will collect many
kernels to estimate the global density distribution in a very
short time, and the local estimate on the nodes will be closer
and closer to the global KDE as the algorithm proceeds.

To analyze the consistency and convergence speed of our
estimation algorithm, we define the relative estimation er-

roronnode ¢ ase; = w where || - || is the LP-norm of

the real function, and f;(x) is the local density estimation
based on the kernel sets .S; at the end of a gossip cycle, and

. 1 X
fx) = NZKHi(X—Xi)

is the global kernel density estimate.

Theorem 1. For the algorithm 1, given any ¢,6 > 0, af-

ter log(g)/log(%/é) gossip cycles, the relative estima-
tion error on node 1 satisfies

P(6i<€)>1—(5

Proof. Since all kernels are originated from the original
data samples, we can re-write the local density estimation
at node ¢

N;
fz(x) = ZwileHi,l(x - Xi,l)
=1

as
N

filx) =Y i g K, (x = xx),

k=1

IEE I-'

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE



Algorithm 1: Distributed KDE without Resource Con- can be written as

straints
1 The local kernel set S; at node i is initialized as Fix) =i K, (x — x),
Si = {(1,x;, Hy) } k=1
2 Gossip: On each node 7, two following procedures are . . .
run inpparallel' ! gp where ;. is the weight of the kernel corresponding to the
' o original data sample x;, and let w; ;, = 0 if the sample x;, is
1. Active Procedure : Node ¢ periodically execute not presented in S .
the following procedure for 7 gossip cycles. After gossip, node i and j have updated kernel sets

S; = S}, and the new local estimates can also be repre-

(a) Randomly selecta node j as its gossip target. sented by the weighted sum of original kernels. According

(b) Send its local kernel set to Algorithm 1, the new sample weights w; , and @’ , are
Si = {{wip,, xig,, Higy ), li =1,...,N;} to ) .
node j. W =, = Wi,k ‘gwj,k 0
(c) After receiving the response from j, which
consists of node j’s local kernel set Thus, the gossip process is actually the averaging pro-
Si = {(wj 1o, Xj 1o, Hjpo),la = 1,..., Nj}, cess of the weights of the original data samples. For any

node 7 updates its own local kernel set as follows  data sample x,, denote s, , gg’k as the mean and variance
of the weight @, . in the 7-th gossip cycle. It is easy to see

S = {{wiy»xin, Hin ), li =1, Ni} that, the mean value of all the weights is unchanged, i.e.
U{< j,lQ,Xa,lz:Ha,h) lrb=1,.. -aNa}, fir), = j = , while the variance of the kernel weights
o2, = o2 reduces quickly through the gossip process.
where ’According to the property of the averaging process [11],
, 1 , 1 when the selection of the gossip target is uniformly random,
Wity = Wil Wity = 5Wil2: the reduction rate of the variance satisfies

During the union, the kernels with the same o2 = Laz _ )

location and bandwidth matrix are merged, and T2y T

the corresponding weights are summed together. Note that 02 = L we have
0o— N

2. Passive Procedure : When the node i receives a ) 1,1
gossip message from another node 7, the following =N (2—\/6) . ©)

rocedure is triggered. . . o
P g9 In the 7-th gossip cycle, the relative estimation error on

() Node i responds node j with its local kernel set.  node ¢ is bounded by

(b) Node i update its local kernels according to the ||fT f||2
received kernel set from j using the same el = . (10)
method in the active procedure. 11

N (o7
N|| Y (@7, — §) Ka, (x — x|
N
12 k= Ko, (= xi) |

3 After the active procedure terminates, each node i uses =
its final kernel set to calculate f;(x).

. 1
< Nmax|i], - |
N 1/2
where w; j, is the weight of the kernel which corresponds to < N (Z(wirk _ l)2>
the original data sample x;, and @; ;, = 0 if the sample x;, k=1 N
is not presented in S;. N
H T 1\2 _ 2 H
Suppose node 7 is node i’s gossiping target in cycle 7. Since E (Zk:l(wi,k - ) ) = No7, using Markov
Similarly, the local estimate at node j inequality, we have
Ple] <e)=1-94 (11)
N]‘ 2
() = Z wy K, (x — %) when 7 > log(25)/ log(2V/e).

O
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The above theorem shows that the relative estimation er-
ror of the algorithm 1 decreases exponentially and the local
estimate at each node i converges to the global estimate in
O(log N) steps. Since the number of kernels transmitted in
one gossip cycle will not exceed the number of initial mea-
surements N, there will be at most O(N log N) kernels to
be transmitted in total.

3.3 Resource-Constrained Distributed
KDE

The algorithm 1 presented above does not take account in
the node’s resource limitation in distributed networks. We
assumed that each node has enough storage space to store
at most NV local kernels and large communication capability
to transmit at most IV kernels during a gossip cycle. How-
ever, this assumption is not always valid in some distributed
systems, especially when the size of system N scales up.
Here we extend the basic distributed estimation algorithm
to a more flexible version to meet the resource constraint
requirements.

Usually there are three constraints often considered in
distributed systems:

1. Communication Constraints: The communication
bandwidth between the nodes is often limited by the
channel capacity. For our estimation algorithm, when
the communication bandwidth is limited, it will be-
come quite inefficient to send the full local kernel set
from one node to another in a single gossip cycle.

2. Storage Constraints: The storage at a node is also lim-
ited. Sometimes it is impractical to store too large
kernel set on the node. When the number of kernels
that can be stored on the node is less than the total
number of samples, it would be impossible for the
distributed estimation to approach the global density
function without any information loss. Instead, the
goal will become to estimate the global KDE as ac-
curately as possible with limited number of kernels.

3. Power Constraints: In some systems, e.g. the sensor
network, the computation on a node is also limited to
save the energy. Calculating KDE on a large sample
set is computation intensive and consumes consider-
able power. Therefore, it would be inefficient to calcu-
late KDE if the result kernel set is too large.

Taking the above constraints into consideration, we ex-
plicitly set some parameters of our gossip algorithm to limit
the resource consumption of the estimation process. For
simplicity, rather than specifying the accurate size of packet
to be transmitted or stored, we set the maximal number of
kernels sent from a node to another node in each gossip cy-
cle to be L. We also set the maximal number of kernels can

be stored at each node to be A/, and the final estimate would
be represented by at most M kernels.

To maintain the same estimation efficiency when the
storage and communication are limited, the key problem
would be how to represent the current density estimate with
only a small set of representative samples, which is in fact
a data reduction problem.

There are a number of data reduction methods proposed
[6-8, 16]. However, most previous methods aim to extract
some representative samples and are computational expen-
sive, thus are not suitable for our distributed algorithm. In
our case, we need to compress the dataset until its size is
below some communication or storage threshold. And we
want to preserve the density estimation as much as possible.
Furthermore, the data reduction method should be simple
and fast.

Here we propose a simple while efficient data reduc-
tion method, which can be regarded as a bottom-up con-
struction of a KD-tree structure [1]. Suppose there is
a density estimate represented by K; Gaussian kernels
{{w,x;, Hy),l = 1,...,K;}, our goal is to output K5
kernels {(w;,x;,H;),l = 1,..., K>} to approximate the
original density estimate f(x), where K, < Kj. To this
goal, we iteratively choose two kernels with minimum dis-
tance and merge them into a new kernel. After K — K,
iterations, we get the reduced kernel set whose size is ex-
actly K,. The detailed data reduction method is described
in Algorithm 2.

Based on the above data reduction algorithm, we can
modify the distributed KDE algorithm to meet the resource-
constraints. During the estimation process, we employ the
data reduction method whenever the size of kernel set ex-
ceeds the communication or storage constraints.

There is some information loss during the data reduction
procedure, which will influence the accuracy of the whole
estimation process. Obviously, the information loss of data
reduction is determined by the parameters L and M. In
practice, we may need to adjust these parameters to achieve
the desirable trade-off between the overhead (bandwidth
and storage) and the performance (accuracy and speed) of
the algorithm. Because KDE is highly robust and only re-
quires a few data samples to generate an acceptable esti-
mate, our data reduction method can efficiently represent
the local kernel set with a relative small constraint param-
eter. Experiments show that, with a small communication
and storage overhead, our algorithm can result in estimate
whose accuracy is comparable with the global KDE and the
estimation results converge almost as quickly as Algorithm
1 does. We will further analysis the performance of our al-
gorithm in the experimental part.
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Algorithm 2: Data Reduction Algorithm for Dis-
tributed KDE
Input: The kernel set
S = {(wi,xi, Hz):l = 1, ey Kl},
K>(K» < Ky).
Output: The compressed kernel set
{<w97XIj: H‘l]>7] = ]-, RN KZ}
approximating the original KDE.
1]+ Ky
2 whilel > K, do
3 Select two kernels j; and j» which have minimal
distance between their centers x;, and x;,;
4 Merge the two kernels into a parent kernel j
according to the following rule:

[ . .
wj = Wy, + Wi,
o Wiy Xjy +Wjg Xjo
7 wjy twj,
H. = Wi, (Hj1+x]41x]'.rl)+wj2(Hj2+xJ'2x]’-r2) —x XIT
J wj, +Wwj, 7
(12)
delete kernels j; and j» from S, and add kernel j
into S;
5 l+1-1.
6 end

3.4 Practical Considerations

In the above discussion, we have assumed that each node
holds only one measurement. In some practical networks,
it is also possible that each node holds a humber of mea-
surements. In this case, the initial local set on each node
will contain more than one kernel. And our algorithm can
be extended to this case without any special difficulty.

There are some other implementation considerations
when applying the above estimation algorithm in practi-
cal systems. First, in most large-scale distributed systems,
there is no global clock available. It is difficult for all the
nodes to run the estimation algorithm synchronously. Fur-
thermore, in some dynamic systems, since the nodes are
dynamically joining and leaving the network, we need to
periodically restart the estimation process to provide the up-
to-date distribution estimates. To implement restarting and
asynchronous estimation, we run the algorithm in consecu-
tive rounds of length A = N.é (where § is the length of a
gossip cycle, and V.. is the number of cycles in a round), and
start a new instance of the distributed KDE in each round.
In the implementation, we attach a unique and increasing
round identifer to each gossip message so that the messages
of different rounds can be distinguished from each other.
Once the node receives a round identifier which is larger
than its current one, it will immediately join the new esti-
mation process. At any time, the result of the last round

is taken as the current estimate of the density distribution.
New joining nodes can get the current estimate immediately
from other nodes and will join the next round of estimation.
Similar restarting mechanism have been adopted in some
aggregation algorithms [11].

Another factor that may affect the estimation result is the
choice of bandwidth matrix. In our experiments, we set the
global bandwidth matrix H; = h2I in advance for the sake
of simplicity and clarity. We observed that, for most cases,
simply setting h to a small value can result in good esti-
mation result. However, it is also possible to to estimate the
bandwidth matrix from the local kernel set in the gossip pro-
cess. And there is already a number of data-driven methods
for estimating global or local bandwidth matrix from sam-
ple sets [3,5,19]. In practice, we can use our estimation
algorithm with any bandwidth selection method, if neces-
sary.

For some distributed systems, such as in sensor networks
or P2P networks, nodes can only contact some connected
neighbors. It is difficult or impossible to randomly select
a node from all other nodes to contact. However, some
previous work on gossip protocol shows that the topology
of the overlay network only affects the convergence speed
of the averaging process [2,11]. Therefore, the nodes can
still get the same estimation result by periodically exchang-
ing their local estimate only with its neighbors. For P2P
network, another possible solution to this problem would
be deploying a peer sampling service [9] over the network.
The peer sampling service provides each node an updating
node cache with good randomness through periodically ex-
changing and updating the nodes in the cache. A detailed
evaluation and discussion on the implementation of the peer
sampling service can be found in [9].

4 Simulation and Discussion

To evaluate the performance of our distributed KDE al-
gorithm, we test our algorithm on a number of datasets with
different size, dimension and distribution. We explore how
the constraint parameters affect the convergence and ac-
curacy of the distributed algorithm. We also compare the
performance of our algorithm with the Newcast-EM algo-
rithm [10] on some non-Gaussian data distributions. In ad-
dition, we examine the robustness of our algorithm when
there are frequent node failures during the estimation pro-
Cess.

4.1 Experimental Methodology

We simulate a distributed network which consists of a
number of connected nodes. Initially, each node holds only
one data sample which is drawn from an underlying distri-
bution. We implement our distributed KDE algorithms on
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(a) The 1D dataset and estima-
tion results.

(b) Convergence

Figure 1. Distributed KDE on 1D dataset

these nodes. In each experiment, we run the algorithm for
a number of gossip cycles and investigate the estimation re-
sult.

To quantitatively analysis the estimation accuracy and
compare our algorithm with others, we use the Kullback-
Leibler divergence (KL-divergence) [15] as the perfor-
mance metric of the estimation algorithm. In our experi-
ments, we monitor the change of local density estimate on
each node and calculate the K-L divergence from the base-
line distribution, which may be the global KDE or the real
underlying distribution, to the local estimate.

4.2 Simulation Results

4.2.1 Estimation Accuracy and Convergence

Since the convergence of the distributed KDE without con-
straints is guaranteed by Theorem 1, we mainly focus on the
performance of the resource-constrained distributed estima-
tion algorithm. Fig. 1 shows the estimation result on a 1D
dataset, which consists of 200 samples drawn from 5 mixed
Gaussian distribution. Such a heavily overlapped distribu-
tion (five weighted Gaussians with different variances and
locate closely) is difficult to estimate even in global settings.

Fig. 1(a) shows the local estimation result on a node after
6 gossip cycles. The global KDE result and the original
dataset are also plotted in the figure. We can see that the
estimated curve of our proposed algorithm is close to the
global result.

To further verify the overall performance of our algo-
rithm, we calculate the K-L divergence from the global
KDE result to the distributedly estimated pdf on every node
in each gossip cycle. Then, we compute the mean and vari-
ance of the K-L divergence values from all nodes within
each gossip cycle. The change of K-L divergence is shown
in Fig. 1(b). We can see that both the mean and the variance
decreases exponentially, and after four cycles, the estima-
tion errors on most nodes drop to a small value.

We also tested our Distributed KDE algorithm on some
high-dimensional datasets. Fig. 2 shows the estimation re-
sult on a 2D dataset which consists of 600 samples drawn
from a mixed distribution of 5 Gaussian components.

(b) Global KDE.

(a) The 2D dataset.

KL-divergence

L

(d) Convergence

cycle

(c) Distributed KDE.

Figure 2. Distributed KDE on 2D dataset

Fig. 2(a) shows the location of the original data samples.
The result of global KDE is shown in Fig. 2(b), and the dis-
tributed estimation result on a random chosen node is shown
in Fig. 2(c). We can see that the distributed kernel density
estimation is close to the global KDE. Fig. 2(d) shows the
change of the statistics of the KL-divergence with gossip
cycles. We observe that the convergence trend is similar
with 1D case.

4.2.2 Non-Gaussian Distribution

We compare our proposed distributed KDE algorithm with
Newscast EM algorithm [14]. Fig. 3 shows the estimation
results of our distributed KDE algorithm and Newcast EM
on the same 1D non-Gaussian dataset, which consists of 200
samples drawn from three bi-exponential distributions.

We run the Newscast EM algorithm with different initial
values. In the first experiment, in order to obtain the best
estimation result, we set the initial location of the Gaussian
to the center of the three distributions. The result is shown
in Fig. 3(b) and Fig. 3(e). In the second experiment, we
slightly change the initial location of the Gaussian, and the
corresponding result is shown in Fig. 3(c) and Fig. 3(f).

From Fig. 3(a) and Fig. 3(d), we can see that, though
without any prior information of the distribution, our dis-
tributed DKDE algorithm still works well and results in
highest estimation accuracy. From Fig. 3(b) and Fig. 3(e),
we can see that, even tuned with the best tuned parameters,
the EM estimation result still deviates from the underlying
distribution. The estimation error of the distributed EM al-
gorithm is due to its wrong model assumption. From Fig.
3(c) and Fig. 3(f), we observe that the sub-optimal initial-
ization of the EM algorithm leads to a much worse estima-
tion of the probability density function, which shows that
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cycle

cycle
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(d) Convergence of Distributed (¢) Convergence of Newscast (f) Convergence of Newscast
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EM with good initialization

EM with bad initialization

Figure 3. Comparison with Newscast EM algorithm

the distributed EM algorithm is highly sensitive to initial
parameters. On the other hand, we also find that the con-
vergence speed of Newscast EM with good initialization is
slightly faster than our proposed algorithm. This is because
the EM algorithm has utilized extra prior information (e.g.
the number of Gaussian models) and thus can quickly re-
duce the estimation error at the beginning.

4.2.3 Resilience to Node Failure

To test the robustness of our distributed algorithm, we sim-
ulate the situation where nodes fail frequently in the estima-
tion process. At the beginning of each gossip cycle, we se-
lect NV x Py nodes randomly selected and discard them from
the network. We conduct a series of experiments where the
failure rate Py ranges from 5% to 30%, and compare the
estimation results with the global KDE result which is cal-
culated from the original complete dataset. Fig. 4 shows
the estimation result under node failure. We can see that
the estimation result is still acceptable even when there are
a high percentage nodes failing in each cycle, which shows
the distributed KDE is robust against node failure.

5 Conclusion

In this paper, we proposed a distributed kernel density
estimation algorithm which can learn the non-parametric
model from distributed measurements with arbitrary distri-
bution efficiently. It requires little prior information about
the underlying distribution and converges to the global KDE
with any given precision in O(log N) steps. To extend

- - KDE
" Disributed KDE (P,=30%)

KL-divergence

1)

PQ

(a) KL-divergences (b) Estimation result (P

30%).

Figure 4. Impact of node failure

the the algorithm to deal with the situations of limited re-
sources, we propose an efficient data reduction method for
exchanging local density estimate efficiently and also de-
signed a resource-constrained distributed kernel density es-
timation algorithm. Through extensive simulation experi-
ments, we found that our resource-constrained distributed
estimation algorithm can achieve high estimation accu-
racy with only small communication and storage overhead.
Compared with the distributed EM algorithm, our estima-
tion method is more robust and accurate.
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