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Abstract

This paper presents a POCS-based algorithm for consistent reconstruction
of a signal x 2 RK from any subset of quantized coe�cients y 2 RN in an
N � K overcomplete frame expansion y = Fx, N = 2K. By choosing the
frame operator F to be the concatenation of two K �K invertible transforms,
the projections may be computed in RK using only the transforms and their
inverses, rather than in the larger space RN using the pseudo-inverse as pro-
posed in earlier work. This enables practical reconstructions from overcomplete
frame expansions based on wavelet, subband, or lapped transforms of an entire
image, which has heretofore not been possible.

1 Introduction

Multiple description (MD) source coding is the problem of encoding a single source
fXig into N separate binary descriptions at rates R1; : : : ; RN bits per symbol such
that any subset S of the descriptions may be received and together decoded to an
expected distortion DS commensurate with the total bit rate of S. Early papers on
multiple description coding are information theoretic and consider the problem of de-
termining for N = 2 the set of rates and expected distortions f(R1; R2; D1; D2; D1;2)g
that are asymptotically achievable. More recent papers consider the problem of de-
signing practical multiple description quantizers, and their use over erasure channels.
Multiple description quantizers are a nice �t to erasure channels, because a multiple
description decoder can reconstruct the source using however many descriptions it
receives.

The papers on practical MD quantization have so far taken three distinctly dif-
ferent approaches. In the �rst approach, pioneered by Vaishampayan, MD scalar,
vector, or trellis quantizers are designed to produce N = 2 descriptions, using a gen-
eralized Lloyd-like clustering algorithm that minimizes the Lagrangian of the rates
and expected distortions R1; R2; D1; D2; D1;2 [1, 2, 3, 4]. In the second approach,
pioneered by Wang, Orchard, and Reibman, MD quantizers are constructed by sep-
arately describing (i.e., quantizing and coding) the N coe�cients of an N �N block



linear transform, which has been designed to introduce a controlled amount of corre-
lation between the transform coe�cients [5, 6, 7]. In the third approach, pioneered
by Goyal, Kova�cevi�c, and Vetterli, MD quantizers are constructed by separately de-
scribing the N coe�cients of an overcomplete N � K tight frame expansion [8, 7].
The present paper contributes to this last category. For completeness, it should be
mentioned that a number of other papers take yet a fourth approach, in which the
natural correlation between symbols is exploited for reconstruction. For example, odd
pixels can be predicted from even pixels, and vice versa. This approach is similar to
the second approach above, except that the transform is not actively designed. We
consider this fourth approach to be more closely related to standard error resilience
techniques.

In MD quantization using overcomplete (frame) expansions, an input signal x 2
RK is represented by a vector y = Fx 2 RN , N > K. F is a so-called frame operator,
whose N rows f�ig

N
i=1 span R

K . The coe�cients of y are scalar quantized to obtain ŷ,
and then are independently entropy coded and transmitted in (up to) N descriptions.
The decoder receives descriptions of only N 0 � N coe�cients after potential erasures,
and reconstructs the signal x̂ from the received descriptions. Each received description
is an encoding of the fact that some coe�cient yi lies in a particular quantization bin,
say [li; ui).

Without loss of generality, assume that descriptions of the �rst N 0 coe�cients are
received, and that descriptions of the last N 00 = N � N 0 coe�cients are erased. Let
y0 denote the �rst N 0 coe�cients, and let y00 denote the last N 00 coe�cients, so that

y =

"
y0

y00

#
=

"
F 0

F 00

#
x = Fx;

where F 0 is N 0�K and F 00 is N 00�K. A classical way for the decoder to reconstruct
x from the received quantized coe�cients ŷ0 is to use the linear reconstruction

x̂lin = (F 0)+ŷ0 (1)

where (F 0)+ is the pseudo-inverse of F 0. The pseudo-inverse can be computed from
the singular value decomposition F 0 = U � diag(�1; : : : ; �N 0)V t [9] as (F 0)+ = V �
diag(��11 ; : : : ; ��1N 0 ) � U t. This is equal to (F 0)+ = ((F 0)t(F 0))�1(F 0)t when F 0 has full
rank, i.e., when at least K descriptions are received (assuming any K rows of F are
linearly independent). It can be shown that the reconstruction (1) has the property
that

x̂lin = argmin
x
jjŷ0 � F 0xjj2: (2)

That is, when N 0 � K, it chooses x̂lin 2 R
K to be the coordinates of the point

F 0x̂lin in the K-dimensional subspace spanned by the columns of F 0 which is closest
to ŷ0 2 RK , i.e., it projects ŷ0 onto the subspace F 0RN 0

. Furthermore, when N 0 < K,
i.e., when the x that minimizes (2) is not unique, then the reconstruction (1) chooses
such an x with minimum norm.

The linear reconstruction (2) is not statistically optimal. The optimal reconstruc-
tion x̂opt, which minimizes the expected (squared error) distortion EjjX � X̂optjj

2, is
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Figure 1: (a) Reconstruction in RK . (b) Reconstruction in RN 0

(adapted from [10]).

the conditional mean of X given the descriptions yi 2 [li; ui) received. That is,

x̂opt = E[XjQ(F 0X) = ŷ0] = E[Xjl0 � F 0X < u0]; (3)

where the relations l0 � y0 and y0 < u0 are to be taken componentwise. Unfortunately,
the conditional expected value of X given that it lies in the region Q�1(ŷ0) = fx :
l0 � F 0x < u0g is hard to compute. Figure 1a shows for K = 2 and N 0 = 3 a region
Q�1(ŷ0) for some ŷ0. Note that the regions Q�1(ŷ0) for di�erent ŷ0 are all dissimilar
in general.

Although the optimal reconstruction (3) is di�cult to compute, one thing is cer-
tain: x lies in Q�1(ŷ0), and hence, since Q�1(ŷ0) is convex, the optimal reconstruction
(3) lies in Q�1(ŷ0). Any reconstruction x̂ which does not lie in Q�1(ŷ0) is said to be
inconsistent [10]. Figure 1b, adapted from [10], shows again for K = 2 and N 0 = 3 an
inconsistent reconstruction from the linear projection (1). It is intuitive that consis-
tent reconstructions have smaller expected squared error distortion than inconsistent
reconstructions. In fact, Goyal, Vetterli, and Thao [10] show that while the ex-
pected distortion from linear reconstructions is asymptotically proportional to 1=N ,
the expected distortion from consistent reconstructions is O(1=N2) in at least one
DFT-based case, and they conjecture this to be true under very general conditions,
when the frame is tight.

An algorithm for producing consistent reconstructions x̂con 2 Q
�1(ŷ0) is the POCS

(Projections Onto Convex Sets) algorithm [11]. In the POCS algorithm, an arbitrary
initial point pt 2 R

n is alternately projected onto two closed convex sets Q � Rn and
P � Rn,

qt+1 = argmin
q2Q
jjpt � qjj2 (4)

pt+1 = argmin
p2P
jjqt+1 � pjj2 (5)



until pt and qt converge to the intersection of P and Q, or if the intersection is
empty, until pt and qt respectively converge to the sets fp 2 P : jjp � qjj2 � jjp0 �
qjj2; 8p0 2 P; 8q 2 Qg and fq 2 Q : jjq � pjj2 � jjq0 � pjj2; 8q0 2 Q; 8p 2 Pg.
For consistent reconstruction of x 2 RK from the quantized frame expansion ŷ0 =
Q(F 0x) 2 RN 0

, Goyal, Vetterli, and Thao [10] suggest alternately projecting the
initial point ŷ0 onto the two convex sets Q = F 0RK � RN 0

and P = Q�1(ŷ0) � RN 0

,
as shown in Figure 1b. The �rst projection (4) onto the linear subspace F 0RK can
be accomplished, as usual, by the pseudo-inverse (1). The second projection (5) onto
the quantization bin Q�1(ŷ0) can be accomplished by component-wise clipping to the
quantization bin. That is, the vector ~y0, l0 � ~y0 � u0, closest to an arbitrary vector
y0 2 RN 0

is given component-wise by

~y0i = clip(y0i; li; ui) = minfmaxfy0i; lig; uig: (6)

Unfortunately, computation of the pseudo-inverse (F 0)+ requires O(K2N 0) operations;
the projections themselves require O(KN 0) operations each.

To reduce the computational complexity of consistent reconstruction, Goyal, Vet-
terli, and Thao instead suggest �nding x̂ 2 Q�1(ŷ0) by solving the linear program
max ctx̂ subject to "

F 0

�F 0

#
x̂ �

"
u
�l

#
;

for an arbitrary objective functional c. They furthermore suggest that by varying c, it
may be possible to �nd all the vertices of Q�1(ŷ0), whereupon they can be averaged to
approximate the region's centroid. (However, they do not appear to follow this latter
suggestion.) Although this method avoids the high cost of computing the pseudo-
inverse, the complexity of the simplex algorithm for solving the linear program is still
O(KN 0) operations per pivot. This complexity does not present a problem when K
and N 0 are small. Goyal, Kova�cevi�c, and Vetterli [8, 7] apparently apply the algorithm
for K = 8 and N 0 up to 10.

We are more interested in decoding multiple descriptions of overcomplete expan-
sions based on overlapping functions, such as provided by wavelet, subband, or lapped
transforms. In this case, the N �K frame operator F typically operates on an entire
image at a time, for which K = 512 � 512 = 262144 is common; N may be twice
that. Clearly, in such cases it is not feasible to require O(KN) operations for con-
sistent reconstruction. For wavelet, subband, or lapped transforms, where N = K,
F is sparse. In this case consistent reconstruction can be performed using O(KL)
operations, where L is the length of the support of the basis functions. Since L is
usually on the order of a few hundred, such reconstruction is eminently feasible, and
is used in all modern subband decoders. Both the pseudo-inverse and pivot oper-
ations destroy the sparsity of F . This paper presents an algorithm for consistent
reconstruction from multiple descriptions of overcomplete expansions that preserves
the e�ciency of the sparse representation of F when the basis functions have �nite
support L. That is, the algorithm has complexity O(KL). Our algorithm is based on
POCS, but the projections are performed in the lower dimensional space RK , rather
than in the space RN 0

.



2 Decoding Algorithm

Let F1 and F2 be two di�erent invertible K�K transforms. For example, F1 may be
a wavelet transform (over an image x 2 RK suitably extended), and F2 may be the
identity transform, another wavelet transform, or the same wavelet transform over a
1-pixel shift of the image. Let y1 = F1x and y2 = F2x be the two corresponding sets
of transform coe�cients for x 2 RK. Then

y =

"
y1
y2

#
=

"
F1
F2

#
x = Fx

de�nes an overcomplete N � K frame expansion of x with redundancy N=K = 2.
The expansion is tight if both F1 and F2 are orthonormal1. We do not insist on
orthonormality of F1 and F2, but it is best if F1 and F2 are orthonormally related, i.e.,
F12 = F2F

�1
1 and its inverse F21 = F1F

�1
2 are orthonormal, at least approximately,

to ensure convergence of the POCS algorithm.
Let ŷ1 and ŷ2 be the quantized versions of y1 and y2, respectively, such that ŷ1 and

ŷ2 lie (componentwise) between upper and lower quantization cell boundary vectors
l1 � ŷ1 � u1 and l2 � ŷ2 � u2, respectively.

Let R1 � f1; : : : ; Kg be the set of indices of the descriptions received by the
decoder for ŷ1, and let R2 � f1; : : : ; Kg be the set of indices of the descriptions
received by the decoder for ŷ2. Descriptions not received by the decoder include
those that have been erased as well as not sent at all.

A reconstruction x̂ is consistent with the received descriptions if and only if it lies
in the intersection of the following two closed convex sets:

P = fx : l1;i � (F1x)i � u1;i; i 2 R1g

Q = fx : l2;i � (F2x)i � u2;i; i 2 R2g:

The following is our basic algorithm for �nding a consistent reconstruction of x
from the received descriptions.

1. Initialization. Start from an initial point in F1P : With t = 0, set

p1;i(0) =

(
ŷ1;i if i 2 R1

0 if i 62 R1

:

2. Transform p1(t) into the coordinate system of F2.

p2(t) = F2F
�1
1 p1(t) = F12p1(t)

3. Project p2(t) onto F2Q.

q2;i(t+ 1) =

(
minfmaxfp2;i(t); l2;ig; u2;ig if i 2 R2

p2;i(t) if i 62 R2

1A frame expansion y = Fx is tight if there exists a positive constant A such that for all

x, jjFxjj2 = Ajjxjj2, which is a generalization of Parseval's relation. In the multiple description

scenario, tightness of the original frame F is of little consequence, because the received frame F 0

will in general not be tight.



4. Transform q2(t+ 1) into the coordinate system of F1.

q1(t+ 1) = F1F
�1
2 q2(t+ 1) = F21q2(t+ 1)

5. Project q1(t + 1) onto F1P .

p1;i(t+ 1) =

(
minfmaxfq1;i(t+ 1); l1;ig; u1;ig if i 2 R1

q1;i(t+ 1) if i 62 R1

6. Check for convergence. If jjp1(t+ 1)� p1(t)jj
2 > �, then set t t+ 1 and go to

Step 2.

7. Reconstruct x.
x̂ = F�1

1 p1(t+ 1)

A reasonable value for � is K, so that the squared error per pixel is within one gray
level.

There are two improvements that can be made to this basic algorithm. The �rst
improvement that can be made is to reconstruct to a point in the interior of the
quantization cell, rather than to a point on the boundary. Hopefully, such a recon-
struction will be closer to the cell centroid. For this purpose, modify the algorithm
to gradually shrink P and Q towards their centers (or approximate centroids) until
there is no point of intersection. That is, run the basic algorithm to convergence, in-
crease the lower limits, decrease the upper limits, and run the basic algorithm again
to convergence. The limiting points for each run, say p1(1) and q1(1), will be equal
until there is no point of intersection between P and Q, after which they will be-
gin to diverge. Reconstruct x̂ from the last limiting point p1(1) for which p1(1)
approximately equals q1(1).

The second improvement that can be made, when the number of received de-
scriptions N 0 = jR1j + jR2j is less than K, is to reconstruct missing components to
their conditional expected values given the received descriptions. The basic algo-
rithm already does this if y1 has a spherical density (e.g., if the components of y1 are
iid Gaussian). The reason is that if y1 has a spherical density, then the subvector
y001 consisting of the erased components fy1;igi62R1

has a spherical conditional density
given the received components fy1;igi2R1

. Furthermore given the received components
fy2;igi2R2

, y001 must lie in some jR2j-dimensional linear variety. Thus the conditional
density of y001 given all the received components is a spherical distribution in some lin-
ear variety with its mean at the point where the all-zero vector y001 = 0 projects onto
the linear variety. Therefore, setting the missing components in the initial point p1(0)
in Step 1 of the basic algorithm will result in their being replaced, after projection in
Step 3, by their conditional means given the received descriptions. Although in most
circumstances the density of y1 is not spherical, it will be approximate spherical if F1
is a decorrelating transform and x is preconditioned such that it has zero mean and
the variance of each y1;i is constant. More precisely, if �2i is the variance of (F1x)i,
then replace x by F�1

1 diag(��11 ; : : : ; ��1K )F1(x � EX). The resulting vector y1 will
have approximately spherical density.



3 Experimental Results

Results are presented using the given algorithm to reconstruct a K dimensional vec-
tor x. The vector x is formed by taking the inverse DCT of a vector of trans-
form coe�cients y1, which are in turn sampled from a Gaussian distribution with
mean 0 and diagonal covariance with entries inversely proportional to frequency, i.e.,
Y1;k � N(0; �2=(1 + ck)), k = 0; 1; : : : ; K � 1, where �2 and c are constants. The
vector x is then transformed using a DCT for F1 and the identity transform for F2,
yielding y1 = DCT (x) and y2 = x. The transform coe�cient vectors y1 and y2 are
uniformly scalar quantized using a step size of �. In our experiment, K = 512,
�2 = 1:0, � = 0:1, and c = 0:013, so that the variance of the last coe�cient is �2=8.

All of the quantized coe�cients ŷ1 are transmitted, along with 1/4 of the quan-
tized coe�cients ŷ2 (randomly selected), for a redundancy of N=K = 1:25. Of these
640 transmitted coe�cients, random subsets are received. The reconstruction algo-
rithm is run for each subset received. The performance of the algorithm is measured
by averaging the reconstruction error over all subsets having the same number of
coe�cients.

The performance of a comparable forward error correction (FEC) system is also
obtained. A comparable FEC system is one in which the quantized coe�cients from
one of the transforms ŷ1 are transmitted along with error correction information. The
transmitted values are obtained by taking N linear combinations of the K quantized
coe�cients operating over a Galois �eld. The code is designed so that any K of the
N basis vectors in the system are linearly independent. If each quantized coe�cient
is one packet, then the N transmitted packets are obtained by applying standard
linear block codes of rate (N;K) to each bit of the quantized coe�cients. The codes
are systematic so that the actual coe�cient values are transmitted in K of the N
packets. If at least K of the packets are received, then all K coe�cients of ŷ1 can be
recovered and the reconstruction is obtained by taking the inverse transform. If less
than K of the packets are received, then only the received packets in the systematic
portion are used, and the rest are set to 0.

A plot of the SNR vs. N 0 is shown in Figure 2. There is a slight gain with
our system over the FEC system if all the coe�cients are received. If fewer than
K coe�cients are received, then our system always outperforms the FEC system.
However, there is substantial loss if exactly K coe�cients are received. This is due
to the fact that the partition induced by the received coe�cients is usually not cubic
since there is a mixture of coe�cients from the two transforms. Also, the point found
by the POCS algorithm is not necessarily the centroid of the cell. The exact value
of the loss is somewhat arbitrary; performance of the FEC system when more than
K coe�cients are received can be made as high as desired by reducing �, whereas
performance of even the optimal reconstruction when fewer than K coe�cients are
received reaches an upper bound independent of �.

Experimental results are also provided for the image Lena, using for F1 a three-
level dyadic separable 2D wavelet transform based on the 9/7 �lter of [12], and using
for F2 the separable 2D DCT. The coe�cients are uniformly scalar quantized to a
stepsize of 16. All of the coe�cients of ŷ1 are transmitted, along with the coe�cients
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Figure 3: PSNR results for Lena comparing MD POCS and FEC system.

of ŷ2 corresponding to the lower half horizontal frequencies and the lower half vertical
frequencies, for a redundancy of N=K = 1:25. A plot of the PSNR vs. N 0 is show
in Figure 3. A reconstruction is shown in Figure 4 when 1/8 of the coe�cients are
erased at random. The reconstruction PSNR is 36.58 dB, compared to 15.68 dB if the
same 1/8 of the wavelet coe�cients are erased without bene�t of being reconstructed
from the extra coe�cients from F2, as shown in Figure 5. However, this compares to
37.77 dB if the wavelet coe�cients y1 = F1x are all received in their entirety.

4 Conclusion

In summary, we have developed a POCS-based algorithm for consistent reconstruction
from multiple descriptions of overcomplete expansions. The algorithm operates in the
data space RK rather than in the expanded space RN , N > K. By constructing the
frame from two complete transform bases, all projections can be expressed in terms of



Figure 4: Reconstruction from an overcomplete representation with redundancy 1.25,
with 1/8 of the transmitted components missing.

Figure 5: Reconstruction from a critically sampled representation with 1/8 of the
transmitted components missing.



forward or inverse transforms. Since such transforms are usually e�cient to compute,
we can perform the reconstruction much faster than with previous methods. Indeed,
our method enables overcomplete frame expansions of an entire image, which has
heretofore not been possible.
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