Differential and cross-version
program verification

Shuvendu Lahiri

Research in Software Engineering (RiSE),
Microsoft Research,
Redmond, WA USA

Halmstad Summer School on Testing (HSST 2015)



Software evolution

— Programmers spend a large fraction of their time
ensuring (read praying) compatibility after changes

How does the

Does the impact existing
change any observable features?
behavior?

Does my

introduce a
regression?




Changes

Bug fixes

Feature addition (response to a new event)
Refactoring

Optimizations

Approximations (tradeoff accuracy for
efficiency)



Main question

 Can we preserve the quality of a software product as it
evolves over time?

* Currently, testing and code review are the only tools in
ensuring this

— Useful, but has its limitations (simple changes take long
time to checkin, no assurance on change coverage)

* How do we leverage and extend program verifiers
towards differential reasoning?

— Relatively new research direction



Outline

Motivation

SymDiff: A differential program verifier
— Program verification background
— Differential specifications
— Differential program verification
SymDiff: Applications
Other applications of differential reasoning for existing
verifiers
— Verification modulo versions, Interleaved bugs

Other works in differential cross-version program analysis

Works in differential analysis of independent
implementations



What will you learn

Some flavor of program verification using SMT solvers
Modeling of imperative programs for verification
Formalizing differential specifications

Practical automated, differential verification in SymDiff

Applying differential verifier to improve existing
verifiers

Applications of differential analysis (cross version and
independent implementations)

Try out examples in SymDiff (Windows drop currently)



Compatibility: applications

f() { Printtfeo);
o g(); } g(){...
N Print(foo);
a' g(){... Print(bar); }-
‘A Print(foo);
Bug fixes

Refactoring New features

Library API
changes Compilers

Version Control



Equivalence checking in hardware vs
software

Hardware Software

* One of commercial * Most changes are
not semantics
success story of formal

i preserving
verification
http://en.wikipedia.org/wiki/For o
mal _equivalence checking * Explaining .

. el lied aft equivalence failure
Roqtlne Y e?pr.) |e. arter needs users to
timing optimizations understand the low-

 Commercial products level modeling of

. programs (e.g. in the
* Almost considered a presence of heap)

solved research problem


http://en.wikipedia.org/wiki/Formal_equivalence_checking

Motivation

* Ensure code changes preserve quality

— Help developers gain greater confidence for relatively
simple changes through program verification

* Cost effectiveness of program verification

— Only success stories in last several decades in the
hands of a few expert users, or domain-specific
properties (e.g. SLAM/SDV)

* Need for specification

 Scalability

* Need for complex program-specific invariants
* Environment models



What is SymDiftf?

A framework to

— Leverage and extend program
verification for differential verification

Source code
http://symdiff.codeplex.com/

Install direction
http://symdiff.codeplex.com/documentation

Papers etc.
http://research.microsoft.com/symdiff



http://symdiff.codeplex.com/
http://symdiff.codeplex.com/documentation
http://research.microsoft.com/symdiff

Outline

v’ Motivation

e SymDiff: A differential program verifier
— Program verification background
— Differential specifications
— Differential program verification
* SymDiff: Applications
e Other applications of differential reasoning for existing
verifiers
— Verification modulo versions, Interleaved bugs

e Other works in differential cross-version program analysis

 Works in differential analysis of independent
implementations



Demo

e Equivalence
e DAC and relative verification



Program verification: background



Program verification

* Asimple imperative language (Boogie)
— Syntax
— Modeling heap
* Specifications
— How to write the property to be checked
* Verification
— How to check that a given property holds

* I|nvariant Inference
— How to automatically generate intermediate facts



Boogie

* Simple intermediate verification language
— [Barnett et al. FMCO’05]

e Commands

— x:=E //assignments

— havoc x //change x to an arbitrary value

— assert E //if E holds, skip; otherwise, go wrong
— assume E // if E holds, skip; otherwise, block

- ST //execute S, then T

— goto L1, L2, ... Ln //non-deterministic jump to labels
— call x,y := Foo(el,e2,..) //procedure call



Boogie (contd.)

* Two types of expressions
— Scalars (bool, int, ref, ..)
— Arrays ([int]int, [ref]ref, ...)
* Array expression sugar for SMT array theory
— X[i]:==y =2 x:=upd(x,i,y)
— y:=x[i] 2 vy :=sel(x,i)

* old(e): Value of an expression at entry to the procedure



Procedure specifications

e Each procedure has a specification (default true)
* Procedure calls can be replaced with their specifications

call Foo();

recondition
procedure FOO(V' P
requires pre; / postcondition

ensures post; _ .
modifies x,y,z; set of variables possibly

modified in Foo

assert pre;
> havoc x, y, z;
assume post;




Modeling imperative features

* Popular languages (e.g. C) support other features
— Pointers
— Structures/classes
— Address-of operations

e Various front-ends from such languages to Boogie
— C (HAVOC/SMACK/VCC/..)
— JAVA (Joogie/..)
— C# (BCT)



Translating Heap

— [Condit, Hackett, Lahiri, Qadeer POPL'09]

e HAVOC memory model
— A pointer is represented as an integer (1nt)

— One heap map per scalar/pointer structure field and
pointer type

— struct A{intf;, A*g}x;
Mem f A : [int]int
Mem g A : [1nt]int

Mem A: [1nt]int
* Simple example
— Ccode
x->f = 1;
— Boogie

Mem f A[x + Offset (f,A)] := 1;



C = Boogie

typedef struct { function g A(:int) - int {u + 0}
int g[10]; / function £ A(u:int): int {u + 40}
<
A *create() { procedure create () returns d:int{
int a; var @a: int;
A *d = (A¥%) call 4 := malloc(44) ;

malloc (sizeof (4)) ;

init(d->g, 10, @

call init(g DATA(d) ,10, @Qa);

Mem f_

[g A(d) + 1*4]:=2;

free(@a))

return d;

recturn,




(Modular) verification problem

* Given a program P
— A list of procedures p1, p2, ...
— Each procedure has assert, requires, ensures

e Verify that each procedure satisfies its
specifications/contracts (assuming the
contracts of other procedures)



Verification using VC + SMT

— Assume loops are tail-recursive procedures (for the
rest of this talk)

* Verification condition (VC) generation

— A quadratic encoding of each procedure p into a
logical formula VC(p)

* If VC(p) is valid then p satisfies its contracts

* Check the validity of each of VC(p) using an SMT
solver (e.g. Z3, YICES, CV(4, ..)

— Efficient solvers for Boolean combination over various
theories (arithmetic, arrays, quantifiers, ...)

— [http://smtlib.cs.uiowa.edu/]



Quick summary of VC generation

— [Barnett&Leino FMCO’05, Godefroid & Lahiri LASER’11]
* High-level steps
— Replace procedure calls with their specifications
* call F(e) = {assert pre_F; havoc x_F; assume post_F;}
— Eliminate assignments

» Perform static single assignment (SSA) for variables
* Replace an assignment x; := E with assume x,==E

— Perform weakest precondition for statements in
each basic block

— Replace goto statements with block equations



VC Generation

A ..[ start: x:=1; goto |;;

B { l,;: x:=x+1; goto |,, |5;

l,: assume x == 0;
C - X:=X+2;
goto |,;

l;: assume x # 0;
X:=X+3;
i goto |,;

E { ,: assert x ==



VC Generation

start: assume x, == 1; goto |;;

=

I\.)_

: assume x, == X, + 1; goto |,, |;

: assume x, == 0;
assume x, ==X, + 2;
assume x, == x,; goto |,;

: assume x; # 0;
assume x; ==X, + 3;
assume x, == x;; goto |,;

. assert x, ==

Aok e (XO =1= Bok)

By (Xg==1=>C_ AD,,)

Cor= (X ==0=
(X, ==x;+2 =
(Xq == %= Eqi)))
Dy (20>
(X, ==x;,+3 =
(X4 ==%3=>E)))
E,x & (X, ==5 Atrue)

—> A,

> >



VCG

Formula over Arithmetic,
Equality, and Boolean
connectives

— <

Can be solved by
a SMT solver

eneration

—

A (Xg==1=B_,)

By (Xg==1=>C_ AD,,)

Cone (X,==0=>
(X, ==x;+2 =
(X, ==x,=E_,)))
D& (X, #0=>
(X, ==x;,+3 =

(X, ==x3=>E_,)))

E,x & (X, ==5 Atrue)

- = A,

> >



Invariant inference

* Challenge: user needs to write down every pre/post
condition for modular verification to succeed

* |nfer “program facts” that are true
— Missing loop invariants, procedure pre/post conditions

* Can be eager or lazy (property-driven)
— Eager (abstract interpretation [Cousot&Cousot POPL'77])

— Lazy (counterexample guided abstraction refinement
(CEGAR) [Clarke et al. CAV’00])



Boogie demo

* |nput C program
* Intermediate Boogie program



Outline

v’ Motivation

e SymDiff: A differential program verifier
» Program verification background
— Differential specifications
— Differential program verification
* SymDiff: Applications
e Other applications of differential reasoning for existing
verifiers
— Verification modulo versions, Interleaved bugs

e Other works in differential cross-version program analysis

 Works in differential analysis of independent
implementations



SymDiff

How do we leverage program verifiers for
differential verification

— How do we specify differential properties
— How do we check the properties
— How do we infer intermediate invariants



Differential specifications



(Partial) Equivalence

* Procedures p and p’ are partially equivalent if
— For all input states i, if p terminates in o and p’

terminates in o/, then o == 0’

* Notes

Verifying equivalence is undecidable for programs with
loops and unbounded counters

Procedure may not-terminate (loops), and may have
multiple outputs for an input (non-determinism)



Specifying equivalence

e Construct a product procedure EQ_p_p’
procedure EQ_p_p’(i, i’): (0,0) {
call o := p(i); //modifies g
call o’ :=p’(i'); //modifies g’
}
* Write a postcondition
— ensures (i ==’ && old(g) == old(g’) ==> 0 == 0’)
— ensures (i==i" && old(g) == old(g’) ==>g == g’)

* (Caveats
— Note that we are comparing entire arrays for equality (good and bad)!

— Specification is easy, but verification often require more than
equivalence



Factorial

f1(n): returnsr {
if (n==0) {
return 1;
} else {
return n * f1(n - 1);
}
}

main(n) : r {r := f1(n);}

procedure EQ_main_main’(n, n’): (r, r’);

f2(n, a) : returns r {

if (n==0) {
return a;
} else {

return f2(n -1, a * n);
}

}
main(n) : r {r :=f2(n,1);}

ensures (n==n’"==>r==r')



Equivalence too strong

* Most software changes are not equivalence
preserving

— Bug fixes, feature additions, adding logging, ..

 Need more relaxed specifications (failure
points to likely regressions)
— Generic specifications

» Differential assertion checking
e Control-flow equivalence

— Manual specifications



Differential assertion checking (DAC)

— [Lahiri et al. FSE’13, Joshi, Lahiri, Lal POPL'12]

* Correctness = Relative correctness

— Check that an input that does not fail assertion in p does
not fail an assertion in p’

 How to specify
— Construct EQ_p_p’ procedure
— Replace assert A 2 ok := ok && A;
— Write a postcondition
ensures (i ==i' && old(g) == old(g’) ==> (ok ==> ok’))

* Note: asymmetric check



Relative Correctness (fails)

void strcopy_correct void strcopy_buggy

(char* dst, char*src, (char* dst, char*src,

int size) int size)

{ { l
int 1 = 0; int 1 = 0)
for(;i<size-1 && for(;fsrc

*Src; 1++) i<size-1; 1++)
*dst++ = *sSrc++; *dst++ = *Src++;
*dst = 0; y *dst = 0;
S R 2 x

CEX: size=0, src =0, dst= some valid location




Relative Correctness (Passes)

void strcopy_buggy void strcopy_correct
(char* dst, char*src, (char* dst, char*src, int
int size) size)

{ {

int 1=0; int 1=0;
for(;*src && for(;i<size-1 &&
1<size-1; 1++) *Src; I++)
*dst++ = *Src++; *dst++ = *Src++;

*dst = 0; *dtmp = 0;
¥ }

* No need to constrain the
inputs
e Verifying absolute
correctness needs
preconditions and complex
program-specific loop
invariants




Mutual summaries

— [Hawblitzel, Kawaguchi, Lahiri, Rebelo CADE’13]

* General form of differential specification
— Captures EQ and DAC specifications

* Create a procedure similar to EQ_p_p’

— We name it as MS_check_p p’ as the body of the
procedure is more complex (later)



Mutual summaries

void F1(int x1){ void F2(int x2){
if(x1 < 100){ if(x2 < 100){
gl =gl +x1; g2 :=g2+ 2*x2;
F1(x1 + 1); F2(x2 + 1);
} }
} }

MS(F1, F2): (x1=x2 && gl <=g2 && x1>=0) ==>gl’' <=g2’

 What is a mutual summary MS(F1, F2)?

— A specification over two-procedures’ input/output
vocabulary

* parameters, globals (g), returns and next state of globals (g’)




Mutual summaries

void F1(int x1){ void F2(int x2){
if(x1 < 100){ if(x2 < 100){
gl =gl +x1; g2 :=g2+ 2*x2;
F1(x1 + 1); F2(x2 + 1);

} }
} }

MS(F1, F2): (x1=x2 && gl <=g2 && x1>=0) ==>gl’' <=g2’

* When does procedure pair (F1,F2) satisfy
MS(F1, F2)?

— For any (pre,post) state pairs (s1,s1’) of F1, and
(s2,52’) of F2, (s1,s1’,s2,s2’) satisfies MS(F1,F2)




Factorial (revisited)

f1(n): returns r { f2(n, a) : returns r {
if (n==0) { if (n==0) {
return 1; return a;
} else { } else {
return n * f1(n - 1); returnf2(n-1,a * n);
} MS(f1, f2):
J (n1 == n2) ==> (r1*a2 == r2)
main(n) : r {r -= f1(n)-} 'main(n) : r {r:=f2(n,1);}

procedure MS_check _main_main’(n, n’):

(r, r');
ensures (n==n’"==> r==r’)



Note: Splitting a MS check

When MS(i,i‘,0,0") is of the form
MS_pre(i,i') ==>MS_post(o,0’)

The following sound check avoids disjunction in
specifications (less efficient to infer)

procedure MS_Check p p'(i,i’) : (o, 0’);

requires MS_pre(i,i‘);

ensures MS_post(o,0’);



Differential verification



(Modular) verification problem

* Given a program P
— A list of procedures p1, p2, ...
— Each procedure has assert, requires, ensures

e Verify that each procedure satisfies its
specifications/contracts (assuming the
contracts of other procedures)



(Modular) differential verification
problem

* Given two programs P and P’
— A list of procedures {p1, p2, ...} and {p1’, p2’, ..}

— Mutual summary specifications MS(p,q’), where
(p,q’) \in P X P’

* Need not be 1-1
e Verify that each MS_Check p g’ procedure
satisfies its specifications/contracts (assuming
the contracts of other procedures)



Sound solutions

— Different product construction (aka proof rules)
Semantic equivalence (e.g. compiler loop
optimizations)

— [Necula PLDI’00]

Equivalence with inlining
— Tries to inline upto recursion when equiv does not hold

— Useful mostly in the presence of changes in mutually
recursive procs

— [Godlin & Strichman DAC’09]

Mutual summaries without inference

— [Hawblitzel, Kawaguchi, Lahiri, Rebelo CADE’13]
Mutual summaries with invariant inference

— [Lahiri, McMillan, Sharma, Hawblitzel FSE’13]

More precise

More efficient



Strong semantic equivalence

Construct the EQ procedures
procedure EQ_p_p’(i, i’): (0,0") {
call o := p(i); //modifies g
callo’ :=p’(i');  //modifies g’
}
Perform a bottom up analysis
— Perform equivalence of p and p’ after proving equivalence of callees
— Make equivalent procedures deterministic uninterpreted functions
Recursion

— Sound to assume recursive calls to p and p’ are equivalent when proving
equivalence of p and p’

Problem

— Limited applicability

— Mismatched parameters

— More complex differential invariants



Mutual summaries with invariant

inference

— [S. Lahiri, K. McMiillan, R. Sharma, C. Hawblitzel FSE’13]

* Two steps

— Convert the differential verification problem to a
single program verification problem

— Leverage any program verification technique to infer
invariants on MS_check f f’ procedures

* Why can’t we infer invariants on EQ_f f’
procedure described earlier?

— Because we did not have any callers for these special
procedures



Product

proc f1(x1): r1

modifies g1

{
sl;

L1:
w1l :=call hl(el);
tl

}

proc f2(x2): r2

modifies g2

{
S2;

L2:
w2 := call h2(e2);
t2

Program

Instrument calls

Instrument calls

eplay,
constrain;
restore

—

proc f1_f2(x1,x2) returns (r1,r2) |

modifies gl, g2

// initialize call witness variables
b1, b_I2, .. := false, false,

.[[51 1l
il
| call

b_I1
o1,

[[tr:]]

[[s2:]]
2:

12
| call

b_lZ
o2,

L1
gill =l gl - ’r':fqi'nr [
wl := hl{el): i
= true; //set call witness

goll = wl, gl; //store outputs

L
gil2 — e2 g2 - //sh [
w2 = h2(e2); i
= true, //set call witness

go 12 = w2, g2; //store outputs

[112:] |

/fone block for each pair of call sites
//for a pair of mapped procedures

if (bl && b_12) { //for (L1,L2) pair
//store the globals
stgl, st g2 :=gl, g2,

i_l1

i_12

assume (k2 == 0 I2 && g2 == gﬂ]?}

//restore globals
gl, g2 :=stgl, st g2;

return;

- f1

- f2




Reduce differential verification =»
single program verification

proc f1_f2(x1,x2) returns (rl,r2)

modifies g1, g2

proc f1(x1): rl1

// initialize call witness wvariables

modifies gl b1, b_12, ... := false, false,6 _
{ EE
s1: Novel product & 52 s & ¢ /7/stere inputs Off-th
Ll bJIl = true; /f/set call witness -t e-
. H o 1, o1l = wl, gl; ‘store outputs
- construction g = ? b
w1l :=call hl(el); (§=15)]
t1 P _ program
) L B2 gy O //store inpurs fi
b2 := l;::e; //se't call witness Verl Ier +
o2, go 12 = w2, g2; //store outputs o . t
proc f2(x2): r2 21 Invarian
ifi /S /one block for each ir of call sites i
modifies g2 fane block i each pair of cal inference
{ , i¥”5’,|;_ltl &S:hb_IQR é _,l:’/far (L1,12) pair
S ’ st_sgfresf_gEZB:'; ;15, g2;
L: S L Tt heaan, 2
w2 = Ca” h2(62),' ::surne (k1 7_: o 11 &:& éll ::I go. )Il)
2 assume (k2 == o_|12 && g2 == go_I2);
restore globals
} } éf 35 = 5gt—3 st_g2;
return;



Properties

— A little formalism first

* For a procedure p,

— TR(p) ={(i,0) |exists an execution from input statei to
output state o} //transition relation

— For a postcondition S of p
* ||S|| =A{(i,o) | all input/output state pairs that make S true}

— p satisfies S if TR(p) <| |S| |
* Applies even to MS_check p p’ procedures

— MS_check_p_p’ satisfies MS(p,p’) if TR(MS_check p p’)
|| MS(p,p’) [



Property

Theorems:

— If each MS_check _p p’ modularly satisfies
MS(p,p’), then each MS_check_p p’ satisfies

MS(p,p’)
* |t allows us to infer invariants treating
MS check p p’ as a single program



Automatic differential invariant
inference

e Exploit the structural similarity between
programs

— Provide simple differential predicates (difficult to infer
by program verification tools such as iZ3)

— Predicates x <> x’, where xin pand x”  in p’, and <> €
{==; <:’ >=’ ==>’ }
* Predicate Abstraction [Graf&Saidi ‘95]
— Infer Boolean combination of predicates

— Can efficiently infer subsets of predicates that hold
(Houdini)



Implementation Workflow

P1 bpl ]

P2 bpl ]

Product

Invariant

___inference

annotated]

| BI P1P2. bp' [ P1P2.bpl

Differential
templates
Booleans: v; =

Uy, Uy = Vg
Integers: v; <

Uy, Uy < 1y
Otherwise: v; = v,

Boogie




SymDiff Applications

* Differential memory safety for buffer bounds
ougfixes

* Proving approximate transformations safe

* Cross-version compiler validation of CLR
— [Hawblitzel, Lahiri et al. FSE’13, Lahiri et al. CAV’15]
* Translation validation of compiler loop
optimizations
* Ironclad informational flow checking
— [Hawblitzel et al. OSDI ‘14]



Verifying Bug Fixes
* Does a fix inadvertently introduce new bugs?

 \erisec suite:

“snippets of open source programs which contain
buffer overflow vulnerabilities, as well as
corresponding patched versions.”

* Relative buffer overflow checking

* Examples include apache, madwifi, sendmail, ...



http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/dac_examples/madwifi1/
http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/dac_examples/sendmail1/

Stringcopy (revisited)

void strcopy_buggy void strcopy_correct
(char* dst, char*src, int size) (char* dst, char*src, int size)
{ {
int 1=0; int i=0;
for(;*src && i<size-1; i++) for(;i<size-1 && *src; i++)
*dst++ = *Src++; *dst++ = *src++;
*dst = 0; sdtmp = O;
} }

Can prove relative memory-safety automatically
* No preconditions required
* Assertion does not need to know the buffer length!

Relative invariants:
src.1=src.2, dst.1=dst.2, size.1=size.2, i.1=i.2, ok.1 ==




Example

int main_buggy()
{

fb := 0;
while(cl=read() !=EOF)
{
fbuf[fb] = c1;
Tb++;

Buffer
Overflow

1nt main_patched()
{

fb := 0;
while(cl=read() !=EOF)
{

fbuf[fb] = c1;

Tb++;

1f(fb >= MAX)

fb = 0;

}
Invariant: fb.2<=fb.1



Safety of approximate transformations

* Programmer may
sacrifice some
precision to optimize
performance
— Multimedia

applications, search
results

— Programmers can
control which part of
the program/data is
stored in approximate

function RelaxedEg(x:int, v:int) returns (bool) {
(x <= 18 &% x == y) || (x > 168 && y >= 18)
}

procedure swish(maxz_r:i
returns (num_r:in
old max r := max r;
assume FelaxedEg(ol

Verification effort
300LOC in Coq
[Carbin et al. ‘12]>

num_r := &;
while (num_r < ma 4 predicates in
NUm_Tr := num_r ]
return; Syleff
}

but faster hardware
(more prone to faults)

Fig. 2: Swish++ example with dyn¥fic knobs approximation.

var arr:[int]int;
Var n:int; wvar x:in
procedure Replace

call Helper (&)
}

procedure Helper
var tmp:int;
if (i « n && a

Precise taint
tracking of array
fragments

tmp := arr[i]’
havoc tmp:
arr[i] := tmp == x 7
call Helper(i+1);

Fig. 1: Replacing a character in a string.

Lahiri, Haran, He, Rakamaric MSRTR 2015


http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/resilience/approx_feb_2015/examples/carbin-12/swish-absHoudini/ms_symdiff_file.bpl
http://symdiff.codeplex.com/SourceControl/latest#SymDiff/Test/resilience/approx_feb_2015/examples/control/arr1-absHoudini/ms_symdiff_file.bpl

Outline

v’ Motivation

v' SymDiff: A differential program verifier
— Program verification background
— Differential specifications
— Differential program verification
* SymDiff: Applications
e Other applications of differential reasoning for existing
verifiers
— Verification modulo versions, Interleaved bugs

e Other works in differential cross-version program analysis

 Works in differential analysis of independent
implementations



SymDiff Applications

v’ Differential memory safety for buffer bounds
ougfixes

v Proving approximate transformations safe

* Cross-version compiler validation of CLR
— [Hawblitzel, Lahiri et al. FSE’13, Lahiri et al. CAV’15]
* Translation validation of compiler loop
optimizations
* Ironclad informational flow checking
— [Hawblitzel et al. OSDI ‘14]




Source

ARM+opt

ARM

X86+opt

X86

Compiler validation

— Cross-version compiler
‘ validation of
____________________________ ‘
| - Checked binaries
______________ IL across versions,
: architectures,
______________ | @ optimizations

- Found several bugs in

Versions

production compiler
v2 (was used by compiler
testing team)




Compatibility: x86 vs. x86 example

[ ]

| 2] CudgiSernanticDiffibinttestitracefn O = & X || @& AnalyzeTraces "} 5.¢ cod

1: ;i Azsembly listing for method System. Windows. FrameworkElement: ~
Windows. FrameworkElement: get SubtreeHaszlocadedChangeHandler (bool)

set SubtreeHazLoadedChangeHandler (bool)

2 ; Emitting BLENDED CODE for Pentium 4
A ; optimized code
q: ; EEP based frame
5. ; partially interruptikle
=F ; Final local variable assignments
7 H
g ; w00 this [voo,ToO0] ( 3, 3 ) raf
—-> ECH this
O ; V01 argl [vO0l,T01] ( 3, 31 kool
—> EAX
10:
11: € M63730 IGO1:
12: movy EAX, EDX
13:
14: & MGE3I730_IG0Z:
15: and EAX, 255

[2ax = 18B1]
16: push EAX

[stored value = 181]
17: mov EDX, 0x100000

18: call System. Windows.

FrameworkElement: WriteInternalFlag?
(int ,bool)

possible cause:

2 ; Emitting BELENDED CODE for Pentium 4
3: ; optimized code
4: ; ezp based frame
5: ; partially interruptible
G ; Final local wvariable assignments
7 ;
3: ; W00 this [(voa,Toal] ¢ 3, 39 ref
-» ecH this
9: ; W01 argl [vO0l,T01] ¢ 3, 31 bool
-> ezl
10:
11: G M57940 TGO1:
12: push ESI
13: mov ESI, EDX
14:
15: > M57940 TI=0Z2:
16: and ESI, 254

[e=si = 111]
17: push EST

[stored value = 111]
18: mov EDX, 0x100000

19: call System. Windows.

FrameworkElement: WriteInternalFlag?2
(int ,bool)

argument 3 (Mem[esp+0]) differs:

m




Large x86 vs. ARM example

\i;:l| a Cihodgj i SernanticDiff\binttestitracelpch005300NEQ_p_ yop_cex 1 outanalyze.htm DL~ X || @Analy’zeTraces | | {f-} ﬁ {é}

i, <=2 %

m




Translation validation of compiler loop
optimizations

— Looked at translation validation of parameterized programs [Kundu, Tatlock, Lerner
‘09]

— Manual mutual summaries (to test the extent of mutual summaries)

* Optimizations that can be proveg

— Copy propagation, constant propagaté Reasonable since manual
elimination, partial redundancy eli changes are seldom as
hoisting, conditional speculation, spg complex
loop unswitching, loop unrolling, loop%

* Optimizations that can’t be proved

— Loop alignment, loop interchange, loop reversal, loop skewing, loop
fusion, loop distribution

— Reason: the order of updates to array indices differ

— Previous works need a PERMUTE rule specific to reorder loop
iterations [Zuck et al. ‘O5]




Outline

v’ Motivation

v' SymDiff: A differential program verifier
v’ Program verification background
v’ Differential specifications
v’ Differential program verification
v SymDiff: Applications
e Other applications of differential reasoning for existing
verifiers
— Verification modulo versions, Interleaved bugs

e Other works in differential cross-version program analysis

 Works in differential analysis of independent
implementations



Diff verif for existing verifiers

— Program verifiers suffer from false alarm due to under constrained
environments (stubs, inputs)
* Verification Modulo Versions (VMV)
— [Logozzo, Lahiri, Fahndrich, Blackshear PLDI’14]

— Necessary and sufficient conditions to give relative guarantees, or
point regressions (based on abstract interpretation)

— Integrated with production static analyzer Clousot, verifying 80% of
alarms for relative correctness

* Interleaved bugs for concurrent programs
— [Joshi, Lahiri, Lal POPL'12]
— _Using coarse interleavings as a specification to tolerate environment
imprecision
— Applied on concurrent device drivers in Windows



Related works in cross-version
program analysis

Regression verification [Godlin & Strichman
DAC’09,..]

Differential symbolic execution [Person et al.
FSE’0S8,..], DISE [Person et al. PLDI'12]

Abstract differencing using abstract
interpreters [Partush et al. "13]

UC-KLEE [Ramos & Engler CAV’11]
Change contracts [Yi et al. ISSTA’13]




Other examples of differential analysis
of independent implementations

 Compiler testing
— Translation validation [Pnueli et al.’98, Necula ’00,...]
— Differential compiler testing [Regehr et al. PLDI'11, ..]

* Security testing

— Java security APIs vulnerabilities [Srivastava et al.
PLDI'11]

— SSL/TLS certificate validation [Brubaker et al. S&P’14]

— String validation in web applications[Alkhalaf et al.
ISSTA'14]



Outline

v’ Motivation

v' SymDiff: A differential program verifier
v’ Program verification background
v’ Differential specifications
v’ Differential program verification
v SymDiff: Applications
v’ Other applications of differential reasoning for existing
verifiers
v’ Verification modulo versions, Interleaved bugs

v’ Other works in differential cross-version program analysis

v' Works in differential analysis of independent
implementations



Summary

A framework to

— Leverage and extend program
verification for differential verification

Source code
http://symdiff.codeplex.com/

Papers etc.
http://research.microsoft.com/symdiff



http://symdiff.codeplex.com/
http://research.microsoft.com/symdiff

Research questions

Relative termination

Semantic change impact analysis
Adding probabilistic reasoning

Other generic relative specifications
Diff verification of concurrent programs



