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Abstract

The greedy algorithm is extensively studied in the field of combinatorial optimiza-
tion for decades. In this paper, we address the online learning problem when the
input to the greedy algorithm is stochastic with unknown parameters that have
to be learned over time. We first propose the greedy regret and ε-quasi greedy
regret as learning metrics comparing with the performance of offline greedy algo-
rithm. We then propose two online greedy learning algorithms with semi-bandit
feedbacks, which use multi-armed bandit and pure exploration bandit policies at
each level of greedy learning, one for each of the regret metrics respectively. Both
algorithms achieve O(log T ) problem-dependent regret bound (T being the time
horizon) for a general class of combinatorial structures and reward functions that
allow greedy solutions. We further show that the bound is tight in T and other
problem instance parameters.

1 Introduction

The greedy algorithm is simple and easy-to-implement, and can be applied to solve a wide range of
complex optimization problems, either with exact solutions (e.g. minimum spanning tree [22, 29])
or approximate solutions (e.g. maximum coverage [12] or influence maximization [19]). Moreover,
for many practical problems, the greedy algorithm often serves as the first heuristic of choice and
performs well in practice even when it does not provide a theoretical guarantee.

The classical greedy algorithm assumes that a certain reward function is given, and it constructs the
solution iteratively. In each phase, it searches for a local optimal element to maximize the marginal
gain of reward, and add it to the solution. We refer to this case as the offline greedy algorithm with
a given reward function, and the corresponding problem the offline problems. The phase-by-phase
process of the greedy algorithm naturally forms a decision sequence to illustrate the decision flow in
finding the solution, which is named as the greedy sequence. We characterize the decision class as an
accessible set system, a general combinatorial structure encompassing many interesting problems.

In many real applications, however, the reward function is stochastic and is not known in advance,
and the reward is only instantiated based on the unknown distribution after the greedy sequence is
selected. For example, in the influence maximization problem [19], social influence are propagated
in a social network from the selected seed nodes following a stochastic model with unknown pa-
rameters, and one wants to find the optimal seed set of size k that generates the largest influence
spread, which is the expected number of nodes influenced in a cascade. In this case, the reward of
seed selection is only instantiated after the seed selection, and is only one of the random outcomes.
Therefore, when the stochastic reward function is unknown, we aim at maximizing the expected
reward overtime while gradually learning the key parameters of the expected reward functions. This
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falls in the domain of online learning, and we refer the online algorithm as the strategy of the player,
who makes sequential decisions, interacts with the environment, obtains feedbacks, and accumulates
her reward. For online greedy algorithms in particular, at each time step the player selects and plays
a candidate decision sequence while the environment instantiates the reward function, and then the
player collects the values of instantiated function at every phase of the decision sequence as the
feedbacks (thus the name of semi-bandit feedbacks [2]), and takes the value of the final phase as the
reward cumulated in this step.

The typical objective for an online algorithm is to make sequential decisions against the optimal
solution in the offline problem where the reward function is known a priori. For online greedy
algorithms, instead, we compare it with the solution of the offline greedy algorithm, and minimize
their gap of the cumulative reward over time, termed as the greedy regret. Furthermore, in some
problems such as influence maximization, the reward function is estimated with error even for the
offline problem [19] and thus the greedily selected element at each phase may contain some ε error.
We call such greedy sequence as ε-quasi greedy sequence. To accommodate these cases, we also
define the metric of ε-quasi greedy regret, which compares the online solution against the minimum
offline solution from all ε-quasi greedy sequences.

In this paper, we propose two online greedy algorithms targeted at two regret metrics respectively.
The first algorithm OG-UCB uses the stochastic multi-armed bandit (MAB) [25, 8], in particular
the well-known UCB policy [3] as the building block to minimize the greedy regret. We apply the
UCB policy to every phase by associating the confidence bound to each arm, and then choose the
arm having the highest upper confidence bound greedily in the process of decision. For the second
scenario where we allow tolerating ε-error for each phase, we propose a first-explore-then-exploit
algorithm OG-LUCB to minimize the ε-quasi greedy regret. For every phase in the greedy process,
OG-LUCB applies the LUCB policy [18, 9] which depends on the upper and lower confidence
bound to eliminate arms. It first explores each arm until the lower bound of one arm is higher than the
upper bound of any other arm within an ε-error, then the stage of current phase is switched to exploit
that best arm, and continues to the next phase. Both OG-UCB and OG-LUCB achieve the problem-
dependentO(log T ) bound in terms of the respective regret metrics, where the coefficients in front of
T depends on direct elements along the greedy sequence (a.k.a., its decision frontier) corresponding
to the instance of learning problem. The two algorithms have complementary advantages: when we
really target at greedy regret (setting ε to 0 for OG-LUCB), OG-UCB has a slightly better regret
guarantee and does not need an artificial switch between exploration and exploitation; when we are
satisfied with ε-quasi greedy regret, OG-LUCB works but OG-UCB cannot be adapted for this case
and may suffer a larger regret. We also show a problem instance in this paper, where the upper bound
is tight to the lower bound in T and other problem parameters.

We further show our algorithms can be easily extended to the knapsack problem, and applied to
the stochastic online maximization for consistent functions and submodular functions, etc., in the
supplementary material.

To summarize, our contributions include the following: (a) To the best of our knowledge, we are
the first to propose the framework using the greedy regret and ε-quasi greedy regret to characterize
the online performance of the stochastic greedy algorithm for different scenarios, and it works for a
wide class of accessible set systems and general reward functions; (b) We propose Algorithms OG-
UCB and OG-LUCB that achieve the problem-dependent O(log T ) regret bound; and (c) We also
show that the upper bound matches with the lower bound (up to a constant factor).

Due to the space constraint, the analysis of algorithms, applications and empirical evaluation of the
lower bound are moved to the supplementary material.

Related Work. The multi-armed bandit (MAB) problem for both stochastic and adversarial set-
tings [25, 4, 6] has been widely studied for decades. Most work focus on minimizing the cumulative
regret over time [3, 16], or identifying the optimal solution in terms of pure exploration bandits
[1, 18, 7]. Among those work, there is one line of research that generalizes MAB to combinatorial
learning problems [8, 15, 2, 11, 24, 26, 9]. Our paper belongs to this line considering stochastic
learning with semi-bandit feedbacks, while we focus on the greedy algorithm, the structure and its
performance measure, which have not been addressed.

The classical greedy algorithms in the offline setting are studied in many applications [22, 29, 12, 5],
and there is a line of work [17, 20] focusing on characterizing the greedy structure for solutions. We
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adopt their characterizations of accessible set systems to the online setting of the greedy learning.
There is also a branch of work using the greedy algorithm to solve online learning problem, while
they require the knowledge of the exact form of reward function, restricting to special functions such
as linear [2, 23] and submodular rewards [31, 14]. Our work does not assume the exact form, and it
covers a much larger class of combinatorial structures and reward functions.

2 Preliminaries

Online combinatorial learning problem can be formulated as a repeated game between the environ-
ment and the player under stochastic multi-armed bandit framework.

Let E = {e1, e2, . . . , en} be a finite ground set of size n, and F be a collection of subsets of E. We
consider the accessible set system (E,F) satisfying the following two axioms: (1) ∅ ∈ F ; (2) If S ∈
F and S 6= ∅, then there exists some e in E, s.t., S \{e} ∈ F . We define any set S ⊆ E as a feasible
set if S ∈ F . For any S ∈ F , its accessible set is defined as N (S) := {e ∈ E \ S : S ∪ {e} ∈ F}.
We say feasible set S is maximal if N (S) = ∅. Define the largest length of any feasible set as
m := maxS∈F |S| (m ≤ n), and the largest width of any feasible set as W := maxS∈F |N (S)|
(W ≤ n). We say that such an accessible set system (E,F) is the decision class of the player. In the
class of combinatorial learning problems, the size of F is usually very large (e.g., exponential in m,
W and n).

Beginning with an empty set, the accessible set system (E,F) ensures that any feasible set S can
be acquired by adding elements one by one in some order (cf. Lemma A.1 in the supplementary
material for more details), which naturally forms the decision process of the player. For conve-
nience, we say the player can choose a decision sequence, defined as an ordered feasible sets
σ := 〈S0, S1, . . . , Sk〉 ∈ Fk+1 satisfying that ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk and for any i = 1, 2, . . . , k,
Si = Si−1 ∪{si} where si ∈ N (Si−1). Besides, define decision sequence σ as maximal if and only
if Sk is maximal.

Let Ω be an arbitrary set. The environment draws i.i.d. samples from Ω as ω1, ω2, . . . , at each time
t = 1, 2, . . . , by following a predetermined but unknown distribution. Consider reward function
f : F × Ω → R that is bounded, and it is non-decreasing1 in the first parameter, while the exact
form of function is agnostic to the player. We use a shorthand ft(S) := f(S, ωt) to denote the
reward for any given S at time t, and denote the expected reward as f(S) := Eω1

[f1(S)], where the
expectation Eωt is taken from the randomness of the environment at time t. For ease of presentation,
we assume that the reward function for any time t is normalized with arbitrary alignment as follows:
(1) ft(∅) = L (for any constant L ≥ 0); (2) for any S ∈ F , e ∈ N (S), ft(S∪{e})−ft(S) ∈ [0, 1].
Therefore, reward function f(·, ·) is implicitly bounded within [L,L+m].

We extend the concept of arms in MAB, and introduce notation a := e|S to define an arm, repre-
senting the selected element e based on the prefix S, where S is a feasible set and e ∈ N (S); and
define A := {e|S : ∀S ∈ F ,∀e ∈ N (S)} as the arm space. Then, we can define the marginal
reward for function ft as ft(e|S) := ft(S ∪ {e})− ft(S), and the expected marginal reward for f
as f(e|S) := f(S ∪{e})− f(S). Notice that the use of arms characterizes the marginal reward, and
also indicates that it is related to the player’s previous decision.

2.1 The Offline Problem and The Offline Greedy Algorithm

In the offline problem, we assume that f is provided as a value oracle. Therefore, the objective is
to find the optimal solution S∗ = arg maxS∈F f(S), which only depends on the player’s decision.
When the optimal solution is computationally hard to obtain, usually we are interested in finding
a feasible set S+ ∈ F such that f(S+) ≥ αf(S∗) where α ∈ (0, 1], then S+ is called an α-
approximation solution. That is a typical case where the greedy algorithm comes into play.

The offline greedy algorithm is a local search algorithm that refines the solution phase by
phase. It goes as follows: (a) Let G0 = ∅; (b) For each phase k = 0, 1, . . . , find
gk+1 = arg maxe∈N (Gk) f(e|Gk), and let Gk+1 = Gk ∪ {gk+1}; (c) The above process ends
when N (Gk+1) = ∅ (Gk+1 is maximal). We define the maximal decision sequence σG :=

1Therefore, the optimal solution is a maximal decision sequence.
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〈G0, G1, . . . , GmG〉 (mG is its length) found by the offline greedy as the greedy sequence. For sim-
plicity, we assume that it is unique.

One important feature is that the greedy algorithm uses a polynomial number of calls
(poly(m,W,n)) to the offline oracle, even though the size of F or A may be exponentially large.

In some cases such as the offline influence maximization problem [19], the value of f(·) can only be
accessed with some error or estimated approximately. Sometimes, even though f(·) can be computed
exactly, we may only need an approximate maximizer in each greedy phase in favor of computational
efficiency (e.g., efficient submodular maximization [27]). To capture such scenarios, we say a max-
imal decision sequence σ = 〈S0, S1, . . . , Sm′〉 is an ε-quasi greedy sequence (ε ≥ 0), if the greedy
decision can tolerate ε error every phase, i.e., for each k = 0, 1, . . . ,m′−1 and Sk+1 = Sk∪{sk+1},
f(sk+1|Sk) ≥ maxs∈N (Sk) f(s|Sk)− ε. Notice that there could be many ε-quasi greedy sequences,
and we denote σQ := 〈Q0, Q1, . . . , QmQ〉 (mQ is its length) as the one with the minimum reward,
that is f(QmQ) is minimized over all ε-quasi greedy sequences.

2.2 The Online Problem

In the online case, in constrast f is not provided. The player can only access one of functions
f1, f2, . . . , generated by the environment, for each time step during a repeated game.

For each time t, the game proceeds in the following three steps: (1) The environment draws
i.i.d. sample ωt ∈ Ω from its predetermined distribution without revealing it; (2) the player may,
based on her previous knowledge, select a decision sequence σt = 〈S0, S1, . . . , Smt〉, which re-
flects the process of her decision phase by phase; (3) then, the player plays σt and gains reward
ft(Smt), while observes intermediate feedbacks ft(S0), ft(S1), . . . , ft(Smt) to update her knowl-
edge. We refer such feedbacks as semi-bandit feedbacks in the decision order.

For any time t = 1, 2, . . . , denote σt = 〈St0, St1, . . . , Stmt〉 and St := Stmt . The player is to make se-
quential decisions, and the classical objective is to minimize the cumulative gap of rewards against
the optimal solution [3] or the approximation solution [11]. For example, when the optimal solu-
tion S∗ = arg maxS∈F E [f1(S)] can be solved in the offline problem, we minimize the expected
cumulative regret R(T ) := T · E [f1(S∗)] −

∑T
t=1 E [ft(S

t)] over the time horizon T , where the
expectation is taken from the randomness of the environment and the possible random algorithm of
the player. In this paper, we are interested in online algorithms that are comparable to the solution
of the offline greedy algorithm, namely the greedy sequence σG = 〈G0, G1, . . . , GmG〉. Thus, the
objective is to minimize the greedy regret defined as

RG(T ) := T · E [f1(GmG)]−
T∑
t=1

E
[
ft(S

t)
]
. (1)

Given ε ≥ 0, we define the ε-quasi greedy regret as

RQ(T ) := T · E[f1(QmQ)]−
T∑
t=1

E
[
ft(S

t)
]
, (2)

where σQ = 〈Q0, Q1, . . . , QmQ〉 is the minimum ε-quasi greedy sequence.

We remark that if the offline greedy algorithm provides an α-approximation solution (with 0 < α ≤
1), then the greedy regret (or ε-quasi greedy regret) also provides α-approximation regret, which is
the regret comparing to the α fraction of the optimal solution, as defined in [11].

In the rest of the paper, our goal is to design the player’s policy that is comparable to the offline
greedy, in other words, RG(T )/T = f(GmG) − 1

T

∑T
t=1 E [ft(S

t)] = o(1). Thus, to achieve sub-
linear greedy regret RG(T ) = o(T ) is our main focus.

3 The Online Greedy and Algorithm OG-UCB

In this section, we propose our Online Greedy (OG) algorithm with the UCB policy to minimize the
greedy regret (defined in (1)).
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Algorithm 1 OG
Require: MaxOracle

1: for t = 1, 2, . . . do
2: S0 ← ∅; k ← 0; h0 ← true
3: repeat . online greedy procedure
4: A← {e|Sk : ∀e ∈ N (Sk)}; t′ ←

∑
a∈AN(a) + 1

5: (sk+1|Sk, hk)← MaxOracle
(
A, X̂(·), N(·), t′

)
. find the current maximal

6: Sk+1 ← Sk ∪ {sk+1}; k ← k + 1
7: until N (Sk) = ∅ . until a maximal sequence is found
8: Play sequence σt ← 〈S0, . . . , Sk〉, observe {ft(S0), . . . , ft(Sk)}, and gain ft(Sk).
9: for all i = 1, 2, . . . , k do . update according to signals from MaxOracle

10: if h0, h1, · · · , hi−1 are all true then
11: Update X̂(si|Si−1) and N(si|Si−1) according to (3).

Subroutine 2 UCB(A, X̂(·), N(·), t) to implement MaxOracle

Setup: confidence radius radt(a) :=
√

3 ln t
2N(a) , for each a ∈ A

1: if ∃a ∈ A, X̂(a) is not initialized then . break ties arbitrarily
2: return (a, true) . to initialize arms
3: else . apply UCB’s rule
4: I+

t ← arg maxa∈A

{
X̂(a) + radt(a)

}
, and return (I+

t , true)

For any arm a = e|S ∈ A, playing a at each time t yields the marginal reward as a random variable
Xt(a) = ft(a), in which the random event ωt ∈ Ω is i.i.d., and we denote µ(a) as its true mean (i.e.,
µ(a) := E [X1(a)]). Let X̂(a) be the empirical mean for the marginal reward of a, and N(a) be the
counter of the plays. More specifically, denote X̂t(a) and Nt(a) for particular X̂(a) and N(a) at
the beginning of the time step t, and they are evaluated as follows:

X̂t(a) =

∑t−1
i=1 fi(a)Ii(a)∑t−1

i=1 Ii(a)
, Nt(a) =

t−1∑
i=1

Ii(a), (3)

where Ii(a) ∈ {0, 1} indicates whether a is updated at time i. In particular, assume that our algo-
rithm is lazy-initialized so that each X̂(a) and N(a) is 0 by default, until a is played.

The Online Greedy algorithm (OG) proposed in Algorithm 1 serves as a meta-algorithm allow-
ing different implementations of Subroutine MaxOracle. For every time t, OG calls MaxOracle
(Line 5, to be specified later) to find the local maximal phase by phase, until the decision sequence σt
is made. Then, it plays sequence σt, observes feedbacks and gains the reward (Line 8). Meanwhile,
OG collects the Boolean signals (hk) from MaxOracle during the greedy process (Line 5), and up-
date estimators X̂(·) and N(·) according to those signals (Line 10). On the other hand, MaxOracle

takes accessible arms A, estimators X̂(·), N(·), and counted time t′, and returns an arm from A and
signal hk ∈ {true, false} to instruct OG whether to update estimators for the following phase.

The classical UCB [3] can be used to implement MaxOracle, which is described in Subroutine 2.
We term our algorithm OG, in which MaxOracle is implemented by Subroutine 2 UCB, as Algo-
rithm OG-UCB. A few remarks are in order: First, Algorithm OG-UCB chooses an arm with the
highest upper confidence bound for each phase. Second, the signal hk is always true, meaning that
OG-UCB always update empirical means of arms along the decision sequence. Third, because we
use lazy-initialized X̂(·) and N(·), the memory is allocated only when it is needed.

3.1 Regret Bound of OG-UCB

For any feasible set S, define the greedy element for S as g∗S := arg maxe∈N (S) f(e|S), and we use
N−(S) := N (S) \ {g∗S} for convenience. Denote F† := {S ∈ F : S is maximal} as the collection
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of all maximal feasible sets in F . We use the following gaps to measure the performance of the
algorithm.
Definition 3.1 (Gaps). The gap between the maximal greedy feasible set GmG and any S ∈ F is
defined as ∆(S) := f(GmG) − f(S) if it is positive, and 0 otherwise. We define the maximum gap
as ∆max = f(GmG)−minS∈F† f(S), which is the worst penalty for any maximal feasible set. For
any arms a = e|S ∈ A, we define the unit gap of a (i.e., the gap for one phase) as

∆(a) = ∆(e|S) :=

{
f(g∗S |S)− f(e|S), e 6= g∗S
f(g∗S |S)−maxe′∈N−(S) f(e′|S), e = g∗S

. (4)

For any arms a = e|S ∈ A, we define the sunk-cost gap (irreversible once selected) as

∆∗(a) = ∆∗(e|S) := max

{
f(GmG)− min

V :V ∈F†,S∪{e}≺V
f(V ), 0

}
, (5)

where for two feasible sets A and B, A ≺ B means that A is a prefix of B in some decision
sequence, that is, there exists a decision sequence σ = 〈S0 = ∅, S1, . . . , Sk〉 such that Sk = B and
for some j < k, Sj = A. Thus, ∆∗(e|S) means the largest gap we may have after we have fixed our
prefix selection to be S ∪ {e}, and is upper bounded by ∆max.
Definition 3.2 (Decision frontier). For any decision sequence σ = 〈S0, S1, . . . , Sk〉, define decision
frontier Γ(σ) :=

⋃k
i=1 {e|Si−1 : e ∈ N (Si−1)} ⊆ A as the arms need to be explored in the decision

sequence σ, and Γ−(σ) :=
⋃k
i=1 {e|Si−1 : ∀e ∈ N−(Si−1)} similarly.

Theorem 3.1 (Greedy regret bound). For any time T , Algorithm OG-UCB (Algorithm 1 with Sub-
routine 2) can achieve the greedy regret

RG(T ) ≤
∑

a∈Γ−(σG)

(
6∆∗(a) · lnT

∆(a)2
+

(
π2

3
+ 1

)
∆∗(a)

)
, (6)

where σG is the greedy decision sequence.

When m = 1, the above theorem immediately recovers the regret bound of the classical UCB
[3] (with ∆∗(a) = ∆(a)). The greedy regret is bounded by O

(
mW∆max log T

∆2

)
where ∆ is the

minimum unit gap (∆ = mina∈A∆(a)), and the memory cost is at most proportional to the regret.
For a special class of linear bandits, a simple extension where we treat arms e|S and e|S′ as the
same can make OG-UCB essentially the same as OMM in [23], while the regret is O( n∆ log T ) and
the memory cost is O(n) (cf. Appendix F.1 of the supplementary material).

4 Relaxing the Greedy Sequence with ε-Error Tolerance

In this section, we propose an online algorithm called OG-LUCB, which learns an ε-quasi greedy
sequence, with the goal of minimizing the ε-quasi greedy regret (in (2)). We learn ε-quasi-greedy
sequences by a first-explore-then-exploit policy, which utilizes results from PAC learning with a
fixed confidence setting. In Section 4.1, we implement MaxOracle via the LUCB policy, and derive
its exploration time; we then assume the knowledge of time horizon T in Section 4.2, and analyze
the ε-quasi greedy regret; and in Section 4.3, we show that the assumption of knowing T can be
further removed.

4.1 OG with a first-explore-then-exploit policy

Given ε ≥ 0 and failure probability δ ∈ (0, 1), we use Subroutine 3 LUCBε,δ to implement the sub-
routine MaxOracle in Algorithm OG. We call the resulting algorithm OG-LUCBε,δ . Specifically,
Subroutine 3 is adapted from CLUCB-PAC in [9], and specialized to explore the top-one element in
the support of [0, 1] (i.e., set R = 1

2 , width(M) = 2 and Oracle = arg max in [9]). Assume that
Iexploit(·) is lazy-initialized. For each greedy phase, the algorithm first explores each arm in A in the
exploration stage, during which the return flag (the second return field) is always false; when the
optimal one is found (initialize Iexploit(A) with Ît), it sticks to Iexploit(A) in the exploitation stage
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Subroutine 3 LUCBε,δ(A, X̂(·), N(·), t) to implement MaxOracle

Setup: radt(a) :=
√

ln(4Wt3/δ)
2N(a) , for each a ∈ A; Iexploit(·) to cache arms for exploitation;

1: if Iexploit(A) is initialized then return (Iexploit(A), true) . in the exploitation stage
2: if ∃a ∈ A, X̂(a) is not initialized then . break ties arbitrarily
3: return (a, false) . to initialize arms
4: else
5: Ît ← arg maxa∈A X̂(a)

6: ∀a ∈ A, X ′(a)←

{
X̂(a) + radt(a), a 6= Ît
X̂(a)− radt(a), a = Ît

. perturb arms

7: I ′t ← arg maxa∈AX
′(a)

8: if X ′(I ′t)−X ′(Ît) > ε then . not separated
9: I ′′t ← arg maxi∈{Ît,I′t} radt(i), and return (I ′′t , false) . in the exploration stage

10: else . separated
11: Iexploit(A)← Ît . initialize Iexploit(A) with Ît
12: return (Iexploit(A), true) . in the exploitation stage

for the subsequent time steps, and return flag for this phase becomes true. The main algorithm OG
then uses these flags in such a way that it updates arm estimates for phase i if any only if all phases
for j < i are already in the exploitation stage. This avoids maintaining useless arm estimates and is
a major memory saving comparing to OG-UCB.

In Algorithm OG-LUCBε,δ , we define the total exploration time T E = T E(δ), such that for any
time t ≥ T E, OG-LUCBε,δ is in the exploitation stage for all greedy phases encountered in the
algorithm. This also means that after time T E, in every step we play the same maximal decision
sequence σ = 〈S0, S1, · · · , Sk〉 ∈ Fk+1, which we call a stable sequence. Following a common
practice, we define the hardness coefficient with prefix S ∈ F as

Hε
S :=

∑
e∈N (S)

1

max {∆(e|S)2, ε2}
, where ∆(e|S) is defined in (4). (7)

Rewrite definitions with respect to the ε-quasi regret. Recall that σQ = 〈Q0, Q1, . . . , QmQ〉 is
the minimum ε-quasi greedy sequence. In this section, we rewrite the gap ∆(S) := max{f(QmQ)−
f(S), 0} for any S ∈ F , the maximum gap ∆max := f(QmQ) − minS∈F† f(S), and ∆∗(a) =

∆∗(e|S) := max
{
f(QmQ)−minV :V ∈F†,S∪{e}≺V f(V ), 0

}
, for any arm a = e|S ∈ A.

The following theorem shows that, with high probability, we can find a stable ε-quasi greedy se-
quence, and the total exploration time is bounded.
Theorem 4.1 (High probability exploration time). Given any ε ≥ 0 and δ ∈ (0, 1), suppose after
the total exploration time T E = T E(δ), Algorithm OG-LUCBε,δ (Algorithm 1 with Subroutine 3)
sticks to a stable sequence σ = 〈S0, S1, · · · , Sm′〉 where m′ is its length. With probability at least
1 −mδ, the following claims hold: (1) σ is an ε-quasi greedy sequence; (2) The total exploration
time satisfies that T E ≤ 127

∑m′−1
k=0 Hε

S ln (1996WHε
S/δ) ,

4.2 Time Horizon T is Known
Knowing time horizon T , we may let δ = 1

T in OG-LUCBε,δ to derive the ε-quasi regret as follows.
Theorem 4.2. Given any ε ≥ 0. When total time T is known, let Algorithm OG-LUCBε,δ run
with δ = 1

T . Suppose σ = 〈S0, S1, · · · , Sm′ 〉 is the sequence selected at time T . Define func-

tion RQ,σ(T ) :=
∑
e|S∈Γ(σ) ∆∗(e|S) min

{
127

∆(e|S)2 ,
113
ε2

}
ln (1996WHε

ST ) + ∆maxm, where m is
the largest length of a feasible set and Hε

S is defined in (7). Then, the ε-quasi regret satisfies that
RQ(T ) ≤ RQ,σ(T ) = O( Wm∆max

max{∆2,ε2} log T ), where ∆ is the minimum unit gap.

In general, the two bounds (Theorem 3.1 and Theorem 4.2) are for different regret metrics, thus can
not be directly compared. When ε = 0, OG-UCB is slightly better only in the constant before log T .
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Algorithm 4 OG-LUCB-R (i.e., OG-LUCB with Restart)
Require: ε

1: for epoch ` = 1, 2, · · · do
2: Clean X̂(·) and N(·) for all arms, and restart OG-LUCBε,δ with δ = 1

φ`
(defined in (8)).

3: Run OG-LUCBε,δ for φ` time steps. (exit halfway, if the time is over.)

On other hand, when we are satisfied with ε-quasi greedy regret, OG-LUCBε,δ may work better for
some large ε, for the bound takes the maximum (in the denominator) of the problem-dependent term
∆(e|S) and the fixed constant ε term, and the memory cost is only O(mW ).

4.3 Time Horizon T is not Known
When time horizon T is not known, we can apply the “squaring trick”, and restart the algorithm for
each epoch as follows. Define the duration of epoch ` as φ`, and its accumulated time as τ`, where

φ` := e2` ; τ` :=

{
0, ` = 0∑`
s=1 φs, ` ≥ 1

. (8)

For any time horizon T , define the final epoch K = K(T ) as the epoch where T lies in, that is
τK−1 < T ≤ τK . Then, our algorithm OG-LUCB-R is proposed in Algorithm 4. The following
theorem shows that the O(log T ) ε-quasi regret still holds, with a slight blowup of the constant
hidden in the big O notation (For completeness, the explicit constant before log T can be found in
Theorem D.7 of the supplementary material).
Theorem 4.3. Given any ε ≥ 0. Use φ` and τ` defined in (8), and function RQ,σ(T ) defined in
Theorem 4.2. In Algorithm OG-LUCB-R, suppose σ(`) = 〈S(`)

0 , S
(`)
1 , · · · , S(`)

m(`)〉 is the sequence
selected by the end of `-th epoch of OG-LUCBε,δ , where m(`) is its length. For any time T , denote
final epoch as K = K(T ) such that τK−1 < T ≤ τK , and the ε-quasi regret satisfies that RQ(T ) ≤∑K
`=1R

Q,σ(`)

(φ`) = O
(

Wm∆max

max{∆2,ε2} log T
)

, where ∆ is the minimum unit gap.

5 Lower Bound on the Greedy Regret

Consider a problem of selecting one element each from m bandit instances, and the player sequen-
tially collects prize at every phase. For simplicity, we call it the prize-collecting problem, which is
defined as follows: For each bandit instance i = 1, 2, . . . ,m, denote set Ei = {ei,1, ei,2, . . . , ei,W }
of sizeW . The accessible set system is defined as (E,F), where E =

⋃m
i=1Ei, F = ∪mi=1Fi∪{∅},

andFi = {S ⊆ E : |S| = i,∀k : 1 ≤ k ≤ i, |S∩Ek| = 1}. The reward function f : F×Ω→ [0,m]
is non-decreasing in the first parameter, and the form of f is unknown to the player. Let minimum
unit gap ∆ := min

{
f(g∗S |S)− f(e|S) : ∀S ∈ F ,∀e ∈ N−(S)

}
> 0, where its value is also un-

known to the player. The objective of the player is to minimize the greedy regret.

Denote the greedy sequence as σG = 〈G0, G1, · · · , Gm〉, and the greedy arms as AG =
{g∗Gi−1

|Gi−1 : ∀i = 1, 2, · · · ,W}. We say an algorithm is consistent, if the sum of playing all
arms a ∈ A \ AG is in o(T η), for any η > 0, i.e., E[

∑
a∈A\AG NT (a)] = o(T η).

Theorem 5.1. For any consistent algorithm, there exists a problem instance of the prize-collecting
problem, as time T tends to∞, for any minimum unit gap ∆ ∈ (0, 1

4 ), such that ∆2 ≥ 2
3W ξm−1 for

some constant ξ ∈ (0, 1), the greedy regret satisfies that RG(T ) = Ω
(
mW lnT

∆2

)
.

We remark that the detailed problem instance and the greedy regret can be found in Theorem E.2 of
the supplementary material. Furthermore, we may also restrict the maximum gap ∆max to Θ(1), and
the lower bound RG(T ) = Ω(mW∆max lnT

∆2 ), for any sufficiently large T . For the upper bound, OG-
UCB (Theorem 3.1) gives that RG(T ) = O(mW∆max

∆2 log T ), Thus, our upper bound of OG-UCB
matches the lower bound within a constant factor.
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Symbols in the main text Definition
(E,F) the ground set, and the collection of all feasible sets in Section 2
N (S) the accessible set from prefix S in Section 2
n the size of ground set |E| in Section 2
m the maximal length of any feasible set in Section 2
W the maximal width of any accessible set in Section 2
a = e|S, A one arm, and the arm space in Section 2
σ = 〈S0, · · · , Sk〉 a decision sequence in Section 2
f(·, ·), ft(·) the reward function, and its shorthand in Section 2
f(·) the expected reward function in Section 2
σG = 〈G0, · · · , GmG〉 the greedy sequence where mG is its length in Section 2.1
σQ = 〈Q0, · · · , QmQ〉 the minimum ε-quasi greedy sequence where mQ is its length in Section 2.1
Γ(σ) the decision frontier of σ in Section 3.1
Γ−(σ) the decision frontier of σ, excluding all greedy elements in Section 3.1
R(T ) the cumulative regret in Section 2.2
RG(T ), RQ(T ), the greedy regret ((1)), the ε-quasi greedy regret ((2))
Rα(T ) the α-approximation regret discussed in Section 2.2 (formally defined in Definition B.1)
F† the collection of all maximal feasible sets in Section 3.1
X̂(a), N(a), X(a) the mean estimator of {ft(a)}∞t=1, the counter, and the true mean in Section 3
X̂t(a), Nt(a) the particular X̂(a) and N(a) at the beginning of the time step t, in Section 3
g∗S the greedy element of prefix S in Section 3.1
N−(S) the accessible set from prefix S, excluding the greedy element, in Section 3.1
∆(S) the gap between σG (or σQ) and S in Definition 3.1 (or rewritten in Section 4.1)
∆max the maximum gap of ∆(S) defined in Definition 3.1 (or rewritten in Section 4.1)
∆(a) (or ∆(e|S)) the unit gap of arm a = e|S defined in (4)
∆∗(a) (or ∆∗(e|S)) the maximum gap of selecting a = e|S defined in (5) (rewritten in Section 4.1)
Hε
S the hardness coefficient in Section 4.1

T E the total exploration time for OG-LUCBε,δ until a stable sequence is found
NE
t (a) the counter of playing arm a during the exploration before time t in Section 4.1

φ`, τ` the duration of `-th epoch, and its accumulated time defined in (8)
K = K(T ) the final epoch of time horizon T defined in Section 4.3
RQ,σ(T ) an intermediate form of the ε-quasi regret for sequence σ defined in Theorem 4.2

Table 1: List of symbols in the main text.

Appendix

The appendix is organized as follows.

Above all, for ease of reading, we list the symbols and their definitions in the main text in Table 1.

In Appendix A, we show that any feasible set in F is accessible by a decision sequence, and demon-
strate the concrete decision classes in our model with a few examples.

In Appendix B, we formally define α-approximation regret, and give some simple propositions to
show that such a regret can be derived immediately from the greedy regret and the ε-quasi greedy
regret if the offline solution is an α-approximation solution.

In Appendix C, we first establish lemmas by the set decomposition for Algorithm OG-UCB, and
prove that OG-UCB can achieve the problem-dependent O(log T ) greedy regret.

In Appendix D, we relax the greedy sequence to tolerate ε-error. We prove the high-probability ex-
ploration time of for Algorithm OG-LUCBε,δ in the beginning. By letting δ = 1

T with the known
time horizon T , we show that the first-explore-then-exploit policy of Algorithm OG-LUCBε,δ (asso-
ciate δ = 1/T ) achieves the problem-dependent O(log T ) ε-quasi regret bound. Then, we show that
Algorithm OG-LUCB-R utilizing OG-LUCBε,δ can remove the dependence on T , and theO(log T )
bound holds with a slight compensation for its constant.
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In Appendix E, we construct a problem instance of the prize-collecting problem, and show the upper
bound is tight with the lower bound (up to a constant factor).

In Appendix F, we show a simple extension to recover O( n∆ log T ) bound for a linear bandit with
matroid constraints, and discuss an extension of our model to the Knapsack problem.

In Appendix G, we first apply our algorithms to the top-m selection problem with a consistent
function and the online submodular problem, and show the α-approximation regret when the offline
greedy yields an α-approximation solution. Then we discuss the application to the online version of
the influence maximization problem and the probabilistic set cover problem, which may remove the
assumption on one particular diffusion model and avoid the issue of model misspecification.

In Appendix H, we evaluate the lower bound for the prize-collecting problem, and compare the
regret of OG-UCB and the lower bound numerically.

A The Accessible Set System (E,F)

An accessible set system (E,F) (in Section 2) satisfies two axioms:

(A1: Triviality axiom). ∅ ∈ F ;

(A2: Accessibility axiom). If S ∈ F and S 6= ∅, then there exists some e in E, s.t., S \ {e} ∈ F .

We claim that any set S ∈ F can be obtained by adding one element at a time from the empty set.
Formally, we have the following fact.

Lemma A.1 (Accessibility of any feasible set). For any set S ∈ F , denote k = |S|. There exists a
sequence 〈S0, S1, · · · , Sk〉, such that: (1) S0, S1, · · · , Sk ∈ F; (2) ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = S;
(3) |Si| − |Si−1| = 1, for each i = 1, 2, . . . , k.

Proof. If S = ∅, it is obvious that the sequence {S0} satisfies the above three properties, therefore
we only focus on a non-empty S, that is k ≥ 1.

For any set S ∈ F , let Sk = S. From Axiom A2, we know that there exists some e ∈ E,
Sk \ {e} ∈ F , thus we can denote Sk−1 = Sk \ {e}. We can carry on this procedure, and ap-
ply Axiom A2 iteratively. Then we can get Si, for each i = k − 1, k − 2, . . . , 0. Therefore, the
sequence 〈S0, S1, · · · , Sk〉 we found satisfies the three properties, which ends the proof.

Our characterization of accessible set system (E,F) encompasses greedoids and matroids as special
cases, which is studied in the previous literature [5, 17]. More specifically, from [17], we know that:

Definition A.1 (Greedoid). A greedoid is an accessible set system (E,F) satisfying:

(A3: Augmentation axiom). For all S, T ∈ F such that |S| > |T |, there is an x ∈ S \ T such that
T ∪ {x} ∈ F .

Definition A.2 (Matroid). A matroid is a greedoid (E,F) satisfying:

(A4: Hereditary axiom). If S ∈ F and T ⊆ S, then T ∈ F .

In addition, we list a few concrete examples that can fit into our model.

Example A.1 (Top-m selection). In accessible set system (E,F), F contains all sets S ⊆ E, where
|S| ≤ m. Therefore, a maximal feasible set is a subset of size m.

Example A.2 (Spanning Tree). Given a graph G = (V,E), a forest F in G is a subset of edges in E
that does not contains a cycle. The corresponding accessible set system is (E,F), where F = {F ⊆
E : F is a forest}. The maximal set of a spanning tree constraint is a forest that cannot include more
edges.

Example A.3 (Gaussian Elimination Greedoids [32]). Let M = (mij) ∈ Km×n be a n × m
matrix over an arbitrary field K. The accessible set system is (E,F) where E = {1, 2, · · · , n} and
F = {A ⊆ E : the submatrix M{1,2,··· ,|A|},A is non-singular}. It corresponds to the procedure of
performing Gaussian Elimination on rows, which give rise to the sequence of column indices. A
maximal feasible set A makes a submatrix that with the same rank as matrix M .
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Example A.4 (Knapsack). Let the ground set be E = {e1, e2, · · · , en} and the cost function be
λ : E → R>0. Given the budget B for the knapsack problem, the accessible set system is (E,F),
where F = {S ⊆ E :

∑
e∈S λ(e) ≤ B}. (E,F) corresponding to the knapsack problem is neither

a greedoid nor a matroid, but nevertheless still an accessible set system. A maximal feasible set S is
the one that cannot include any more element in E \ S without violating the budget constraint, and
maximal feasible sets may have different lengths.

B Some Simple Propositions

We first formally define α-approximation regret, the regret comparing to the α fraction of the optimal
solution (as defined in [11]), in the following.

Definition B.1 (α-approximation regret). Let S∗ = arg maxS∈F E [f1(S)], and denote σt =
〈St0, St1, . . . , Stmt〉, where St := Stmt , as the decision sequence selected for any time t =
1, 2, · · · , T . We define the α-approximation regret (0 < α ≤ 1) as

Rα(T ) := αT · E [f1(S∗)]−
T∑
t=1

E
[
ft(S

t)
]
. (9)

Then, the next two simple propositions show that the α-approximation regret can be derived from
the greedy regret and ε-quasi greedy regret if the offline greedy algorithm achieves α-approximation
solution.

Proposition B.1. For the greedy sequence σG, if the maximal feasible set in σG is an α-
approximation for the offline problem, where α ∈ (0, 1], then Rα(T ) ≤ RG(T ).

Proof. For the greedy sequence σG := 〈G0, G1, . . . , GmG〉. Since GmG is an α-approximation so-
lution, thus E

[
f1(SG)

]
= f(SG) ≥ αf(S∗) = E [f1(S∗)]. Therefore, it follows that

RG(T ) = T · E
[
f1(SG)

]
−

T∑
t=1

E
[
ft(S

t)
]
≥ T · αE [f1(S∗)]−

T∑
t=1

E
[
ft(S

t)
]

= Rα(T ).

A similar proposition holds for ε-quasi greedy sequences. Among all ε-quasi greedy sequences, we
use σQ := 〈Q0, Q1, . . . , QmQ〉 to denote the one with the minimum reward, where mQ is its size.

Proposition B.2. For an ε-quasi greedy sequence σQ := 〈Q0, Q1, . . . , QmQ〉, if QmQ is an α-
approximation for the offline problem, where α ∈ (0, 1], then Rα(T ) ≤ RQ(T ).

Proof. Since QmQ is an α-approximation, E [f1(QmQ)] = f(QmQ) ≥ αf(S∗) = E [f1(S∗)].
Hence, we can get that

RQ(T ) = T · E [f1(QmQ)]−
T∑
t=1

E
[
ft(S

t)
]
≥ T · αE [f1(S∗)]−

T∑
t=1

E
[
ft(S

t)
]

= Rα(T ).

C Analysis for OG-UCB in Section 3

In this section, we analyze the greedy regret bound for Algorithm OG-UCB (Algorithm 1 + Sub-
routine 2). In Appendix C.1, we first derive a general form of the greedy regret bound. Then, in
Appendix C.2, we analyze the expected number of playing each arm in the decision frontier, and
then obtain the desired greedy regret bound for Algorithm OG-UCB.
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C.1 Set Decomposition

We first define some useful notations. For any time t, suppose Algorithm OG-UCB plays a maximal
decision sequence σt := 〈St0, St1, . . . , Stmt〉 where St := Stmt , and Sti = Sti−1 ∪ {sti} for each i.
Denote the greedy sequence as σG := 〈G0, G1, . . . , GmG〉, where Gi = Gi−1 ∪ {gi} for each i. For
any time t and any i = 1, 2, · · · , define random event Oti := {Gi = Sti} (we define Ot0 = {∅ = ∅}
always holds.) which means that OG-UCB finds the same prefix Sti as the greedy sequence does.
For ease of notation, let Ot0:k :=

⋂k
i=0Oti for each k ≥ 0.

Then, we can get the following lemma by De Morgan’s laws:

Lemma C.1 (Set-decomposition). Fix any k ≥ 1, then
⋂k
i=1Oti =

(
Ot1
)
∪
(
Ot1 ∩ Ot2

)
∪ · · · ∪((⋂k−1

i=1 Oti
)
∩ Otk

)
=
⋃k
j=1

(
Ot0:j−1 ∩ Otj

)
, and each term of its right-hand side is mutually

exclusive.

Notice that Ot1:j−1 ∩ Otj means that the first j − 1 prefixes coincide with the greedy sequence. i.e.,
Gi = Sti , for i = 1, · · · , j − 1; however, at j-th phase, it picks stj 6= gj , that is stj ∈ N−(Gj−1).
Now, we can write the greedy regret as follows.
Lemma C.2. For any time T , the greedy regret of Algorithm OG-UCB satisfies that:

RG(T ) ≤
mG∑
k=1

E

[
T∑
t=1

∆(St) · I
{
Ot1:k−1 ∩ Otk

}]
.

Proof. By definition, f(S) = Eω1 [f1(S)] and ∆(S) = f(GmG)− f(S) for any S ∈ F . Therefore,
we have that

RG(T ) =T · E [f1(GmG)]−
T∑
t=1

E
[
ft(S

t)
]

=T · f(GmG)−
T∑
t=1

E
[
f(St)

]
=E

[
T∑
t=1

∆(St) · I{GmG 6= St}

]
.

From the definition, we know that if
⋂mG

i=1Oti occurs, then event {GmG = St} is true. As its contra-
positive, {GmG 6= St} implies that ∩mG

i=1Oti occurs. Therefore, we can get

E

[
T∑
t=1

∆(St) · I{GmG 6= St}

]
≤ E

[
T∑
t=1

∆(St) · I
{
∩mG

i=1Oti
}]

≤ E

 T∑
t=1

∆(St) · I


mG⋃
k=1

(
Ot0:k−1 ∩ Otk

)
 (10)

≤ E

 T∑
t=1

∆(St) ·
mG∑
k=1

I
{
Ot0:k−1 ∩ Otk

} (11)

=

mG∑
k=1

E

[
T∑
t=1

∆(St) · I
{
Ot0:k−1 ∩ Otk

}]
,

where (10) is due to Lemma C.1, and (11) is by the union bound.

C.2 Proof of Theorem 3.1

We use the following well-known probability inequality.
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Fact C.3 (Chernoff-Hoeffding Bound). Z1, Z2, . . . , Zm are i.i.d. random variables supported on
[0, 1] with mean µ. Define the mean estimator as Ẑ = 1

m

∑m
i=1 Zm. For any a > 0, it holds that

P
[
Ẑ > µ+ ε

]
≤ exp

{
−2ε2m

}
, P

[
Ẑ < µ− ε

]
≤ exp

{
−2ε2m

}
.

Recall that the unit gap for any arm a = e|S (defined in (4)) is

∆(a) = ∆(e|S) =

{
f(g∗S |S)− f(e|S), e 6= g∗S
f(e|S)−maxe′∈N−(S) f(e′|S), e = g∗S

.

Define the threshold function for any arm a = e|S ∈ A as

θt(a) =
6 ln t

∆(a)2
, (12)

and the random event

Et(e|S) = {Nt(e|S) ≥ θt(e|S)} (13)

meaning that the arm e|S is sufficient sampled at time t.

Lemma C.4 and Lemma C.5 is a technique adapted from [3], which can bound the error probability
of the UCB policy for any sufficiently sampled arm.
Lemma C.4. Consider two arms a1 and a2 that generate random variables on the support [0, 1],
denoted as X1 and X2, respectively, and denote µi = E[Xi] for i = 1, 2. Let X̂i be the average
of all i.i.d. samples from Xi (i.e., the empirical mean of Xi), and N(ai) be the counter of samples.
Denote X̂i,N(ai) be the average of the first N(ai) samples. W.L.O.G, assume d = µ1 − µ2 > 0.

Define function radt(a) :=
√

3 ln t
2N(a) . For t = 1, 2, . . . , if N(a1), N(a2) ≥ 1 and N(a2) > 6 ln t

d2 ,
the following holds:

P
[
X̂1,N(a1) + radt(a1) ≤ X̂2,N(a2) + radt(a2)

]
≤ P

[
X̂1,N(a1) ≥ µ1 − radt(a1)

]
+ P

[
X̂2,N(a2) ≤ µ2 + radt(a2)

]
.

Proof. Since N(a1), N(a2) ≥ 1 and N(a2) > 6 ln t
d2 , we can get radt(a2) < d

2 and radt(a1) > 0.
Thus, µ1 > µ2 + 2 radt(a2). It is easy to verify that event X̂1,N(a1) + radt(a1) < X̂2,N(a2) +
radt(a2) implies at least one of the following events must hold:

X̂1,N(a1) ≤ µ1 − radt(a1) (14)

X̂2,N(a2) ≥ µ2 + radt(a2). (15)

Otherwise, assume that both of (14) and (15) are false, then X̂1,N(a1) + radt(a1) > µ1 >

µ2 + 2 radt(a2) > X̂2,N(a2) + radt(a2), which causes a contradiction. Therefore, we can get

P
[
X̂1,N(a1) + radt(a1) < X̂2,N(a2) + radt(a2)

]
= P [(14) or (15) is true], and the lemma can be

concluded by the union bound.

For any arm a ∈ F , we denote the upper bound as

Ut(a) = X̂(a) + radt(N(a)). (16)

As (3) defined in the main text, the counter Nt(a) =
∑t−1
i=1 Ii{a} is used to denoted the particular

N(a) at the beginning of the time step t, where Ii{a} ∈ {0, 1} indicates whether arm a is updated
at time i. (For OG-UCB, it is always updated once chosen.)

We need the following lemma, which bounds the expected value of the counter.
Lemma C.5. For any time horizon T and any k ≥ 1, for any e ∈ N−(Gk−1), its counter satisfies

E [NT+1(e|Gk−1)] ≤ θT (e|Gk−1) +
π2

3
+ 1. (17)
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Proof. Consider a fixed prefix Gk−1 and an arm e ∈ N−(Gk−1). Suppose each arm inN (Gk−1) is
initialized (played once). Line 11 of Subroutine 2 (the UCB policy) indicates that, selecting element
e ∈ N−(Gk−1) for phase k implies that the random event {Ut(gk|Gk−1) ≤ Ut(e|Gk−1} occurs.
Then, we can bound the counter of playing e|Gk−1 by considering two disjoint random events,
Et(e|Gk−1) and Et(e|Gk−1) (sufficiently sampled and insufficiently sampled, respectively). That is

E [NT+1(e|Gk−1)]

≤E

[
T∑
t=1

I
{
Ot0:k−1 ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

}]

=E

[
T∑
t=1

I
{
Ot0:k−1 ∧ Et(e|Gk−1) ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

}]

+ E

[
T∑
t=1

I
{
Ot0:k−1 ∧ Et(e|Gk−1) ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

}]

≤dθT (e|Gk−1)e+

T∑
t=1

P
[
Ot0:k−1 ∧ Et(e|Gk−1) ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

]
, (18)

where (18) follows from the definition of Et(e|Gk−1). Now we use Lemma C.4, in which arms
are a1 = gk|Gk−1 and a2 = e|Gk−1; empirical means X̂1, X̂2 are associated with X̂(gk|Gk−1)

and X̂(e|Gk−1), respectively; µ1, µ2 are used to denote their means; N(a1) and N(a2) are their
counters. Then, for any t, we have that

P

[
k−1⋂
i=1

Oti ∧ Et(e|Gk−1) ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

]
≤P

[
Et(e|Gk−1) ∧ Ut(gk|Gk−1) ≤ Ut(e|Gk−1)

]
≤

t∑
N(a1)=1

P
[
X̂1,N(a1) ≥ µ1 − radt(a1)

]
+

t∑
N(a2)=dθt(a2)e

P
[
X̂2,N(a2) ≤ µ2 + radt(a2)

]

≤
t∑

N(a1)=1

t−3 +

t∑
N(a2)=1

t−3 = 2t−2, (19)

where (19) holds because of Fact C.3. Summing over t = 1, . . . , T and using the convergence of
Riemann zeta function (i.e.,

∑∞
t=1

1
t2 = π2

6 ), the proof is completed.

Theorem C.6 (Restatement of Theorem 3.1). For any time T , Algorithm OG-UCB (Algorithm 1 +
Subroutine 2) can achieve the greedy regret

RG(T ) ≤
∑

a∈Γ−(σG)

(
6∆∗(a) · lnT

∆(a)2
+

(
π2

3
+ 1

)
∆∗(a)

)
,

where σG is the greedy decision sequence.

Proof. Now fix any k, and consider each term of the right-hand side in Lemma C.2, that is
E
[∑T

t=1 ∆(St) · I
{
Ot0:k−1 ∩ Otk

}]
.

SupposeOt0:k−1 ∩Otk happens, that is the algorithm selects Gk−1 at the first k− 1 phases, and then
picks e ∈ N−(Gk−1). By definition of the sunk-cost gap in (5), we can see that the regret at time t
is no more than ∆∗(e|Gk−1). We we can get:

E

[
T∑
t=1

∆(St) · I
{
Ot0:k−1 ∩ Otk

}]
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≤E

 T∑
t=1

∆(St) · I
{
Ot0:k−1

}
·

 ∑
e∈N−(Gk−1)

It {e|Gk−1}

 (20)

≤
∑

e∈N−(Gk−1)

E

[
T∑
t=1

∆(St) · I
{
Ot0:k−1

}
· It {e|Gk−1}

]

≤
∑

e∈N−(Gk−1)

∆∗(e|Gk−1) · E

[
T∑
t=1

I
{
Ot0:k−1

}
· It {e|Gk−1}

]

≤
∑

e∈N−(Gk−1)

∆∗(e|Gk−1) · E [NT+1(e|Gk−1)] (21)

where (20) is by the union bound, and (21) is by the definition of NT+1(e|Gk−1) and I
{
Ot0:k−1

}
≤

1. Thus, the greedy regret satisfies that

RG(T ) ≤
mG∑
k=1

E

[
T∑
t=1

∆(St) · I
{
Ot1:k−1 ∩ Otk

}]
(22)

≤
mG∑
k=1

∑
e∈N−(Gk−1)

∆∗(e|Gk) · E [NT (e|Gk−1)] (23)

=
∑

a∈Γ−(σG)

∆∗(a) · E [NT (a)] (24)

≤
∑

a∈Γ−(σG)

(
6∆∗(a) · lnT

∆(a)2
+

(
π2

3
+ 1

)
∆∗(a)

)
, (25)

where (22) is derived from Lemma C.2; (23) is from (21); (24) is due to Definition 3.2; and (25)
follows Lemma C.5. Therefore, the theorem is concluded.

D Analysis for OG-LUCBε,δ and OG-LUCB-R in Section 4

In this section, we provide the analysis of Algorithm OG-LUCBε,δ (Algorithm 1 + Subroutine 3) and
Algorithm OG-LUCB-R (Algorithm 4). In the following, we first derive the probability inequality
of confidence events. Second, we analyze the exploration time in Appendix D.1. Assuming that the
total time horizon T is known, we provide an O(log T ) ε-quasi greedy regret in Appendix D.2.
Finally, we show that we can remove the assumption of knowing T and still obtain an O(log T )
regret bound (by Algorithm OG-LUCB-R).

Given any arm a = e|S ∈ A, define event Ct(e|S) =
{∣∣∣X̂t(e|S)−X(e|S)

∣∣∣ < radt(e|S)
}

(confi-

dence bound holds). For any prefix S, define Ct(S) =
⋃
e∈N (S) Ct(e|S) for all the arms e|S.

Recall that for any S, e ∈ N (S), by definition

∆(e|Sk) =

{
f(g∗S |S)− f(e|S), e 6= g∗S
f(e|S)−maxa∈N (S)\{g∗S} f(a|S), e = g∗S

,

and the hardness coefficient with the prefix S as

Hε
S :=

∑
e∈N (S)

1

max {∆(e|S)2, ε2}
.

Lemma D.1. Fix any δ ∈ (0, 1). Suppose radt(s) =
√

ln(4Wt3/δ)
2Nt(s)

. For any prefix S,
⋃∞
t=1 Ct(S)

holds with probability at least 1− δ.

Proof. From Fact C.3, we know that for any e ∈ N (S),

P
[
Ct(e|S)

]
=P

[∣∣∣X̂t(e|S)−X(e|S)
∣∣∣ < radt(e|S), Nt(e|S) = 1, · · · , t

]
16



≥1− 2 · t · δ

4Wt3
= 1− δ

2Wt2
.

Then, by summing all time steps t and all elements e ∈ N (S) (|N (S)| ≤W ), we can conclude that

P

[ ∞⋃
t=1

Ct(S)

]
≥ 1−

∞∑
t=1

∑
e∈N (S)

δ

2Wt2
≥1−

∞∑
t=1

δ

2t2

≥1− π2δ

12
(26)

≥1− δ,
where (26) is by Riemann zeta function.

D.1 Exploration time for OG with a first-explore-then-exploit policy (OG-LUCBε,δ)

Since we use a specialized version of CLUCB-PAC in [9] as MaxOracle to explore the top-one
element in the support of [0, 1] for each phase, and henceforth our analysis starts from the result of
sample complexity of CLUCB-PAC by setting R = 1

2 and width(M) = 2.

In Algorithm OG-LUCBε,δ , for any arm a = e|S ∈ A, denote NE
t (a) as the counter of playing

arm a during the exploration stage at the beginning of time step t. The algorithm turns from the
exploration to the exploitation some time and the counter will not change, therefore we may use
NE
∞(a) to obtain its final value. For any prefix S, denote arms A = {e|S : ∀e ∈ N (S)}. Denote

t0(S) :=
∑
e|S∈AN

E
t0(e|S) as the total exploration time of all elements in N (S), such that for any

time t ≥ t0(S), Iexploit(A) is initialized.

Notice that we use CLUCB-PAC for each phase, therefore the following lemma can be adapted from
the intermediate step in proving Theorem 5 of [9].
Lemma D.2. For any phase k ≥ 0, fix prefix Sk. Suppose ε ≥ 0, δ ∈ (0, 1), and

⋃∞
t=1 Ct(Sk)

holds. If it goes to the exploitation stage (Line 12 of Subroutine 3) with Iexploit(A) = s∗ at time
t0 = t0(Sk), then:

1. f(s∗|Sk) ≥ f(g∗Sk |Sk)− ε;

2. In addition, for any s ∈ N (Sk),

NE
t0(s|Sk) ≤ min

{
18

∆(s|Sk)2
,

16

ε2

}
ln
(
4Wt30/δ

)
+ 1. (27)

Notice that event
⋃∞
t=1 Ct(Sk) holds with probability at least 1 − δ, which is guaranteed by

Lemma D.1. From the above lemma, we may further derive the following bound for t0(Sk).
Lemma D.3. With the same setting as Lemma D.2. For t0 = t0(Sk), denote tc = tc(Sk) :=
499Hε

Sk
ln(4WHε

Sk
/δ) + 2W then we can get:

1. t0 ≤ tc.

2. ln
(
4Wt3c/δ

)
≤ 7 ln

(
1996WHε

Sk
/δ
)
.

Proof. Property (1): First of all, (1) holds trivially if W ≥ t0
2 , thus we only need to show the case

W < t0
2 .

Since t0 =
∑
e∈N (Sk)N

E
t0(e|Sk), it can be implied from Lemma D.2 that, with probability at least

1− δ,

t0 ≤ 18Hε
Sk

ln(4Wt30/δ) +W. (28)

We assume t0 = CHε
Sk

ln(4WHε
Sk
/δ) + W , for some constant C > 0. When W < t0

2 , t0 <
2CHε

Sk
ln(4WHε

Sk
/δ). Then, rewrite (28) as

t0 ≤W + 18Hε
Sk

ln(4W/δ) + 54Hε
Sk

ln(t0)

17



<W + 18Hε
Sk

ln(4W/δ) + 54Hε
Sk

ln(2CHε
Sk

ln(4WHε
Sk
/δ))

≤W + 18Hε
Sk

ln(4W/δ) + 54Hε
Sk

(
ln(2C) + ln(Hε

Sk
)
)

+ 54Hε
Sk

ln(4WHε
Sk
/δ)

≤W + 72Hε
Sk

ln(4WHε
Sk
/δ) + 54Hε

Sk

(
ln(2C) ln(4WHε

Sk
/δ) + ln(4WHε

Sk
/δ)
)

≤W + (126 + 54 ln 2C)Hε
Sk

ln(4WHε
Sk
/δ). (29)

Solve 126+54 ln 2C < C, and we can get the minimum integer solution C = 499. When C ≥ 499,
from (29), t0 < W + CHε

Sk
ln(4WHε

Sk
/δ) = t0, which cause a contradiction. Thus, we can

conclude that t0 ≤ 499Hε
Sk

ln(4WHε
Sk
/δ) + 2W .

Property (2): We can simplify ln
(
4Wt3c/δ

)
in (27) as follows.

From Property 1, since ln(a+ b) ≤ ln(a) + ln(b) for all a, b ≥ e, we have

ln (tc) ≤ ln
(
499Hε

Sk
ln(4WHε

Sk
/δ)
)

+ ln(4W ) (30)

≤ ln(499Hε
Sk

) + ln ln(4WHε
Sk
/δ) + ln(4W )

≤ ln(499Hε
Sk

) + 2 ln(4W ) + ln
(
Hε
Sk

)
+ ln(1/δ),

then

ln
(
4Wt3c/δ

)
≤ ln(4W ) + ln(1/δ) + 3 ln (tc)

≤7 ln(4W ) + 4 ln(1/δ) + 6 ln
(
499Hε

Sk

)
≤7 ln

(
1996WHε

Sk
/δ
)
,

which ends the proof.

Define random event iteratively, for any k ≥ 1, given prefix Sk−1,

Qk(Sk−1) =
{
f(sk|Sk−1) ≥ f(g∗Sk−1

|Sk−1)− ε
}
, (31)

where sk = Iexploit(A) and A = {e|Sk−1 : ∀e ∈ N (Sk−1)}.
Theorem D.4 (Restatement of Theorem 4.1). Given any ε ≥ 0 and δ ∈ (0, 1), suppose after
the total exploration time T E = T E(δ), Algorithm OG-LUCBε,δ sticks to a stable sequence σ =
〈S0, S1, · · · , Sm′〉. With probability at least 1 −mδ (m is the largest length of a feasible set), the
following three claims hold:

1. σ is an ε-quasi greedy sequence;

2. Let tc(S) := 499Hε
S ln(4WHε

S/δ) + 2W . For any arm e|S in the decision frontier Γ(σ),

NE
∞(e|S) ≤ min

{
18

∆(e|S)2
,

16

ε2

}
ln
(
4Wt3c(S)/δ

)
+ 1. (32)

3. The total exploration time T E satisfies that

T E ≤
∑

e|S∈Γ(σ)

NE
∞(e|S) ≤ 127

m′−1∑
k=0

Hε
S ln (1996WHε

S/δ) . (33)

Proof. Property (1): Similar to the set decomposition in Lemma C.1, by De Morgan’s laws, we
know that

m′⋂
i=1

Qti(Si−1) =
(
Qt1(S0)

)
∪
(
Qt1(S0) ∩Qt2(S1)

)
∪ · · · ∪

m′−1⋂
i=1

Qti(Si−1)

 ∩Qtk(Sm′−1)

 .

By Lemma D.2, we know that for k = 1, 2, · · · ,m′, the k-th term above satisfies

P

[(
k−1⋂
i=1

Qti(Si−1)

)
∩Qtk(Sk−1)

]
≤ P

[
Qtk(Sk−1)

]
≤ δ. (34)

18



Therefore, by union bound and m′ ≤ m, we have that

P

m′⋂
i=1

Qti(Sk−1)

 = 1− P

m′⋂
i=1

Qti(Sk−1)

 ≤ 1−
m′∑
k=1

δ ≤ 1−mδ,

and we prove that σ is an ε-quasi greedy sequence.

Property (2): Assume that
⋂m′
i=1Qti(Si−1) holds. Since we denote tc(S) = 499Hε

S ln(4WHε
S/δ)+

2W , applying Property 1 of Lemma D.3, we can get t0(Sk−1) ≤ tc(Sk−1). Then, use Property 2 of
Lemma D.2, and it follows immediately that

NE
∞(e|Sk−1) ≤ min

{
18

∆(e|Sk−1)2
,

16

ε2

}
ln
(
4Wt3c(Sk−1)/δ

)
+ 1, (35)

where e|Sk−1 is any arm occurred in the decision frontier Γ(σ).

Property (3): It is easy to see that the total exploration time T E ≤
∑
e|S∈Γ(σ)N

E
∞(e|S). Sum

up each phase k = 0, 1, · · · ,m′ − 1 and each element e ∈ N (Sk), and use ln
(
4Wt3c(Sk−1)

)
≤

7 ln
(
1996WHε

Sk
/δ
)

by Property 2 of Lemma D.3. Therefore we can get:

T E ≤
∑

e|S∈Γ(σ)

NE
∞(e|S) ≤

m′−1∑
k=0

∑
e∈N (Sk)

NE
∞(e|Sk)

≤
m′−1∑
k=0

(
126Hε

Sk
ln
(
1996WHε

Sk
/δ
)

+ |N (Sk)|
)

≤127

m′−1∑
k=0

Hε
Sk

ln
(
1996WHε

Sk
/δ
)
. (36)

D.2 Time Horizon T is Known

We first assume that we know the total time horizon T . In this case, we may let δ = 1
T in OG-

LUCBε,δ , and we can obtain the following theorem.

Theorem D.5 (Restatement of Theorem 4.2). Given any ε ≥ 0. When total time T is known, in
Algorithm OG-LUCBε,δ , we associate δ = 1

T . Suppose σ = 〈S0, S1, · · · , Sm′〉 is the sequence
selected by Algorithm OG-LUCBε,δ at time T , and define function

RQ,σ(T ) :=
∑

e|S∈Γ(σ)

∆∗(e|S) min

{
127

∆(e|S)2
,

113

ε2

}
ln (1996WHε

ST ) + ∆maxm, (37)

where m is the largest length of a feasible set and Hε
S is defined in (7). Then, the ε-quasi regret

satisfies

RQ(T ) ≤ RQ,σ(T ) = O

(
Wm∆max

max{∆2, ε2}
log T

)
, (38)

where ∆ is the minimum unit gap.

Proof. First, we claim that

RQ(T ) ≤
∑

e|S∈Γ(σ)

∆∗(e|S)

(
min

{
18

∆(e|S)2
,

16

ε2

}
ln
(
4Wt3c,T (S) · T

)
+ 1

)
+ ∆maxm, (39)

where tc,T (S) = 499Hε
S ln(4WHε

S · T ) + 2W for any S.
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From Property 1 of Theorem D.4 , we know that with probability 1− m
T , the sequence σ is a stable

ε-greedy sequence, i.e., all confidence events
⋂m′
i=1Qti(Sk−1) hold.

We may sum up exploration numbers of the arms (NE
∞(·)’s) in Property 2 of Theorem D.4, so that

the first term of (39) can be easily derived. For the second term of (39), it is because OG-LUCBε,δ
pays at most regret ∆maxT with probability m

T , when any confidence events fails, which contributes
at most ∆maxm to the regret.

Then, apply Property 2 of Lemma D.3 and δ = 1
T , i.e., ln

(
4Wt3c,T (S) · T

)
≤ 7 ln

(
1996WHε

Sk
/δ
)
,

and henceforth it is obvious to see that

RQ(T ) ≤ RQ,σ(T ) =
∑

e|S∈Γ(σ)

∆∗(e|S) min

{
127

∆(e|S)2
,

113

ε2

}
ln (1996WHε

ST ) + ∆maxm.

Furthermore, if we replace ∆∗(e|S) with the maximum gap ∆max, and ∆(e|S) with the minimum
unit gap ∆, it is easily derived that RQ(T ) ≤ RQ,σ(T ) = O( Wm∆max

max{∆2,ε2} log T ), where W is the
largest width and m is the largest length.

Notice that, from the above theorem, the ε-quasi regret is bounded within O(log T ) for any time
horizon T , even though T may be less than the total exploration time T E = T E

(
1
T

)
. It is because

NE
∞(·) is the upper bound approaching the infinite time, and the regret is a non-decreasing function

with the time horizon T . Therefore, the above regret is satisfied for T < T E
(

1
T

)
as well.

D.3 Time Horizon T is not Known

When the time horizon T is not known, we use Algorithm OG-LUCB-R (Algorithm 4) which
restarts the internal OG-LUCBε,δ for different epochs. The following lemma is useful in proving
Theorem D.7.
Lemma D.6. For any i = 1, 2, · · · , k, for any ci, bi > 0 and φi = e2i ,

k∑
i=1

(ci · ln(φi) + bi) ≤ 4 ·
(

max
i=1,··· ,k

ci

)
· ln(φk−1) + k ·

(
max

i=1,··· ,k
bi

)
.

Proof. Since φi = e2i , then ln(φi) = 2i, an we can get

k∑
i=1

ln (φi) = 21 + 22 + · · ·+ 2k < 4× 2k−1 = 4 ln (φk−1) .

Therefore, it follows immediately that

k∑
i=1

(ci · ln(φi) + bi) ≤
(

max
i=1,··· ,k

ci

) k∑
i=1

ln(φi) + k ·
(

max
i=1,··· ,k

bi

)
≤4 ·

(
max

i=1,··· ,k
ci

)
· ln(φk−1) + k ·

(
max

i=1,··· ,k
bi

)
.

Theorem D.7 (Restatement of Theorem 4.3). Given any ε ≥ 0. Use φ` and τ` defined in
(8), and function RQ,σ(T ) defined Theorem 4.2. In Algorithm OG-LUCB-R, suppose σ(`) =

〈S(`)
0 , S

(`)
1 , · · · , S(`)

m(`)〉 is the sequence selected by the end of `-th epoch of OG-LUCBε,δ , where
m(`) is its length. For any time T , denote the final epoch as K = K(T ) such that τK−1 < T ≤ τK ,
and the ε-quasi greedy regret satisfies that

RQ(T ) ≤
K∑
`=1

RQ,σ(`)

(φ`). (40)
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Furthermore, we can get

RQ(T ) ≤4 ·
(

max
`=1,··· ,K

c`

)
· ln(T ) +

(
max

`=1,··· ,K
b`

)
· log2 (2 lnT ) (41)

=O

(
Wm∆max

max{∆2, ε2}
log T

)
, (42)

where

c` :=
∑

e|S∈Γ(σ(`))

∆∗(e|S) min

{
127

∆ (e|S)
2 ,

113

ε2

}
,

b` :=
∑

e|S∈Γ(σ(`))

∆∗(e|S) min

{
127

∆ (e|S)
2 ,

113

ε2

}
ln (1996WHε

S) + ∆maxm,

and ∆ is the minimum unit gap.

Proof. Algorithm OG-LUCB-R restarts the internal OG-LUCBε,δ for each epoch. Since ε-quasi
regret for epoch ` during time (τ`−1, τ`] is no more than RQ,σ(`)

(φ`), then the ε-quasi greedy regret
in (40) follows naturally by accumulating each interval.

For any `, φ`−1 ≤ τ`−1, τ` =
∑`
i=1 e

2i < 2e2` = 2φ`. Since τK−1 < T ≤ τK , we have φK−1 <
T < 2φK and K < log2(2 lnT ).

Furthermore, we can get

K∑
`=1

RQ,σ(`)

(φ`) ≤
K∑
`=1

(c` ln (φi) + b`) (43)

≤4 ·
(

max
`=1,··· ,K

c`

)
· ln(φK−1) +

(
max

`=1,··· ,K
b`

)
·K (44)

≤4 ·
(

max
`=1,··· ,K

c`

)
· ln(T ) +

(
max

`=1,··· ,K
b`

)
· log2 (2 lnT ) , (45)

where (43) is by definition of ci and bi, and the form of RQ,σ(`)

defined (37); (44) is from
Lemma D.6; and (45) is because φK−1 < T and K < log2(2 lnT ). Use the similar technique
in the proof of Theorem D.5, and we know that (45) is also in O

(
Wm∆max

max{∆2,ε2} log T
)

. Therefore, the
theorem is concluded.

E Proof of Lower Bound in Section 5

In this section, we construct an instance of the prize-collecting problem, and provide its theoretical
analysis. We first recall the prize-collecting problem defined in the main text as follows.

Problem. Consider m bandits, each of which has W elements. For each bandit i = 1, 2, . . . ,m,
denote set Ei = {ei,1, ei,2, . . . , ei,W }. In this problem, the player needs to select one element
from each bandit in order. The accessible set system is defined as (E,F), where E =

⋃m
i=1Ei,

F = ∪mi=1Fi ∪ {∅}, and Fi = {S ⊆ E : |S| = i,∀k : 1 ≤ k ≤ i, |S ∩ Ek| = 1}. The reward
function f : F × Ω → [0,m] is non-decreasing in the first parameter, where the form of f is
unknown to the player. Let the minimum unit gap be

∆ := min
{
f(g∗S |S)− f(e|S) : ∀S ∈ F ,∀e ∈ N−(S)

}
> 0, (46)

where the value of ∆ is also unknown to the player. The objective of the player is to minimize the
greedy regret.
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Instance P . We construct a problem instance P as follows.

We arbitrarily pick the greedy decision sequence σG = 〈G0, G1, . . . , Gm〉 ∈ Fm+1 where G0 = ∅
and Gi = Gi−1 ∪ {eGi } for each i.

Assume that 0 < µ1 < µ2 < µ3 < 1, and ∆ := µ2 − µ1 > 0. Consider that the environment’s
randomness comes from Bernoulli random variables ωt =

(
ω1
t,1, ω

1
t,2, · · · , ωmt,1, ωmt,2

)
∈ {0, 1}2m =

Ω, with E[ωit,1] = µ1 (low prize) for any i = 1, 2, · · · ,m; E[ωit,2] = µ2 (medium prize) for
i = 1, 2, · · · ,m − 1, and E[ωmt,2] = µ3 (high prize). For convenience, given a feasible set S, we
define indicator IGi := I{eGi ∈ S} for each i. The exact form of reward function is f(S, ωt) :=∑m
i=1 f

(i)(S, ωt), where for each i = 1, 2, · · · ,m,

f (i)(S, ωt) =

{
ωit,1IGi + ωit,2IGi , Gi−1 ⊆ S
ωit,1, otherwise

. (47)

It is only accessed as a value oracle ft(S) := f(S, ωt) with a given feasible set S, and the player
does not know the form of the reward function. For example, at time t, provided that we have already
selected the greedy prefix Gi−1 for the first i − 1 phases (that is ∪i−1

j=1{eGi } ⊆ S), if we choose the
greedy element eGi at phase i (that is IGi = 1), then the marginal reward f (i)(S, ωt) = ωit,2, and
the feedback for arm eGi |Gi−1 is ft(eGi |Gi−1) = f (i)(S, ωt) = ωit,2; otherwise, we will get ωit,1
for choosing the sub-optimal element. Moreover, only if all elements along the greedy sequence are
chosen, that is S = G, can we get the marginal reward f (m)(S, ωt) = ωmt,2 for the last phase, where
E[ωmt,2] = µ3.

Collecting prizes means that the player should find the greedy sequence to gain medium prizes
(E[ωit,2] = µ2 > µ1 = E[ωit,1]) for the first m− 1 phases and achieve the high prize (E[ωmt,2] = µ3)
for the last phase. Since the maximal decision sequence is m phases, it is easy to infer that, the
minimum reward and maximum reward in expectation are mµ1 and (m − 1)µ2 + µ3 respectively,
and henceforth the maximum gap is ∆max = m∆+(µ3−µ2). When the player mistakenly chooses
a wrong element for some phase, denote the minimum gap as ∆min = ∆ + (µ3 − µ2), and ∆min is
the minimum penalty incurred.

Denote greedy arms as AG = {eGi |Gi−1 : ∀i = 1, 2, · · · ,W}. We say an algorithm is consistent,
if the sum of playing all arms a ∈ A \ AG is in o(T η), for any η > 0, i.e., E[

∑
a∈A\AG NT (a)] =

o(T η).

E.1 Lower Bound Ω
(
mW∆max

∆2 log T
)

In this subsection, we set µ3 − µ2 to be a constant, and derive the Ω
(
mW∆min

∆2 log T
)

greedy regret
lower bound.

Fix any ` = 1, 2, · · · ,m− 1. As is illustrated in Figure 1, there exists some feasible sequence σ that
coincides with the greedy sequence σG for the first ` arms, and deviates from it for the next d :=
m−` arms, that is σ = 〈G0, G1, · · · , G`, S`+1, · · · , Sm〉, and S`+1 6= G`∪{eGi }. For convenience,
we refer those d arms as a1, a2, . . . , ad, and for any fixed time T ≥ T0 (T0 is sufficiently large), we
use ~N = (N(a1), N(a2), · · · , N(ad)) to denote counters of a1, . . . , ad, respectively, where each
N(ak) := NT (ak). Obviously, N(a1) ≥ N(a2) ≥ · · · ≥ N(ad). Among all those sequences, since
we have W options for each arm ak after ak−1, by Pigeonhole principle, there exists one sequence
satisfying that

N(a2) ≤ 1

W
N(a1), N(a3) ≤ 1

W
N(a2), · · · , and N(ad) ≤

1

W
N(ad−1). (48)

W.L.O.G., assume that σ satisfies condition (48).

In Lemma E.1, we will show that when d is large enough, the number of playing a1 is
Ω
(

1
(µ2−µ1)2 log T

)
.

Lemma E.1. Assume that 1
4 < µ1 < µ2 = 1

2 < µ3 = 3
4 . Suppose W ≥ 2, and integer d satisifies

that d ≥ logW

(
2W

3(µ2−µ1)2

)
, (i.e., (µ2 − µ1)2 ≥ 2

3Wd−1 ). For any consistent algorithm, the number
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Figure 1: Illustration of the sequence σ.
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of playing arm a1 in the sequence σ satisfies that

lim
t→+∞

E[Nt(a1)]

ln t
≥ 0.39

KL(µ1||µ2)
,

where KL(p||q) = p ln p
q + (1 − p) ln 1−p

1−q is Kullback-Leibler divergence of Bernoulli random
variables.

Proof. We keep all arms except a1, a2, . . . , ad by default, and perturb those arms to construct the
following two hypotheses:

Null hypothesis H0
σ : f(ai) = µ1, i ∈ {1, · · · , d− 1}, f(ad) = µ1; (49)

Alternative hypothesis H ′σ : f(ai) = λ, i ∈ {1, · · · , d− 1}, f(ad) = µ3, (50)

where λ ∈ (µ2, 1] is some constant to be determined later (in (51)). Note that σG is its greedy
sequence in H0

σ , while σ is the greedy sequence in H ′σ . For simplicity, we use P[·] and P′[·], E[·] and
E′[·] to denote the probability and expectation under H0

σ and H ′σ , respectively.

Fix any γ ∈ ( 2
3 , 1), and let λ be some constant such that

µ2 < λ ≤ 1, and |KL(µ1||λ)−KL(µ1||µ2)| ≤ γKL(µ1||µ2). (51)

Define event N :=
{
Na1 <

1−γ
KL(µ1||λ) lnT

}
.

Denote Za,i ∈ {0, 1} as the i-th realization of playing arm a, and ρ(x;µ) = µx(1 − µ)1−x for
x ∈ {0, 1} and µ ∈ [0, 1] as the probability for Bernoulli random variables. Then we can define
function

L( ~N) := ln

Na1∏
i=1

ρ(Za1,i;µ1)

ρ(Za1,i;λ)
· · ·

Nad−1∏
i=1

ρ(Zad−1,i;µ1)

ρ(Zad−1,i;λ)
·
Nad∏
i=1

ρ(Zad,i;µ1)

ρ(Zad,i;µ3)

 . (52)

Fix any η ∈ (0, 3γ − 2), and define event L :=
{
L( ~N) ≤ (1− η) lnT

}
. In the following, we will

show that

P [N ] = P
[
N(a1) <

1− γ
KL (µ1||λ)

lnT

]
→ 0, as T →∞, (53)

by proving that both P [N ∩ L] and P
[
N ∩ L

]
tend to 0.
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Step 1: for P [N ∩ L]. For H ′σ (σ is the greedy sequence), the sequence we play is the greedy
sequence only if a1, · · · , ad are chosen simultaneously, thus the total number of playing σ isN(ad).
Furthermore, for any consistent algorithm, for any η ∈ (0, γ), we have E′ [T −N(ad)] = o(T η)
under H ′σ . Since in our instance N(a1) ≥ N(ad) holds, thus E′ [T −N(a1)] ≤ E′ [T −N(ad)] =
o(T η).

P′ [N ] =P′
[
N(a1) <

1− γ
KL (µ1||λ)

lnT

]
=P′

[
T −N(a1) > T − 1− γ

KL (µ1||λ)
lnT

]
≤ E′ [T −N(a1)]

T − 1−γ
KL(µ1||λ) lnT

{Markov’s inequality}

=o(T η−1). (54)

Let ρx be the probability measure for H0
σ , then through the change of probability measure, we can

get that

P′ [N ∩ L] =

∫
x∈N∩L

N(a1)∏
i=1

ρ(Za1,i;λ)

ρ(Za1,i;µ1)
· · ·

N(ad−1)∏
i=1

ρ(Zad−1,i;λ)

ρ(Zad−1,i;µ1)
·
N(ad)∏
i=1

ρ(Zad,i;µ2 + 1
4 )

ρ(Zad,i;µ1)
dρx

=

∫
x∈N∩L

exp(−L( ~N)) dρx (55)

≥T η−1

∫
x∈N∩L

dρx = T η−1 P[N ∩ L], (56)

where (55) is from (52), and (56) is because L holds. Thus, we can imply from (56) and (54) that

P[N ∩ L] ≤ T 1−η · P′ [N ∩ L] ≤ T 1−η · P′ [N ] = o(1). (57)

Step 2: for P
[
N ∩ L

]
. From Equation (52), we know that

L( ~N) =

N(a1)∑
i=1

ln

(
ρ(Za1,i;µ1)

ρ(Za1,i;λ)

)
+ · · ·+

N(ad−1)∑
i=1

ln

(
ρ(Zad−1,i;µ1)

ρ(Zad−1,i;λ)

)
+

N(ad)∑
i=1

ln

(
ρ(Zad,i;µ2)

ρ(Zad,i;µ3)

)
(58)

→ (N(a1) +N(a2) + · · ·+N(ad−1)) KL(µ1||λ) +N(ad) ·KL(µ1||µ3) =: L( ~N), (59)

as N(a1), · · · , N(ad) tend to be sufficiently large. Due to condition (48) and the definition of N ,
we have

L( ~N) ≤N(1)

(
1 +

1

W
+ · · ·+ 1

W d−2

)
KL(µ1||λ) +N(1)

1

W d−1
·KL(µ1||µ3)

≤N(1)
1

1− 1
W

KL(µ1||λ) +N(1)
1

W d−1
·KL(µ1||µ3)

≤
(

1

1− 1
W

+
1

W d−1

KL(µ1||µ3)

KL(µ1||λ)

)
(1− γ) lnT. (60)

Since 2(x− y)2 ≤ KL(x||y) ≤ (x−y)2

y(1−y) for x, y ∈ [0, 1), 1
4 < µ1 < µ2 < µ3 = 3

4 , and µ2 < λ ≤ 1,
it can be implied that

KL(µ1||µ3)

KL(µ1||λ)
≤ (µ3 − µ1)2

µ3(1− µ3) · 2 · (λ− µ1)2
≤ 3

2(µ2 − µ1)2
. (61)

Assume that W ≥ 2 and W d−1 ≥ 2
3(µ2−µ1)2 , then from (60) and (61) we have L( ~N) ≤ 3(1 −

γ) lnT .
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Now fix any η ∈ (0, 3γ−2), and it is easy to know that L( ~N) ≤ 3(1−γ) lnT < (1−η) lnT . Recall

that L( ~N)→ L( ~N) from (59) andN = {N(a1) < 1−γ
KL(µ1||λ) lnT} $

⋃ 1−γ
KL(µ1||λ)

lnT

j=0 {N(a1) = j}.
Then, by the strong law of large numbers, we can get

P
[
N ∩ L

]
= P

[
N(a1) <

1− γ
KL (µ1||λ)

lnT ∧ L( ~N) > (1− η) lnT

]
→ 0, as T →∞. (62)

Step 3: combine two parts. Because d ≥ logW

(
2W

3(µ2−µ1)2

)
, we have that W d−1 ≥

3
2(µ2−µ1)2 . For any γ ∈ ( 2

3 , 1), it can be derived from (57) and (62) that limT→∞ P [N ] =

limT→∞ P
[
NT (a1) < 1−γ

KL(µ1||λ) lnT
]

= 0. Then, from (51), we can get

lim
T→∞

P
[
N(a1) <

1− γ
(1 + γ) KL (µ1||µ2)

lnT

]
= 0. (63)

Therefore,

lim
t→+∞

E [Nt(a1)]

ln t
≥ 0.39

KL (µ1||µ2)
. (64)

We will show that the greedy regret can be as large as Ω(mW log T
∆2 ), when (1) the unit gap (µ2 −

µ1) is not exponentially small or (2) m is large enough, which will be specified quantitatively in
Theorem E.2.
Theorem E.2. For instance P of the prize-collecting problem, for any µ1, µ2, µ3 satisfying that
1
4 < µ1 < µ2 = 1

2 < µ3 = 3
4 and W ≥ 2, assume that there exists some constant ξ ∈ (0, 1) such

that ξm ≥ logW

(
2W

3(µ2−µ1)2

)
(i.e., (µ2 − µ1)2 ≥ 2

3W ξm−1 ). Denote ∆ = µ2 − µ1 > 0. For any
consistent algorithm, as time T tends to +∞, the greedy regret satisfies that

RG(T ) ≥ 0.39 · (1− ξ)m(W − 1)∆min

KL(µ1||µ2)
lnT, (65)

where KL(p||q) = p ln p
q + (1 − p) ln 1−p

1−q is Kullback-Leibler divergence for Bernoulli random
variables, and ∆min = ∆ + 1

4 .

Proof. From the assumption, we know that ξm ≥ logW

(
2W

3(µ2−µ1)2

)
. Fix any ` = 1, 2, · · · , (1 −

ξ)m, then it is easy to see that the deviated d = m − ` arms (denoted as a1, a2, · · · , ad) satisfying
d ≥ logW

(
2W

3(µ2−µ1)2

)
.

Denote the true greedy sequence as σG = 〈G0, G1, · · · , Gm〉. For any sequence σ coinciding with
σG for the prefix 〈G0, G1, · · · , G`〉, for phase `+1, we can chooseW −1 candidates fromN (G`)\
{g∗G`}. According to Lemma E.1, for each candidate, the consistent algorithm needs to play arm a1

for at least 0.39
KL(µ1||µ2) lnT times. Since the penalty is at least ∆min = ∆ + 1

4 , therefore we can
conclude that

RG(T ) ≥
(1−ξ)m∑
`=1

(W − 1) · 0.39 ·∆min

KL(µ1||µ2)
lnT =

0.39 · (1− ξ)m(W − 1)∆min

KL(µ1||µ2)
lnT. (66)

From Theorem E.2 and KL(µ1||µ2) ≤ (µ2−µ1)2

µ2(1−µ2) = 4∆2, it is easy to check that the greedy regret

is Ω
(
mW∆min

∆2 log T
)
. Since ∆max = m∆ + 1

4 and ∆min = ∆ + 1
4 in the setting of Theorem E.2,

suppose we further assume that ∆ = µ2 − µ1 = o( 1
m ) (e.g., ∆ = 0.01

m1.1 ), then it indicates that
∆max = ∆min + o(1). Thus, we can get that the lower bound RG(T ) = Ω

(
mW∆max

∆2 log T
)
, which

matches with the upper bound up to a constant factor.
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E.2 Lower bound with an exponential term

We further remark that a similar problem instance as in Appendix E.1 can be used to show a regret
lower bound with an exponential term: Ω

(
Wm

(µ3−µ2) log T
)

.

The intuition is that all the firstm−1 layers have essentially no difference in reward for any decision
sequence, and all reward is on the last layer, i.e., µ3 − µ2 � µ2 − µ1 > 0 and µ2 − µ1 = O( 1

Wm ),
which makes it similar to the classical multi-armed bandit with Wm arms. Therefore, the lower
bound is in the order of Ω

(
Wm

(µ3−µ2) log T
)

. This means we cannot haveO
(

poly(W,m)
(µ3−µ2) log T

)
regret.

F Extensions

F.1 A simple extension of OG-UCB for linear bandits with a matroid constraint to achieve
O(n/∆ log T ) regret and O(n) space

If we know that the problem instance has linear reward function, i.e., ft(S) =
∑
e∈S ft(e), and the

accessible set system (E,F) is restricted to a matroid, we can easily extend OG-UCB and make it
behave essentially the same as Algorithm OMM in [23].

The key is to merge those equivalent arms. More formally, we call two arms a = e|S and a′ = e|S′
equivalent if the marginal rewards of both arms follow the same distribution. For these equiva-
lent arms, we merge estimator X̂(a) and X̂(a′) (and the counters N(a) and N(a′)), and it can be
achieved simply by using the same memory for a and a′. This applies to the setting of linear reward
function [23]: the marginal value of choosing arm e|S or e|S′ only depends on element e and is
irrelevant to S or S′, and thus we merge all such arms e|S and e|S′, such that observations of one
arm refine the estimation of its equivalent arms. In this case, it can be easily verified that OG-UCB
and OMM behave essentially the same (except on some minor manipulation of time counter t′ in
Line 4 of Algorithm 1).

In this case, we remark that: (1) this extension utilizes the property of linear bandits and matroid
constraints; (2) the greedy algorithm will find the optimal solution, and henceforth the greedy regret
is also equivalent to the expected cumulative regret (i.e., R1(T )). Therefore, the analysis of OMM
in [23] applies to OG-UCB: OG-UCB has regret bound O( n∆ log T ) and the memory cost is O(n),
where ∆ is the minimum unit gap.

F.2 Algorithms for Knapsack Constraints

In this section, we consider the knapsack constraint, which is a special case of our accessible set
system (E,F).

For each element e ∈ E, a cost function λ(e) ∈ R≥0 is given in advance. Without loss of generality,
we assume λ(a) = λ(e) ∈ [1,∞) for each arm a = e|S ∈ A. Given a budget B for the knapsack
problem, the collection of feasible sets are F = {S ⊆ E :

∑
e∈S λ(e) ≤ B}. As is described

Example A.4, such (E,F) is an accessible set system.

Notice that, for each phase, suppose the offline greedy still maximizes the marginal reward f(a) from
a set of accessible arms as before, then it is only the special case of the original model described in
the main text, therefore the algorithms and results apply without any change.

However, for many problems with knapsack constraints, a natural way of the greedy algorithm is to
maximize the marginal reward per unit cost every phase i.e., f(a)

λ(a) is maximized (instead of maximiz-
ing the marginal reward of a set accessible arms). We show that we can slightly modify our previous
algorithm to accommodate this setting.

In particular, our algorithm can be slightly modified as follows: in the offline and online problems,
arg max and MaxOracle return an arm a such that X̂(a)

λ(a) is maximized (replace X̂(a) in the objective
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of arg max and MaxOracle with X̂(a)
λ(a) ). Then, we can rewrite the greedy element:

∀S ∈ F , g∗S := arg max
e∈N (S)

f(e|S)

λ(e|S)
, (67)

together with the unit gap:

∀S ∈ F ,∀e ∈ N (S), ∆(e|S) :=


f(g∗S |S)
λ(g∗S |S) −

f(e|S)
λ(e|S) , e 6= g∗S

f(e|S)
λ(e|S) −maxe′∈N−(S)

f(e′|S)
λ(e′|S) , e = g∗S .

(68)

The algorithms OG-UCB and OG-LUCB with such modification still work. The rest of the analysis
is the same. Therefore, Theorems 3.1, 4.1, 4.2 and 4.3 still apply after rewriting the above definitions.

G Applications

G.1 Top-m Selection with a Consistent Function

In this subsection, we will demonstrate the application of our framework to the problem of Top-m
Selection with a consistent reward function.

Generally speaking, the reward of this problem may be non-linear, and the greedy algorithm can
output an optimal solution (with approximation ratio α = 1).

The decision class. In the top-m selection problem, the set of feasible sets are all subsets of cardi-
nality at mostm, hence corresponding to an accessible set system (E,F), whereE = {1, 2, · · · , n},
and F = {S ⊆ E : |S| ≤ m}.

Notice that, the arm space is A = {e|S : ∀S, ∀e ∈ N (S), |S| ≤ m− 1}, containing
∏m−1
i=0 (n− i)

arms in total.

Definition G.1 (Consistent function [5]). A function ψ : 2E → R is consistent if for any T ⊂ T ′ ⊂
E, and element x, y ∈ E \T ′, we have ψ(T ∪{x}) ≥ ψ(T ∪{y}) =⇒ ψ(T ′∪{x}) ≥ ψ(T ′∪{y}).

Reward function. Let Ω ⊆ [0, 1]E be the probability space. For each time t = 1, 2, . . . , the
environment draws an i.i.d. samples ωt from Ω. ωt can be thought as a vector and ωt(e) ∈ [0, 1]
for each dimension e ∈ E. For any ωt ∈ Ω, the reward function is a bounded and non-decreasing
function ft(S) := f(S, ωt) ∈ [L,L + m] (fix constant L ≥ 0) as required in Section 2, and
define f(S) = E[ft(S)] where the expectation is taken over ωt. We assume that f(·) is a consistent
function.

Offline and online settings. In the offline setting, f(·) is provided as a value oracle and we would
like to return the subset with the maximum f value. In the online setting, the player first plays a
decision sequence σ = 〈S0, S1, · · · , Sk〉 with Sk = Sk−1 ∪ {sk} for time t, then observes the
semi-bandit feedbacks {ft(Si)}i=0,...,k, and gains a reward of ft(Sk).

Example G.1. The following functions belong to the consistent function family:

• f(S) = c · e
∑
e∈S E[ωt(e)] (c is a small constant for normalization);

• f(S) = 1−
∏
e∈S (1− E [ωt(e)]);

• f(S) = 1
2 (|S|+ mine∈S E [ωt(e)]), with ft(∅) = 0. It is a variant of bottleneck functions,

and the use |S| and 1
2 is for normalization;

• f(S) =
∑
e∈S E [ωt(e)] (linear function).

Denote the greedy sequence for the top-m selection problem as σG = 〈G0, G1, · · · , Gm〉 (m is the
length). from Theorem 2 of [5]:
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Lemma G.1. For consistent function f(·), Gm is an optimal solution, i.e., f(Gm) =
max∀S∈F f(S) is satisfied.

We can use our algorithm OG-UCB to solve the online problem by playing the game during the time
horizon T . Since the offline greedy solution is also the optimal one (approximation ratio α = 1),
from Theorem 3.1 and Proposition B.1, we have the following corollary:

Corollary G.2. For any time T , for the top-m selection problem with a consistent function, our
algorithm OG-UCB can achieve a regret

R(T ) ≤ RG(T ) ≤
∑

a∈Γ−(σG)

(
6∆∗(a) · lnT

∆(a)2
+

(
π2

3
+ 1

)
∆∗(a)

)
, (69)

where σG is the greedy sequence of length m, and R(T ) is the expected regret with respect to the
optimal solution.

Notice that Γ−(σG) has
∑m
i=1(n − i) = (n − 1 − m

2 )m arms in the above corollary for the top-m
selection.

We claim that other decision classes belonging to a matroid embedding [5] also work through the
analysis. (The key is to derive the optimal solution guarantee analogue to Lemma G.1.) To the best of
our knowledge, the bound of O(log T ) regret for the online version of the top-m selection problem
(or the wider decision classes) with a general consistent function is new.

G.2 Stochastic Online Submodular Maximization

Our algorithms and results can be applied to online submodular maximization. For any time t and
for any S ∈ F , assume the reward function ft(S) ∈ [L,L+m] (L ≥ 0) is a non-negative monotone
submodular function. Denote f(S) := E[ft(S)], and it is provided for the offline problem. It is
obvious that f(·) is also non-negative monotone submodular due to the linearity of the expectation.

Let the accessible set system (E,F) be a uniform matroid, in which the maximal feasible set S ∈ F
is of size m. We adapt the result for offline submodular maximization in [21, 28], with a slight
generalization for the greedy (or ε-quasi greedy) policy (The proof is almost identical to that in [21],
and is omitted here).

Lemma G.3. Assume that the non-negative monotone submodular function f(·) is provided as a
value oracle. For any ε ≥ 0, suppose a decision sequence σ = 〈S0, S1, · · · , Sk〉 ∈ Fk+1 satisfies
S0 = ∅, Si = Si−1 ∪ {si} for every i, and f(si|Si−1) ≥ f(g∗Si−1

|Si−1) − ε for every i. Then, for
every positive integer ` and m,

f(S`) ≥

(
1−

(
1− 1

m

)k)(
f(S∗)−mε

)
, (70)

where k is the length of the decision sequence and S∗ = arg maxS∈F f(S).

Noting that 1 − x ≤ e−x for all x ∈ R, we can immediately derive the following two properties
from the above lemma.

Lemma G.4. (1) Let σG = 〈S0, S1, · · · , Sm〉 ∈ Fm+1 be the greedy sequence of size m. Then,

f(Sm) ≥
(
1− e−1

)
f(S∗).

Thus, Sm in σG is an α-approximation solution for α = 1− e−1.

(2) Given any small ε such that 0 ≤ ε ≤ L
m , let σQ = 〈S0, S1, · · · , Sm〉 ∈ Fm+1 be the minimum

of ε-quasi greedy sequence. Then,

f(Sm) ≥
(

1− e−1 − mε

L

)
f(S∗).

Thus, Sm in σQ is an α-approximation solution for α = 1− e−1 − mε
L .
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Now we can use Algorithm OG-UCB and OG-LUCB to solve the online version of the submod-
ular maximization problem. From Propositions B.1 and B.2, we know that Rα(T ) ≤ RG(T ) and
Rα(T ) ≤ RQ(T ) for the respective α-approximation solutions. Then, from Theorem 3.1 and Theo-
rem D.7, and we have the following α-approximation regret:

Corollary G.5. For any time horizon T , for the online submodular maximization problem, our
algorithm OG-UCB can achieve the following α-approximation regret:

Rα(T ) ≤ RG(T ) ≤
∑

a∈Γ−(σG)

(
6∆∗(a) · lnT

∆(a)2
+

(
π2

3
+ 1

)
∆∗(a)

)
, (71)

where σG is the greedy sequence, and α = 1− e−1 is the approximation ratio of the offline problem.

Corollary G.6. For the online submodular maximization problem, suppose we run Algorithm OG-
LUCB-R with some small ε such that 0 ≤ ε ≤ c

m , and let α = 1− e−1 − mε
L be the approximation

ratio of the offline problem.. Use φi, τi, σ(`), K, RQ,σ(`)

(·), c` and b` defined in Theorem D.7. Our
algorithm OG-LUCB-R can achieve an α-approximation regret as follows:

Rα(T ) ≤ RQ(T ) ≤
K∑
`=1

RQ,σ(`)

(φ`). (72)

Furthermore, we can get

Rα(T ) ≤ RQ(T ) ≤4 ·
(

max
`=1,··· ,K

c`

)
· ln(T ) +

(
max

`=1,··· ,K
b`

)
· log2 (2 lnT ) . (73)

Besides, the exploration time for Algorithm OG-LUCBε,δ for any input of (ε, δ) is the same as
Theorem 4.1; and letting δ = 1

T implies a corollary for the α-approximation regret Rα (Rα ≤ RQ

and α = 1− e−1), corresponding to Theorem D.5, both of which will not be restated here.

The above results for stochastic online greedy, ensuring the O(log T ) bounds, are complementary to
the O(

√
T ) α-approximation regret bound presented in [31], which focuses on the online submod-

ular maximization in the adversarial setting.

G.3 Online Influence Maximization and Probabilistic Set Cover in a Unified Model

From the above Appendix G.2, we have shown that our algorithms work without assuming the
detailed form of the reward function. In light of this, our model can be applied to unify the online
Influence Maximization (IM) and Probabilistic Set Cover (PMC) problems [19] across different
models. (PMC can be viewed as two-layers influence maximization on the independent cascade
model.)

Influence maximization problem [19] has been widely studied in the viral marketing. In general,
given social graph G = (V, E) representing nodes and edges respectively, the goal is to choose a
m-nodes set S ⊆ V as seeds, so that starting from the seed nodes, at many nodes as possible are
influenced (or covered) via the word-of-mouth effect. Many models, such as the independent cas-
cade (IC) model, the linear threshold (LT) model [19] and the continuous-time independent cascade
(CIC) model [30], are proposed to capture different natures of users’ behaviors. The common part
of those models (IC, LT, CIC, etc.) is that they assume that the coverage function f : 2V × Ω → R
(and we use ft(S) = ft(S, ωt) for convenience, where ωt is the randomness of the environment at
time t), and focus on maximizing the expected coverage f(S) := E[ft(S)] called influence spread,
which is a non-negative monotone submodular function. Note that due to the #P-hardness of com-
puting f(·) [10] in order to find the optimal solution, Monte Carlo simulations on ft(·) are usually
carried out to estimate f(·). The difference of models lies in the assumption of the environmental
randomness Ω: in IC model, it comes from independent Bernoulli random variables assigned on
edges; CIC model parametrizes edges with time-variant distributions, and a constant total cutting
time; and in LT model, the randomness are from the thresholds of nodes. The empirical study in
[13] shows that the model misspecification may lead to one optimal solution for one model yielding
a bad performance in another.
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In the online version of influence maximization, we need to choose the seeds set S over time to
maximize the overall performance against the optimal S∗ in hindsight. [11] shows how to model
the online influence maximization for IC model as a combinatorial multi-arm bandit problem. If the
IC model is assumed, the randomness of edges can be modelled as base arms and the reward is a
function represented by the expected values of those arms. However, in our framework, we do not
need the knowledge of the detailed diffusion model or the exact form of the reward function. For
different influence maximization models, we only access the value of ft(·) without assuming the
exact form ft(·) or f(·). The application of our framework, utilizing value oracle ft(·), can unify the
above models of online influence maximization as well as avoid the risk of model misspecification.
As is illustrated in Appendix G.2, our algorithms still apply here and the same results hold.

H Empirical Evaluation for the Lower Bound on the Prize-Collecting
Problem

In this section, we carry out an empirical evaluation for the prize-collecting problem to validate
Algorithms OG-UCB. We use the problem instance P as described in Appendix E.

Setup. We evaluate the performance over the following combinations: (1) Select one out of W ∈
{10, 20, 30} elements, for each of m ∈ {4, 6, 8} bandits; (2) The minimum unit gap ∆ is chosen
from {0.2, 0.1} (that is, µ1 ∈ {0.3, 0.4} and µ2 = 0.5 with ∆ = µ2 − µ1), and µ3 = 0.75.

For each case, we set the same total horizon T = 106. The lower bound (LB) is estimated by the
right-hand side of (65) in Theorem E.2.

The experiment is repeated for 20 times, and we calculate the average of the regret together with
their standard deviation.

Analysis. Table 2 illustrates the result of Algorithms OG-UCB. The result contains three columns
of values: The left column is regrets of OG-UCB with their standard deviation in absolute values
(×104), the middle column is the lower bound estimated in absolute values (×104), and the right
column (surrounded by parentheses) is the ratio between regrets in practice and LB.

First, observing the ratio between regrets and LB, we know that it is about 20 times. The ratio does
not increase with W or m. Therefore, it indicates that our upper bound matches with the lower
bound, and they are tight up to a constant factor.

Second, comparing the regret of algorithms with the change of W or m, we see that the regret
increase linearly with W or m. It matches with the regret Θ(Wm∆max

∆2 log T ) derived from our
theoretical analysis. When ∆ is changed from 0.2 to 0.1, the regret is also about 4 times of the
original. (It is less than 4 times because ∆max shrinks meanwhile.)
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Table 2: Experiment result of Algorithms OG-UCB for the prize-collecting problem (P).
W m ∆ OG-UCB (×104) LB (×104) (OG-UCB/LB)

10 4 0.20 1.17± 0.06 0.047 (24.8)
10 4 0.10 2.80± 0.12 0.099 (28.3)
10 6 0.20 2.40± 0.07 0.100 (23.9)
10 6 0.10 5.56± 0.19 0.268 (20.8)
10 8 0.20 3.88± 0.14 0.153 (25.3)
10 8 0.10 9.00± 0.26 0.436 (20.6)
20 4 0.20 2.45± 0.05 0.115 (21.3)
20 4 0.10 6.01± 0.16 0.284 (21.1)
20 6 0.20 4.99± 0.12 0.227 (21.9)
20 6 0.10 11.54± 0.32 0.640 (18.0)
20 8 0.20 8.24± 0.17 0.339 (24.3)
20 8 0.10 18.55± 0.34 0.996 (18.6)
30 4 0.20 3.78± 0.08 0.186 (20.4)
30 4 0.10 9.04± 0.25 0.479 (18.9)
30 6 0.20 7.59± 0.10 0.357 (21.3)
30 6 0.10 17.55± 0.40 1.023 (17.2)
30 8 0.20 12.61± 0.17 0.528 (23.9)
30 8 0.10 28.23± 0.38 1.566 (18.0)
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