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Abstract

Deep Neural Networks (DNNs) have become the computa-
tional tool of choice for many applications relevant to mo-
bile devices. However, given their high memory and compu-
tational demands, running them on mobile devices has re-
quired expert optimization or custom hardware. We present
a framework that, given an arbitrary DNN, compiles it down
to a resource-efficient variant at modest loss in accuracy.
Further, we introduce novel techniques to specialize DNNs
to contexts and to share resources across multiple simulta-
neously executing DNNs. Using the challenging continuous
mobile vision domain as a case study, we show that our tech-
niques yield very significant reductions in DNN resource us-
age and perform effectively over a broad range of operating
conditions.

1 Introduction

Over the past three years, Deep Neural Networks
(DNNs) have become the dominant approach to solv-
ing a variety of important problems in computing such
as speech recognition, machine translation, handwrit-
ing recognition and many computer vision problems
such as face, object and scene recognition. Although
they are renowned for their excellent recognition per-
formance, DNNs are also known to be computationally
intensive: networks commonly used for speech, visual
and language understanding tasks routinely consume
hundreds of MB of memory and GFLOPS of computing
power [16, 17, 24], typically the province of server-class
computers. However, given the relevance of the above
applications to the mobile setting, and the potential for
developing new ones, there is a strong case for execut-
ing DNNs on mobile devices. In this paper, we therefore
present a framework for implementing DNN-based ap-
plications for (intermittently) cloud-connected mobile
devices.

Recent approaches to enable DNNs on mobile devices
include crafting efficient DNNs by hand for key tasks
such as acoustic modeling [17] and devising custom co-
processors for low-power execution on the phone [4].
However, these approaches still leave many challenges of
practical mobile settings un-answered. Resource avail-
ability on devices may vary, often by the hour, multi-
ple applications may wish to execute multiple DNNs,
developers may wish to deploy their own DNNs; good
network connectivity may imply that the cloud is after

all the best place to execute the network at a point in
time, and the complexity of the classification task itself
may vary over time due to the presence of context infor-
mation. MCDNN therefore provides machinery to not
only automatically produce efficient variants of DNNs,
but also to execute them flexibly across mobile devices
and the cloud, across varying amounts of resources and
in the presence of other applications using DNNs.

We adapt a variety of well-known systems-
optimization techniques to mitigate resource con-
straints. These include trading off quality of results for
computing resources, splitting computations between
client and cloud such that communications needs are
modest while ensuring that the pieces on client and
cloud satisfy resource availability constraints, sharing
computations across applications to reduce overall
client power use, sharing resources across users to pack
the cloud efficiently, restructuring computations to
trade off a resource that is available (e.g., computation)
for one less so (e.g., memory), and exploiting locality of
inputs (e.g., your work colleagues form a small subset of
all the people you may ever see) to produce specialized
solutions that consume fewer resources.

In general, these techniques involve transforming rel-
evant computations into semantically (approximately)
equivalent versions that better address resource con-
straints. Here, the fact that we are not handling generic
computations, but rather DNNs, which have relatively
simple structure and semantics comes to our rescue. We
assume that DNNs are specified in a domain-specific
language we provide. We then show how to statically
compile them, via a suite of automated optimization
steps, into variants that implement the mitigating tech-
niques mentioned above. Further, a suitably designed
runtime selects among these variants on the basis of re-
source usage, locality and sharing, yielding performance
that is both efficient and accurate. The compiler and
runtime together constitute our system, which we call
MCDNN for Mobile-Cloud Deep Neural Network.

As a running case study, and for purposes of eval-
uation, we target the continuous mobile vision set-
ting: in particular, we look at enabling a large suite
of DNN-based face, scene and object processing algo-
rithms based on applying DNNs to video streams from
(potentially wearable) devices. We consider continuous
vision one of the most challenging settings for mobile
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Figure 1: Basic components of a continuous mobile vision (CMV) system

DNNs, and therefore regard it as an adequate evaluation
target. We evaluate our dataset on very large standard
datasets available from the computer vision community.

We make the following contributions in this paper:

e We characterize the resource demands of three widely
used DNNs (for object, face, scene) in terms of mem-
ory, compute and communications demands.

e We present a novel system design comprising of a lan-
guage, optimizing compiler and client/cloud runtime
targeted at DNN-based mobile/cloud workloads.

e We present a design for an optimizing compiler for
individual DNNs and demonstrate its ability. For in-
stance, we show how to transform the well-known
DeepFace model from Facebook [24] to use roughly
4x fewer FLOPs and roughly 5x less memory with
only a 3.4% absolute loss in accuracy (Table 6, row
2).

e We present a novel sharing optimization across DNNs
and show (Table 7) that it can be used to scale by
many orders of magnitude the number of DNNs, in-
cluding those of different types (e.g., those for face
identity, gender, race and age), that can run simulta-
neously on a mobile device or cloud.

e We present a novel technique to automatically pro-
duce specialized DNNs that can exploit contexts com-
monly found in mobile devices, that are two order
of magnitude more compact, use 5.5-25x fewer in-
structions and yield significantly higher accuracy than
their unspecialized variants (Table 8, rows 4-5).

2 Continuous Mobile Vision

In this section, we introduce the continuous vision
pipeline case study, paying particular attention to re-
source costs and budgets, and make the case that flex-
ibility in where computations execute and the amount
of resources they consume is attractive. Further, we de-
scribe a shift in the computer vision community toward
standardizing on DNNs across many key problems, so
that the requirement to use them is not as restrictive as
it may first appear.

The case for performing computer vision based on
video streaming continuously from a wearable device
has been made elsewhere [1, 10, 10, 14, 19]. Tt is
also common knowledge that the associated computa-

tional workloads are extremely demanding. The main
response to this challenge has either been to ignore it
and focus on improving the performance of recognition
algorithms [9, 20] or to shift the core of the computa-
tion off the mobile device under the assumption that
this workload is well beyond the capacity of the mobile
device [6, 10, 19].

However, we believe that given advances in efficiency
of processing and shifts in the economics of network-
ing and cloud computing, the option to perform a large
fraction (or even all) of the computer vision calcula-
tion on the mobile device is both necessary and feasible.
In this context, MCDNN advocates paying the extra
cost of restricting vision algorithms to those based on
deep neural networks (DNNs) for the potential benefit
of far more aggressive performance optimizations that
make on-board execution feasible, and allows a true mo-
bile/cloud sharing of this workload.

Figure 1 makes these challenges concrete by sketching
the architecture of a state-of-the-art mobile/cloud con-
tinuous mobile vision system. The two main physical
components are a battery-powered mobile device (typi-
cally some combination of a phone and a wearable) and
a powered computing infrastructure (some combination
of a cloudlet and the deep cloud). Given the high com-
pute demands of continuous vision, the simplest archi-
tecture is to stream video from the mobile device to the
cloud, perform computer vision calculations there and
send the results back. Several constraints and trends
complicate this model in practice.

Network disconnection is inevitable in mobile devices.
Unless applications can be designed to not use contin-
uous vision services for long periods, it is essential to
accommodate end-to-end processing on board the mo-
bile device for extended periods. Fortunately, both the
total computing power available on mobile devices and
its power efficiency are improving dramatically. The lat-
est Tegra K1-GPU based Jetson board from NVIDIA,
for example supports 290GOPS at a 10W whole-system-
wide power draw. Even duty cycled by 100x (yield-
ing an average power draw of 100mW, implying that
the GPU gets 10% of the 10Wh mobile battery for 10
hours), the resulting 2.9GOPS could support significant
vision computing.

Even with full network connectivity, and assuming



very aggressive video encoding at 1Mbps, streaming all
video is prohibitive both from a mobile-energy and a
wireless-bandwidth point of view. For instance, the
corresponding 135GB/month is an order of magnitude
more than the typical cap on customer data quota in
the US. Further, keeping the radio on continuously con-
sumes a constant 700mW, which is substantially more
than the 10-30% of a generous 10Wh mobile battery
that is a realistic budget for CMV applications. Com-
bined with a low-power wide-field-of-view imager and
a video encoder (a state-of-the-art Ambarella ATLW
codec consumes 200mW), the costs are clearly pro-
hibitive. Fortunately, we believe that very low-power
gating circuitry [11] integrated with proportional-power
imagers [18] will often detect interesting events (e.g.,
new faces, handled objects and places) in the video at
low power. For instance, face detection circuitry con-
sumes only 30mW at 30fps [12]. We expect only 1-10%
of all frames to pass this gate, so that transmitting rel-
evant frames to the cloud may be feasible.

If transmitting relevant frames is within the power
budget, conventional wisdom seems to favor offloading
the entire visual processing of the frame to the cloud.
Although full offloading at the frame level may often be
the right choice, it should be weighed against two other
options. First, offloading must be cheaper (from a power
perspective) than full on-board processing. At 47nJ/b,
a 10kB (compressed) frame will cost 3.8mJ to trans-
mit by WiFi [22]. (WWAN numbers are similar.) The
10W NVIDIA Kl-based system mentioned above will
run for 0.38ms (at 290GOPS) and execute 110MOPs
at this budget, possibly adequate for some vision op-
erations. A second and perhaps less appreciated point
is that cloud operators may prefer to execute as few
CMV computations as possible. Note that unlike tex-
tual search queries, or even audio-based queries a la Siri,
continuous vision (even at 1-10% duty cycle) entails a
continuous and heavy workload per user. Given the net
annual operational cost of hundreds of dollars per cloud
server, a system design that runs part, most, or all of
the computation on a high-performance mobile GPU
paid for and powered by the end-user may be appealing.

The question of where best to perform (parts of) the
vision computation, and how to fit these into available
resources at each location, will thus vary across mobile
devices, network conditions, mobile device workloads,
the nature of the computation, and cost of cloud com-
puting. Almost all these parameters vary through the
day. The goal of MCDNN is to provide an easy-to-
use framework that helps computations such as these fit
available resources while providing flexibility in choos-
ing where the computation occurs.

The last three years have seen the emergence of the
Deep Neural Network, and specifically the Convolution
Neural Network (CNN), as the algorithm of choice for

recognition problems across most fundamental vision
problems [21, 24, 26]. In this paper, we use the terms
DNN and CNN interchangeably. Unlike traditional ap-
proaches to computer vision where the best solutions for
each problem vary broadly in computational structure,
CNNs use a common architectural template and for each
problem, instantiate these architectures through a com-
bination of a declarative specification (called a model
schema) and data-driven training. Thus, leading solu-
tions to many of the fundamental problems in computer
vision (e.g., object, scene, face and handwriting recog-
nition) are instances of the same architectural template.

MCDNN seeks to help exploit this convergence in vi-
sion algorithms by providing an optimization suite and
runtime to systematically transform CNN-based models
statically and manage them at runtime so as to sat-
isfy the constraints of the mobile/cloud setting. Of
course, many mobile computer vision tasks still exist
where DNNs do not form the bulk (or any) of the com-
putational load. We view MCDNN as one of several
tools to enable CMV.

3 Structure and Costs of CNNs

A convolutional neural network (CNN) can be viewed as
a dataflow graph where the nodes are array-processing
operations. These operations are typically parameter-
ized by weight arrays that are estimated from data using
machine learning techniques. Unlike much recent (sys-
tems) work in CNNs [5, 7], we are not concerned here
with the efficient learning of CNNs, but rather, their
efficient execution. Most CNNs today tend to be linear
[16, 21], but DAGs [23] and loopy graphs known as Re-
current Neural Networks [15] have also been considered.

Inputs to the graph are arrays (e.g., an image or audio
frame) that need to be classified or regressed. Outputs
are classification or regression results; we will focus be-
low on on classification. Each CNN node inputs and
outputs a vector of arrays, which can be processed by
downstream nodes. The number of operations, amount
of memory consumed and size of output of a node de-
pends on the particular array-processing operation it
represents (Table 1).

A key part of MCDNN is an optimizing compiler that
applies a suite of local rewrites on processing opera-
tions so as to match these counts with locally available
resources. Below, we therefore discuss each of these in-
structions in detail, characterize commonly used CNNs
in terms of these costs (Table 3) and summarize impli-
cations for continuous mobile vision applications.

3.1 CNN operations
3.1.1 gconv: Convolution

The convolution operation is associated with a set of H’
convolution matrices (each of size K x K x H), which
it applies using stride s, to its incoming array Anrarm,



Operation Computation (flops)

Storage (#parameters in floats)

Output size (floats)

geonv[K, H, H' 5] 2((M — K)/s)’K?’HH'

K?HH'

(M — K)/s)*H'

lconv[M, K, H H s] 2((M — K)/s)’K?HH'

(M- K)/s)’K*HH'

(M — K)/s)"H'

2MZHM’

MZHM’

M/

[
inner([M, H,M];
[

mpool[K, s] ((M — K)/s)?)K>H (compares)

0

(M — K)/s)"H

Table 1: Cost of key DNN operations assuming input feature map array of shape M x M x H, H' output feature maps, kernels of size

K with stride s and inner-product outputs of size M’

which can be thought of as H feature map arrays (each
of size M x M). Striding across M x M feature maps
with stride s yields resulting feature maps A’ of size
M =M ;K , one result feature map for each of H' con-
volution matrices:

!
gconV[CKKHH’ 78] (AM]\/[H) == AM/M/H/

where, for m,n in [0, @)

! _ E
Apnb =

m',n'Gm,nXs+%
0<i,j<K
i'=ij—%
0<h<H

(1)

Am/+i’ ;n'+35' ,hCijhh’

Note gconv requires 2 * (%)2H’K2H floating oper-
ations (the factor of 2 is due to the add and a multiply
operations). Further, since it is parameterized by the
convolution matrix Cx g mr, it needs to store K2HH'
floating-point weights. Finally, its output A% g 18
of size M"?H' = (M=EK)2 [’ Given that input matri-
ces can easily have size M = 100, whereas convolution
matrices typically have size K < 10, convolution layers
are high in compute requirements and low in storage re-
quirements. However, given the relative values of stride
length s and the number of feature maps H’ chosen by
the CNN architect, the output size may be bigger or
smaller than the input.

3.1.2 1lconv: Local “convolution”

The local convolution operation is identical to convo-
lution, except that instead of sliding a single “global”
convolution matrix over all positions in an incoming ar-
ray, we use a distinct “local” matrix per position. Intu-
itively, local convolution makes sense when the incom-
ing frame is aligned so that absolute positions within the
frame have the same “meaning” every time. For exam-
ple, in face recognition, since the incoming window is an
aligned face, the eye, nose, mouth, chin, forehead and
other parts of the face could potentially benefit from
differing convolution kernels. In particular:

lconv (Avma) = Avoae s

CM—K M=K jcpe 125
s B

where again, for m,n in [0, 2=£):

/ — E
Apnh =

m',n/€m,n><s+%
0<,j <K
i =%
0<h<H

(2)

G i/ '+ ,hCm/n/ijhh!

DeepFaceNet AlexNet/CNN- | VGGNet (ob-
(faces) Places (scenes) | jects)
input[224,224,3]
gconv [3,64,1]+relu
. gconv[3,64,1]+relu
input [224,224,3] mpool [2,2]

input[152,152,3]
gconvi[11,32,1]
relu
mpool1[3,2]
gconv2[9,16,1]
relu
lconv3[9,16,1]
relu
lconv4[9,16,2]
relu
lconv5[7,16,1]
relu

inner [4096]
relu

inner [4030]
softmax

gconvi[11,96,4]
relu

mpooll[3,2]
gconv2[5,256,1]
relu

mpool2[3,2]
gconv3[3,384,1]
relu
gconv4[3,384,1]
relu
gconv5[3,256,1]
relu

mpool5[3,2]
inner [4096] +relu
inner [4096]+relu
inner [205]
softmax

gconv[3,128,1]+relu
gconv[3,128,1]+relu
mpool[2,2]

gconv [3,256,1]+relu
gconv[3,256,1]+relu
gconv [3,256,1]+relu
mpool[2,2]
gconv[3,512,1]+relu
gconv[3,512,1]+relu
gconv[3,512,1]+relu
mpool[2,2]
gconv[3,512,1]+relu
gconv[3,512,1]+relu
gconv[3,512,1]+relu
mpool[2,2]

inner [4096] +relu
inner [4096] +relu
inner [1000]

softmax

Table 2: Model schema for state-of-the-art CNNs for face, scene
and object recognition. We exclude M and H parameters in the
definition, using values implicit from the previous layer



The computational cost and the data output are iden-
tical for gconv and lconv. However, storage cost in-
creases enormously (by a factor of (#=£)2) to accom-
modate the local convolution matrices.

3.1.3

Pooling slides a window across the incoming window
replacing the pixel at the center of the window by the
maximum of its K2 neighbors. Given that the window
typically has stride s greater than one, pooling has the
effect of reducing the size of its incoming feature maps
by a factor of s while introducing some translational in-
variance to the CNN (since the maximum only needs
to be in the neighborhood of the output pixel its is as-
sociated with). Pooling has no storage cost and takes
(@)QKQH steps for the strided linear scan of its in-
put, and result sized scaled down as in convolution:

mpool: Pooling

mpoolx (Avmm) = Ay w

where as usual, for m,n in [0, M;K):
/ e . .
Amnh = , max K Am!+i,n’ 44,k (3)
m’,n em,nXxs+ 5
-5 <<%

0<h<H

3.1.4 relu: Non-linearization

Features that derive from strictly linear transformations
of inputs are known to be limited in their representa-
tional power. The non-linearization step simply replaces
every incoming feature-map element with a non-linear
function of itself. Recent practice, called the Recti-
fied Linear Unit, is to simply use a threshold minimum
value, an operation that is often folded into expensive
operations such as convolution and inner products and
therefore has minimal incremental cost:

relu(@mnn) = max(0, amnn) (4)

3.1.5

inner flattens all incoming feature maps into a single
high-dimensional vector Ay, (where M; = M?H if the
incoming data comprises of feature maps Apprg) and
multiplies it by an M’ x M; weight array Fapar, to
produce result vector A}, :

inner: Inner product

A;V[’ = inner[FM,MI](AMI) = F]\{/]\{I AMI (5)

The computational cost is the 2M’'M; floating point
addition and subtraction operations necessary for the
matrix-vector product, storage cost is the M; M’ floats
comprising weight-array F' and output size is M’ floats.

3.1.6

The softmax is a multi-class generalization of the logit
function, and is typically the output layer of the CNN.

softmax: Classification

DeepFaceNet | AlexNet | VGGNet
compute(flops) 1.00G 2.54G 30.9G
storage(floats) 103M T6M 138M

Table 3: Resource usage of CNNs for computer vision

The logit scales values of a single variable in [—o0, +00]
to [0, 1]. Given the values of M variables as input vector
a, softmax scales the vector so each resulting element is
in [0, 1] and their sums add to 1. The value of element
1 of its output is interpreted as the probability that the
classification result of the CNN is class i:

e

ft =
softmax(a); S can

(6)
The computational cost is that of M exponentials and

their sums, with no storage costs and a result produced
of size M.

3.1.7 Summary

These operations are typically chained together start-
ing from an input layer, and ending in a softmax layer.
Table 1 summarizes the costs of the operations just dis-
cussed (we exclude relu and softmax since their costs
are negligible). The summary helps expose some simple
but important patterns that we will exploit later in the
MCDNN compiler.

The most important point to note is that resource us-
age is quadratic in some parameters and linear in others.
In fact, to reduce the amount of computation used in a
layer, reducing incoming array size M (typically by re-
ducing the output size from the previous layer) or kernel
size K, or increasing stride s are the best bets. Reduc-
ing the number of feature maps (H and H'), for in-
stance, has a secondary, linear effect. Finally, note that
although the computational cost of pooling is relatively
low (since it performs compare operations as opposed to
addition and multiplication), it can have a substantial
(quadratic in s) effect in reducing output size, i.e., the
input size M of the next layer mentioned above.

3.2 Example CNNs

The previous section provided the detailed resource con-
sumption of CNN operations in terms of their parame-
ters. We now examine absolute resource consumption in
practice by state-of-the-art models for face recognition
[24], scene recognition [26] and object recognition [21].
All datasets involved are drawn unmodified from the
internet, typically discriminate between a large number
of classes (1000 objects, 4000 people and 205 scenes)
use millions of images to train and tens/hundreds of
thousands of images to test. Face recognition rates ri-
val or exceed those of humans. The object recognition
and scene recognition datasets have not been evaluated
against humans, but anecdotal evidence suggests they
are hard even for humans. Recognition rates are more
modest, from 75% (for object recognition) to 53% for
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Figure 2: Resource usage of CNNs across layers (note log scale on y-axes)

scenes, although given five guesses (“top 5”), object
recognition rates shoot up to 93%. These numbers are
dramatically better than those not using CNNs. It is
plausible, therefore, that such networks will be a cen-
tral tool in computer vision in the future.

Table 2 specifies the models. Note that although
the number of CNN operations is not large, it still al-
lows substantial experimentation in and customization
of models for different domains. For instance, the Deep-
Face CNN, which takes aligned face images as input,
uses local convolution operations, whereas the object
and scene models do not.

Figure 2 illustrates their resource consumption to pro-
cess a single window in a frame broken up across layers.
Table 3 summarizes overall consumption across all lay-
ers. Each entry on the x-axes of the figure is a layer
from Table 2. The y-axes represents a count of three
key resources used by the corresponding layer, includ-
ing the number of operations to execute the layer, the
number of floats to represent the layer and the num-
ber of floats generated by the layer. Several points are
worth noting:

e Overall processor and memory demands are high, of
the order of a GFLOP and several hundred MB per
image window. Given that a single frame may have
multiple windows to classify (relevant objects, scenes
and faces), this will strain GPU power budgets and
memory budgets (assuming, e.g., a generous 10% of
a 2-4GB memory budget). We certainly seem far
from the 110-MOP budget (Section 2) needed to make
shipping the frame to cloud redundant.

e Intermediate data sizes are fairly large compared to
the roughly 10kB for a compressed variant of the in-
put image: any split architecture where part of the
network executes on the phone and part on the cloud
will have to contend with this.

e The distribution of compute and memory use across
layers is uneven. Earlier (global convolutional) lay-
ers tend to have high compute cost and low memory
cost. Later (inner product) layers tend to have high
memory but low compute cost. In principle, this sup-

ports schemes where the early layers are executed on
the GPU-acclerated mobile device (where computa-
tion is ample, but memory tight) and later layers in
the cloud where memory is more readily available and
shareable across multiple clients, whereas processing
entails substantial incremental cost per client. Local
convolution layers are an exception to this rule: they
have high memory and computation cost.

In summary, the resource consumption of CNNs is
high enough that the baseline CNNs, designed with
no special accommodation for resource constraints, are
likely inadequate for the CMV setting.

3.3 Implications for MCDNN

The resource needs of stock CNNs from Section 3.2,
when combined with the resource constraints on CMV
systems from Section 2, raise several questions for a
system such as MCDNN that seeks to apply CNNs in
the mobile/cloud setting:

e Is it possible to reduce the resource requirements of
individual models, perhaps by trading off accuracy?
Are there attractive points on this trade off?

e Is it possible to reduce the aggregate requirements
of multiple models (perhaps running across multi-
ple apps), perhaps by exploiting commonality across
them?

e Is it possible to structure models so that demand on
cloud resources is reduced significantly while making
modest demands of the mobile device?

e Is it possible to achieve above while communicating
much less data than each incoming frame, perhaps on
average?

e Are there settings where, even with robust connectiv-
ity, recognition on the phone is less expensive, e.g., it
can be performed within 110MOPs (as calculated in
Section 2) on the NVIDIA /Jetson system?

4 System Design

Figure 3 illustrates the architecture of the MCDNN
system. The system has three main components, a
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Figure 3: Architecture of the MCDNN system

compiler mcdnn-c, a specializer mcdnn-s and a mo-
bile/cloud runtime collectively called mcdnn-rt split
into a mobile component mcdnn-rtm and a cloud com-
ponent mcdnn-rtc.

An application developer interested in using a DNN
in resource-constrained settings provides mcdnn-c with
the relevant model schema, data for training the model,
constraints on resources to be used by these models
and (optionally) a list of hints partially specifying run-
time context worth specializing on, the type of data in-
put/output from the data (e.g., a face recognition model
may input windows containing faces of type 7; = face,
and output face identities 7, = face_id). The com-
piler derives a set of model schemas from the input
schema that are optimized to meet the resource con-
straints, along with the models resulting from training
these schemas on the input training data. When hints
on runtime context are provided, the compiler also pro-
duces “partially” trained models.

When the application is installed on a particular
user’s device, and periodically thereafter whenever com-
plete context information for a particular context-
type is available, mcdnn-s is responsible for complet-
ing the training of the “partially-trained” models of
that context-type using the new, complete information.
These specialized models are intended to consume sig-
nificantly less resources than their unspecialized coun-
terparts. If no context information is available on the
user at install time, MCDNN simply installs optimized
models that can execute in all contexts. However, if such
information is available (and as it becomes available in
the future from mcdnn-rt, see below), the specializer
will push maps from contexts to variants of models spe-
cialized to those contexts to the runtime.

Finally, at runtime, mcdnn-rt is responsible for select-
ing the most appropriate model in the client and cloud
given current resource availability, application mix and
context. When it detects new contexts worth special-
izing on, mcdnn-rt also invokes mcdnn-s to trigger the

production of new specialized models.

4.1 The mcdnn-c compiler

Algorithm 1 Types for MCDNN

1: type op_t = > DNN operations
2:  geonv: {kernel:int, fmaps:int, stride:int}
3 —lconv: {kernel:int, fmaps:int, stride:int}
4:  —inner: {nelts:int}
5: — ..
6:
7: type schema_t = op_t list > DNN schemas
8:
9: type opinst_t = > Instances of DNN operations
10: —gconv_i: {k:int*int array, fant*int*int array, s:int}
11:  —lconv_i: {k:ant*int*int*int array, fant*int*int array,
s:ant}
12: —inner_i: {elts:int array * int array}
13: —...
14:
15: type model_t = opinst_t list
16:
17: type hint_t = {nclasses: int, percent: float, ...} > Hints
18:
19: type mcmodel_t = {
20: schema: schema_t,
21: model: model_t,
22:  hint: hint_t,
23:  accuracy: float,
24: walidation_set: int array list
25: input_type_name(T;): string
26:  output_type_name(T,): string }
27:
28: > “Less specific than” constraints
29: M <M £
30: M.Ti :M/.Ti/\
31: Vi,j : M2 M'm(i) = M'.m(j) => M.m(i) =
M)

> DNN models

> MCDNN models

Algorithm 2 specifies the main tasks of mcdnn-c. It
first invokes reduceOpt, which uses a series of strictly
resource-usage reducing rewrites greedily on the incom-
ing model schema sg to find new schema that fit within
each of the resource constraints captured in cs. The
results are maintained in Ms;. Input training (¢) and
validation (v) data are used for training these models.
Next, a post-processing step incrOpt that allows lim-
ited resource-usage increasing rewrites further optimizes
these to yield models Mss. Next, even though specific
context information about the end user is not yet avail-
able, mcdnn-c can use hints that partially specify run-
time context to produce models Ms3 specialized to those
hints. mcdnn-c then looks for commonalities between
these models and reference libraries of common models
likely to be used by other applications at runtime to pro-
duce variants Ms, of the optimized models suitable for
sharing. We describe each component in detail below.



Algorithm 2 mcdnn-c: The MCDNN compiler

1: function MCDNN-C(sg,t,v,cs, hs, N, 7 = (73, To))

2: > input: Model schema so training (¢)/validation(v)
data; limits on cost of executing models cs; hints hs on
class-distributions for specialization; bound N on num-
ber of greedy search steps; input/output types 7; /7.

3: > output: MCDNN models Ms, where the model
schema M.s are derived from input schema so to satisfy
cost-constraints cs, exploit hints hs and exploit sharing
opportunities implied by type constraints 7.

Ms,1 = {REDUCEOPT(so, t,v,c, N,7) for c in cs}
Msy; = INCROPT(Ms1,t,v,cs, N)
Ms3 = PRESPECIALIZE(Ms2, t, v, hs)
Msy = TRAINSHAREDLAYERS(Mss, t,v)
return Msy
end function

4.1.1 reduceOpt: Greedy cost-reducing op-

timization

Local optimization is based on two observations. First,
in the absence of loops in deep networks, the resource us-
age of the network as a whole is equal to the sum of those
of its component operations, independent of run-time
information. Second, changes in individual parameters
of each node can make a significant difference in resource
usage. For instance, according to Figure 2, the first non-
input layer of DeepFaceNet consumes 0.468 GFLOPs.
Since (by Table 2) that layer is a global convolution
layer, we can infer from the first row, first column of
Table 1 that doubling the stride on this layer (i.e., “re-
writing” it from gconv[11,32,1] to gconv[11,32,2]
will reduce the number of operations by a factor of 4,
i.e., to 0.117GFLOPs), a substantial saving given that
the entire network consumes 1GFLOP.

Algorithm 3 specifies MCDNN’s greedy cost-reducing
optimization stage, called reduceOpt. Overall,
reduceOpt greedily rewrites the “most promising” oper-
ation in the incoming model schema s until it produces
a variant of s that meets the constraints provided. The
constraints include minimum accuracy ag of the result-
ing model and maximum memory (sg) and computation
(co) allowed by that model.

The primary risk of the a greedy scheme is that of
making premature decisions that lead to local optima.
We take two simple steps to mitigate this risk, and in
particular to avoid overly committing to any one of
our three objectives (accuracy, storage and computa-
tion) prematurely. First (Line 28) we alternate between
greedily trying to reduce cost on the basis of storage
and computation. Second, we avoid steps that reduce
accuracy too drastically, using an externally provided
threshold Aa. In order to estimate accuracy we must
(Line 9), via the train() call) train and validate the
new model schema on the user-provided data. Since
some deep networks can take several days to train on

today’s technology [16], this is the biggest bottleneck
in our compilation framework, although training time
decreases rapidly as we consider smaller models.

The transform function finds and performs the
rewrite corresponding to a single greedy step. We rely
on the fact that deep network schemas are not large.
transform therefore iterates over every parameter p and
its current value v in the schema, changes the value in-
crementally by an externally defined increment Av and
gauges the resources used by the resulting schema. We
then simply select the parameter p* with the lowest re-
source usage (Line 29).

One complication is that a single parameter change
can lead to cascading change in the structure of the
model schema. Note, e.g., from column 3 of Table 1
that output size falls as the square of the stride s. Thus,
increasing stride from 1 to 4 during our optimization re-
duces input sizes to the succeeding layer by a factor 16,
making its output smaller, and so on. It is possible that
at some layer, the input size is smaller than the con-
volution matrix, yielding an output size of zero. We
use the reparameterize function to recursively prune
away such layers in the graph. Note that such “cascad-
ing” effects may lead us to greedily consider catastroph-
ically bad (from the point of view of accuracy) model
schema, further motivating the accuracy-drop threshold
Aa mentioned above.

4.1.2 incrOpt: Limited cost-increasing

steps

reduceOpt greedily remowves functionality from the in-
coming model schema so as to reduce performance de-
mands gradually while maintaining accuracy. Further,
it does so strictly by local rewrites. With the incrOpt
step, we relax these constraints slightly. We consider
rewriting multiple DNN operations simultaneously, and
in particular consider adding functionality in a con-
trolled manner.

Allowing non-greedy, non-local optimization can not
only produce better optima in terms of total resource
usage/accuracy of the DNN; it can also change where re-
sources are used. In particular, consider the case where
we try to split the execution of a model between mo-
bile device and cloud. Given that DNNs usually consist
of a chain of convolution operations followed by inner-
product operations, they tend to be compute-heavy in
the early layers and memory-heavy in the later ones.
See for instance the AlexNet and VGGNet from Fig-
ure 2: convolutional layers use less than 10% of mem-
ory and execute over 80% of computations. For cloud
servers, however, 300MB of memory is a much smaller
bottleneck than several GOPs of processing. Splitting
convolutional /inner-product calculations between mo-
bile and cloud thus looks attractive.

In this context, depending on resource availability at
the mobile end, it may be attractive to shift work from
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the convolutional layers to the inner-product layers and
vice-versa. This capability becomes especially interest-
ing for a model like DeepFaceNet, which perform lo-
cal convolution. Local convolution layers demand high
compute and memory resources. We therefore consider
an optimization that converts local convolutional layers
to global ones and introduces an inner-product layer to
compensate. Less aggressively, we could rewrite con-
volutional layers to be less computationally demand-
ing, but instead of sacrificing performance for it, could
attempt to make it up via a relatively small amount
of additional calculation in a cloud-based inner-product
layer.

Our compiler currently performs a single, simple op-
timization on model schema output by reduceOpt that
converts local convolution layers to global convolution
and adds an additional inner-product layer. The result-
ing trained model is available to the run-time in case it
wishes to execute the model in a split manner at any
point, or if the resource-use/accuracy tradeoff is simply
more favorable for the task at hand.

4.1.3 Model specialization

One impressive ability of DNNs is their ability to classify
accurately across large numbers of classes. For instance,
DeepFace achieves roughly 93% accuracy over 4000 peo-
ple [24]. In the mobile setting, however, it is well-known
that classes are heavily clustered by context. For in-
stance you may tend to see the same 10 people 90% of
the time you are at work, with a long tail of possible
others seen infrequently; the objects you use in the liv-
ing room are a small fraction of all those you use in your
life; the places you visit while shopping at the mall are
likewise a tiny fraction of all the places you may visit
in daily life. With model specialization, MCDNN seeks
to exploit class-clustering in contexts to derive more ef-
ficient DNN-based classifiers for those contexts.

We adopt a cascaded approach (Figure 4) to exploit
this opportunity. Intuitively, we seek to train a resource-
light “specialized” model for the few classes that domi-
nate each context. Crucially, this model must also rec-
ognize well when an input does not belong to one of the
classes; we refer to this class as “other” below. We chain

this specialized model in series with a generic resource-
heavy model, which makes no assumptions about con-
text, so that if the specialized model reports that an
input is of class “other”, the generic model can attempt
to further classify it.

This approach has two major unknowns. First, it is
as-yet unknown whether DNNs aimed at a small subset
of classes with an “other” class are much more efficient
than DNNs that target a large superset. As mentioned
previously, almost all layers of the DNNs are thought
to compute representations suitable for discriminating
across target classes while remaining invariant to myr-
iad irrelevant variations in input signal, e.g., due to
lighting, perspective, size, local deformations, resolu-
tion, focus, etc. How much of this computation is nec-
essary for maintaining invariance and for discriminating
against the “other” class (as opposed to discriminating
between the small number of classes), as the specialized
model needs to do in any case, is not well understood.
In the worst case, representations to discriminate well
between a few classes while remaining robust to other
classes and irrelevant signal may not be much cheaper
than representations for many classes. In our evaluation
section, we provide the first (to our knowledge) empiri-
cal evidence that specialized deep networks can indeed
be accurate and efficient.

Second, it is unclear how to ensure that specializa-
tion is fast and effective at runtime. If the subset of
classes and contexts were known at compile time, a
developer could manually explore the space of feasible
model schema, train models for each schema on the data
corresponding to this subset, and select the most effi-
cient and accurate one for use in that context. How-
ever, this simple approach has two problems. First, of
course, the identities of classes that cluster in contexts
are not known until a particular user installs or, more
likely, uses a program: even if the developer anticipates
a “small office” scenario, they cannot possibly antici-
pate who would be in that office. It is infeasible to wait
until install- or run-time to select a schema and train a
model because as mentioned in Section 4.1.1, exploring
the space of models to find efficient models is slow be-
cause training DNNs is slow. Second, the smaller the
subset of classes in a context, the greater the potential
benefit from specialization, but the smaller the corre-
sponding amount of training data: for instance a sub-
set corresponding to 5% of classes will roughly contain
only 5% of the training data for all classes. DNNs are
famously data hungry and there is a strong danger here
of performance falling simply due to insufficient data.

To address this problem, mcdnn-c applies the in-
tuition that lower layers (e.g., all but the top fully-
connected and softmax layer) of DNNs compute repre-
sentations of the domain over which they need to classify
(e.g., faces, objects, indoor scenes). The top layer then



computes the classification boundary between particu-
lar classes to be recognized in this domain (e.g., particu-
lar faces, objects, etc.). The lower layers may therefore
be trained on data for the entire domain before the par-
ticular classes to be recognized are known, with just the
top “classification” layer re-trained at run-time when
the specific classes to be recognized are known. We call
this process of re-training just the top layer re-targeting.

mcdnn-c addresses these problems by performing
much of the work of training via a pre-processing step
at compile time, via the preSpecialize function [Al-
gorithm 2, Line 6] and only “re-targeting”, rather than
training from scratch, at run time.

At compile time, hints hs partially specify the distri-
butions of classes to be specialized for at run time. Hint
{n :int,p : float, ...}, refers to a situation where at least
fraction p of data from the top n classes to be recognized
(e.g., with a face recognition DNN, n,p = (5,0.6) rep-
resents the case where at least 60% of images belong to
the 5 most commonly identified people).

Let [(m;, M;,a;)] be the list of model schemas along
with trained models and accuracies produced by . (Al-
gorithm 2) that mcdnn-c uses local compilation to pro-
duce highly resource efficient candidate models that pre-
dict the original (complete) set of classes with modest
accuracy. It then re-targets these models to randomly
selected sets of n classes augmented with data repre-
senting an “other” class picked from classes not in the
selected set. It picks the candidate model s* that per-
forms best on this sample data as the basis for user-
specific specialization by mcdnn-s.

As Figure 4 shows, when the context for a particu-
lar user is known at run time, mcdnn-s re-targets s*
(i.e. simply retrains the softmax layer) to produce a
compact, custom model. At run time, given an image
window to classify, the MCDNN runtime first routes it
to s*. If its answer is “other”, only then is the window
routed to the presumably more expensive generic model
(sg). Given that in-context frames are by definition
much more frequent than out-of-context, this should
yield substantial reductions in resource consumption if
s* is cheaper than sg. Further, so may be positioned on
the cloud so that we have the triple benefit of lower on-
mobile compute usage, image window communication
to cloud and use of cloud compute cycles.

4.1.4 Model sharing

Until now, we have considered the conventional setting
where we optimize an individual model for resource con-
sumption. In practice, however, multiple applications
could each have multiple models executing at any given
time, further straining resource budgets. The model
sharing optimization is aimed at addressing this chal-
lenge.

The underlying idea behind model sharing is that the
layers of a DNN can be viewed as increasingly less ab-
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stract layers of visual representation. The bottom con-
volution layer captures variations in shading and differ-
ent edge orientations. The very highest layers represent
concepts semantically close to the entities being classi-
fied (e.g., parts of faces, objects and buildings for face,
object and scene recognition). It is conceivable therefore
that representations captured by lower levels are share-
able across many high-level visual recognition tasks. In
the limit, if the tasks can be decided using the same
high-level concepts, it may be possible to re-use all the
layers of one DNN across all those tasks.

Figure 5 illustrates model sharing. In the intra-
domain setting, consider the case where (possibly dif-
ferent) applications wish to infer the identity (ID), age
and gender of incoming faces. One option is to train one
DNN for each task, thus incurring the cost of running all
three simultaneously. At the other extreme, using the
intuition that it should be possible to determine age and
gender based on the same high level features as some-
one’s identity, we may seek to retrain just the softmax
layer of the face identification DNN to determine age
and gender as well (we call this technique re-targeting).
In this case, the cost is essentially just the maximum
cost of all three (ignoring the minimal cost of the soft-
max). Alternately, if no application required face 1D,
one may wish to avoid executing the relatively expen-
sive face-ID DNN and instead execute one much simpler
DNN each for gender and age where the lower layers of
the two are shared (partial sharing). Here we would save
the cost of re-executing the shared bottom layers.

Finally, in the inter-domain setting, for the very
lowest levels of all DNNs representing natural scenes,
we expect to be able to share layers across domains.
For instance, since faces are objects, we could expect
the lowest (and computationally most expensive) lay-
ers to be sharable across face-classification and object-
classification tasks. In fact, it is conceivable that all
models share the lowermost convolutional layer(s).

mcdnn-c currently allows programmers to pick model
schemas or prefixes of model schemas from a library ap-
propriate for each domain 5. We currently simply use
prefixes of AlexNet, VGGNet and DeepFace with in-
put sizes matched if necessary. Given incoming model



schema s that contains such a length-n shared pre-
fix (say s = s + s,) with training/validation data
t/v, where s; is the maximal shared prefix and s, the
unique postfix, we assemble a trained model consist-
ing of two parts: a pre-trained variant M of the s,
and M,, a freshly trained variant of s,, trained on
t' = My(t),v" = Ms(v). We believe that in many mod-
els, the shared fragment My will be a large fraction of
total models size; indeed, we will show in the results
section that re-targeting, where the shared fragment is
close to the whole model in size is commonly applicable.

5 Evaluation

We have discussed several optimizations implemented
in the mecdnn-c compiler intended to control the balance
between resource usage (specifically memory and com-
putation) and accuracy. Further, we have described a
run-time system to manage these models. Although we
could statically estimate exactly the decrease in resource
usage from each optimization, the critical question is
whether high-enough resource decreases come with low-
enough accuracy loss. Further, we wish to study to what
extent the promised benefits are reflected in runtime
performance gains. Below, we step through each com-
piler optimization analyzing its impact and then discuss
some measurements of the MCDNN runtime.

5.1 Datasets and evaluation procedure

Ideally, we would evaluate our techniques on mobile im-
ages in the wild. However, no large mobile-device spe-
cific dataset exists. We therefore use three large train-
ing/validation sets collected from the internet for train-
ing and validation. Given the complexity of these im-
ages we believe performance on them is likely a lower
bound on what is possible with a wearable device look-
ing at day-to-day life.

The Imagenet [8] dataset is the standard for ob-
ject recognition, providing 1.28 M /50K images for train/
validation over 1000 classes. Because the VGGNet
model was only released very recently, we use the
AlexNet model schema, which was the standard until
this year, as the basis for object recognition. The best
single-model accuracy rates of Imagenet on AlexNet are
roughly 51%, which were able to reproduce. Using mul-
tiple models (and voting over their outputs) adds some-
what to accuracy, but we stick to the single-model set-
ting.

The DeepFaceNet [24] results were reported on a pro-
prietary dataset of faces from Facebook with 4.4 million
train and validation images over 4030 classes and maxi-
mum accuracy 93%. In the absence of the extremely
large dataset, we collected a new dataset MSRBing-
Faces with 50000/5000 images over 200 celebrities from
the Internet. The best accuracy we are able achieve is
79.6% which is in line with DeepFace experiments on re-
duced datasets. We further labeled MSRBingFaces data

11

with the attributes race (“African American”, “white”,
“Hispanic”, “East Asian”, “South Asian”, “other”), age
(“0-30”,“30-60”,“60+") and gender and trained classi-
fier with each of these.

The MITPlaces205 [26] dataset was the first large
scene dataset, only officially released in the past month.
It contains 7.08 million images, with a best reported
result of 50.0% over 205 categories, which were able
to reproduce. MITPlaces205 is complemented by the
Sun405 dataset [25] which provides a roughly 14340 im-
ages labeled with 102 attributes, of which we chose three
(“man-made”, “natural light” and “no visible horizon”).

Given that it takes a week to train the MITPlaces
and Imagenet, and roughly a day to train on MSRBing-
Faces, we do not perform every experiment on every
dataset. In particular, we perform all experiments with
the MSRBingFaces dataset, many with Imagenet, and
only sharing experiments with MITPlaces given its re-
cent release.

5.2 Efficacy of local optimization

We applied local optimizations as per the localOpt
algorithm to AlexNet and DeepFaceNet. The config-
urations produced are described in the AlexNet and
DeepFaceNet rows of Table 4 (we will discus DeepFace-
CompactNet later). The describes 7 optimized model
schema (A1-7) for AlexNet and 11 (D1-D11) for Deep-
FaceNet, with the rewrites required to generate them
(relative to A0 and DO) listed in the “optimizations”
column. Schema A5, for instance, is the result of apply-
ing 4 rewrites.

Table 5 lists the resource consumption versus accu-
racy of these models. We focus on two points. First,
it is indeed possible to get very substantial re-
ductions in resource usage with modest reduc-
tions in accuracy. For instance A2 sacrifices roughly
8.5% accuracy (relative, and 4.1% absolute) for a 4.1x
reduction in memory footprint. Similarly, A6 yielded
a 3x reduction in compute use at 7.2%. In the case
of DeepFace, simplifying the model does not in many
cases reduce accuracy. This is likely because our smaller
MSRBingFace dataset was overfit by the original Deep-
FaceNet model schema D0. We therefore take the sim-
pler model D8 which has the maximum accuracy as a
fairer baseline. Note that configuration D9, for instance,
gets 2.3x memory use reduction and 1.7x for 3% rela-
tive accuracy loss. These results are reassuring, since it
demonstrate that automatic optimizations can compen-
sate for model schema that were chosen without careful
consideration to resource use.

A second, and tantalizing point worth noting is that
performance degrades gracefully: it does not plunge
when schema are simplified dramatically. Note A3 and
D10, which achieve 13.8 and 47.7(!)x improvements in
memory use at just 12.5% and 15.1%. CNNs perfor-
mance is therefore fairly robust to major surgery in re-



Model Index | Optimization
A0 No optimization
Al Convert all inner [4096] to [2048]
A2 Convert all inner [4096] to [1024]
A3 Convert all inner [4096] to [128]

AlexNet A4 Convert gconv2[5,256,1] to [5,128,1], all inner [4096] to [2048]
A5 Convert gconv1[11,96,4] to [11,48,4], gconv2[5,256,1] to [5,128,1], all inner [4096]
to [2048]

A6 Convert gconv2[5,256,1] to [5,256,2]
A7 Convert gconv2[5,256,1] to [5,256,2], all inner[4096] to [2048]
A8 Based on A7, add one inner [2048]
Do No optimization
D1 Convert inner [4096] to inner [2048]
D2 Convert inner [4096] to inner [1024]
D3 Convert inner [4096] to inner [256]
D4 Convert gconv1[11,32,1] to [11,16,1]

DeepFaceNet D5 Convert 1lconv3[9,16,1] to [9,8,1]
D6 Convert gconvi1[11,32,1] to [11,32,2]
D7 Convert lconv3 to gconv3
D8 Convert lconv4 to gconvé4, lconvb to gconvh
D9 Convert gconv1[11,32,1] to [11,16,1], 1conv3 to gconv3
D10 Convert gconv1[11,32,1] to [11,32,2], 1conv3 to gconv3
D11 Based on D6, add one inner [4096]
D12 Based on D10, add one inner [4096]
Co Compact DeepFace neural network
C1 Convert inner[2048] to inner [256]

DeepFace . .

CompactNet C2 Convert 1conv3[9,16,1] to lconv3[9,8,1], :.Lnner [2048] to }nner [32]
C3 Convert 1conv3[9,16,1] to 1lconv3[9,8,3], inner [2048] to inner[32]
C4 Convert gconv1[11,32,2] to gconv1[11,32,4], 1lconv3[9,16,1] to lconv3[9,8,3],

inner [2048] to inner [32]

Table 4: Optimization descriptions on AlexNet, DeepFaceNet, and DeepFace CompactNet. See the definition of AlexNet and Deep-

FaceNet at Table 2, and DeepFace CompactNet at Figure 6.

source usage, a fact that is important for automated
resource-use optimization.

Overall, these are meaningful gains both in absolute
terms, since 10s of MB of memory are a relatively large
gain for mobile devices and also relative to CNN size,
because they will allow more models to be used simul-
taneously.

5.3 Global optimization

Recall that in local optimization we monotonically re-
duced resource consumption of operations. This nat-
urally resulted in a steady reduction of classification
accuracy in return for the performance, but kept the
compilation process simple. To touch on the potential
of non-monotonicity, we allowed a post-pass to local op-
timization where we add functionality via an additional
single inner-product to the locally optimized models.
Models A8, D11 and D12 of Table 6, generated by
augmenting models A7, D6 and D10 illustrate the re-
sults, which are striking. Note that these latter models,
produced by local optimization, consume substantially
less resources than their originals (A0, DO, D0), but
sacrifice accuracy noticeably. Global optimizations
gain back a very substantial part of the accu-
racy lost by local optimization while sacrificing
almost none of the gains in compute operations
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and relatively little of memory gains. Note that
although D12 does use 9x more memory than D10, D12
itself was using roughly 48 x less memory than the orig-
inal in the first place.

These results indicate that although for simplicity
we designed the mcdnn-c compiler to monotonically re-
duce resource consumption in its optimizations, we have
likely barely scratched the surface of possible optimiza-
tion. In particular adding richer non-monotonicity in a
tractable manner will likely be profitable.

5.4 Model sharing

Table 7 illustrates the potential of sharing, in this case
in the intra-domain setting, for the face domain. The
DO Noshare row reports the result of training the Deep-
Face model separately on the age, gender and race data,
thus generating three custom classifiers. The recogni-
tion rates are quite good, but resource consumption is
that of DO. In un-shared mode, therefore if face iden-
tification were running alongside these three classifiers,
we would need 4x(1GFLOP,102M floats) of processing
and storage. However, row 2 (“DO0 retarget”) uses the
result of retargeting the DO CNN by retraining its soft-
max layer (as explained in Section 4.1.4). The incre-
mental cost for the three re-targeted classifiers in this
case is simply the cost of the softmax layer: e.g., the age



Index | #Flops | #Parameters | Accuracy
A0 2.54G 76.0M 49.6%
Al 2.46G 35.7TM 50.0%
A2 2.40G 18.7M 45.4%
A3 2.40G 5.50M 43.7%
A4 1.80G 34.9M 43.4%
A5 1.45G 34.8M 42.2%
A6 838M 41.4M 46.0%
AT 792M 18.4M 42.7%
Do 1.00G 103.2M 75.7%
D1 974M 88.4M 76.6%
D2 959M 80.9M 74.9%
D3 948M 75.4M 74.3%
D4 605M 103.2M 77.5%
Db 933M 67.9M 76.8%
D6 203M 10.4M 69.2%
D7 1.00G 40.5M 71.2%
D8 1.00G 92.6M 78.6%
D9 605M 40.5M 76.2%
D10 203M 2.16M 66.7%

Table 5: Local optimization results

Index | #Flops | #Parameters | Accuracy
A7 792M 18.4M 42.7%
A8 800M 22.6M 44.7%
D6 203M 10.4M 69.2%
D11 236 M 27.2M 75.2%
D10 202.9M 2.16M 66.7%
D12 236 M 18.9M 75.6%

Table 6: Comparison between models with (in bold) and without
global optimization for both AlexNet and DeepFaceNet

classifier requires a mere additional 24.6KFLOP/12.3K
floats: shared models can require many orders
of magnitude less incremental memory and pro-
cessing per additional model than without shar-
ing. The numbers for retargeting the scene classifier
to classify other attributes are similar . Sharing by
retargeting seems to enable almost unbounded scaling
within a domain, possibly key to running large numbers
of models efficiently both on mobile device and on the
cloud.

What if the face identification model does not need to
be run, but the other three do? Can we do better than
incurring the (1GFLOP,102M floats) cost of the shared
D0 CNN? Intuitively age, gender and race all have many
fewer classes to recognize than facial identity, and a
much simpler classifier would seem to suffice for them.
The “D10 retarget” row confirms this intuition dramat-
ically. This row consists of classifiers for gender, age
and race that are obtained by retargeting model D10,
again at very small incremental cost. But recall from
Table 5 that D10 only consumes (202.9MFLOP,2.14M
floats) in the first place, with roughly 2% absolute per-
formance drop: roughly 47.6x less memory and 4.9x
fewer FLOPs than simply using an unoptimized base-
line (DO) for retargeting.
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Model Result Age Gender | Race
DO #Flops 1.00G 1.00G 1.00G
#Params 102M 102M 102M

NoShare | A ciracy | 74.0% | 94.9% | 83.3%
DO #Flops 24.6K 16.4K 41.0K
Retarget #Params | 12.3K 8.19K 20.5K
Accuracy | 75.3% 94.7% 83.6%

D6 #Flops 24.6K 16.4K 41.0K
Retarget #Params | 12.3K 8.19K 20.5K
Accuracy | 73.2% 93.2% 80.2%

D10 #Flops 24.6K 16.4K 41.0K
Retarget #Params | 12.3K 8.19K 20.5K
Accuracy | 72.9% 92.7% 81.5%

Table 7: Results of retargeting the trained models to

age/gender/race attribute classification. NoShare model is
trained on a complete model on the attribute data. Retarget
indicates that only the softmax layer is retrained on the attribute
data, while bottom layers are shared from the various models
trained on MSRBingFace ID.

input[152,152,3]

gconvi[11,32,2]+relu

mpool[3,2]

gconv2[9,16,1]+relu

lconv3[9,16,1]+relu

inner [2048]+relu

inner [200]

softmax
Figure 6: Definition of specialized DeepFace CompactNet (CO0)

Thus sharing not only enables massive scaling, in

combination with local optimization, it also scales down
the minimal cost substantially. This result says that
it is possible to run CNN-based age, face and race
(and presumably many other face-related classifiers)
on a mobile device simultaneously using under 2.14
floatsx4B/float~ 8.8MB of memory and kBs of incre-
mental cost.

5.5 Model specialization

Table 8 evaluates the potential of context-specialization.
We ask the question: if we knew that 60, 80, 90 or 95%
of the people you see belong to a small group (in this
case, 7 people randomly picked from the larger MSRB-
ing dataset) and the rest are random other faces, can
you use this information to train a model with excep-
tionally high accuracy and low resource consumption as
per Section 4.1.37 For each in-context percentage, we
report numbers averaged over 5 such 7-person contexts,
with roughly 350 different faces tested in each experi-
ment (with four times that many used for training). We
refer to these sub-datasets as MSRBingFaces-Context60
through -Context95 below.

We are interested in two settings. First, the “in-
context-only” case, we assume the application is only
interested in identifying people in context and it is ad-
equate for all others to be reported as “other”. In the
other, “overall”, setting we seek to identify the names
of other people in the dataset as well. When Table 8
reports an accuracy as X/Y% (e.g., 96.0/86.3%), X is



Model | #Flops | #Params | FaceID | 60% Context | 80% Context | 90% Context | 95% Context
Co 225M 21.0M 797% | 96.0/38.1% 95.3/91.0% 97.3/94.9% 97.2/96.2%
C1 202M 10.0M 79.6% 95.0/87.5% 95.8/90.0% 96.6/93.7% 97.2/95.8%
C2 100M 131M 74.3% | 93.8/32.1% 94.3/90% 96.1/94.0% 97.2/95.8%
C3 183M 581K 602% | 89.6/37.3% 91.4/85% 95.2/92.2% 96.2/94.5%
4 38.6M 150K 621% | 85.2/74.1% 86.4/78% 88.7/84.4% 89.0/87.5%

Table 8: Train the DeepFaceCompactNet models on context specific dataset.

Context specific dataset consists of face images from

in-context people and other random outside-context people. We pick 7 people randomly from MSRBingFace dataset for in-context data.
Proportion of in-context images in the entire dataset varies from 60% to 95%.

Model | 14 persons | 21 persons
Co 95.0% 90.8%
C1 95.6% 91.1%
C2 95.4% 90.3%
C3 92.8% 86.2%
C4 86.3% 79.7%

Table 9: For 90% context specific case, we extended the number
of context specific people to 14 and 21, and retargeted CO-C4.

in-context-only accuracy whereas Y is the overall accu-
racy.

To maximize the challenge, we picked as baseline for
this study the best model we could derive from DO for
classifying the MSRBingFaces dataset. We call this
model CO, and it is defined in Figure 6. We derived it
by hand after extensive experimentation. Notice from
the “C0” row (columns 2-4) of Table 8 that CO has the
better recognition rates than D0 and any of its auto-
matically derived variants D1-D12 (Table 7), and it has
exceptionally low resource usage. We wished to test
if model specialization could significantly improve over
this baseline.

Columns 5-8 of the table establish that specializa-
tion still makes a sharp difference. We train specialized
models for these columns by retargeting CO to datasets
MSRBingFaces-Context60 through -Context95. The
recognition accuracy of this classifier on the dataset is
reported as the in-context-only result. If the classifier
reports “other”, we also further invoke the generic CO
to identify the nominally out-of-context face. We ag-
gregate over the classification results to calculate the
overall. In the C1-C4 rows, we generated simpler ver-
sions of C0O and specialize these simpler versions.

A few points are worth noting. If an application re-
quires just in-context-only classification results, as the
results for C3 illustrate, specialization yields roughly
90% accuracy even if 40% of faces encountered are out
of context; moreover, the systems requires 38x less
memory and 1.2x fewer FLOPs than the highly
optimized CO model. In the entirely plausible case that
90-95% of faces seen are the same (e.g., picture an of-
fice worker in a small group of 7 or less), the last two
columns of the C3 row indicate that face identification
can be over 95% accurate. Finally, if higher accuracy is
required, using CO itself uniformly yields over 95% accu-
racy over all sub-datasets. And if somewhat lower (e.g.,
85%) accuracy is tolerable, then as the C4 row shows, we
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require 146 x less memory and 5.8 x fewer FLOPs.

If an application requires overall classification results,
the table illustrates that specialization very significantly
increases overall accuracy of classification relative to the
baseline C0. On digging deeper into the data, we de-
termined that the good performance can be explained
by the fact that the in-context-only not only has good
classification accuracy, it also specifically has has excel-
lent precision and recall in recognizing the “other” class.
Thus, to a first approximation, overall accuracy is sim-
ply a weighted average of accuracies of the in-context-
only and unspecialized models, weighted by the in/out-
of-context percentage. As the fraction of the dataset in
context increases, the benefit of specialization for overall
classification decreases. However, clearly if an appli-
cation is able to identify 7 or fewer classes that
constitute over 60% of cases seen, specialization
could yield gains of 10% or in overall accuracy.

How does the context-sensitivity degrade with size of
context? As per Table 9, which reports in-context accu-
racy for models C0-C4 with 14- and 21-person contexts,
the degradation is noticeable but not catastrophic, at
least for contexts where 90% of test cases are from in-
context. Overall classification accuracy (not reported)
varies similarly as in Table 8.

6 Conclusions

To enable efficient convolutional neural network usage
on the mobile devices, we explored a variety of opti-
mization techniques that balance the resource usage,
in terms of memory and computation, and accuracy.
We developed and experimented a wide range of opti-
mized models. The results show that local optimiza-
tion can achieve up to 4.9x reduction in computation
and 47.7x reduction in memory with 15% loss in ac-
curacy, which can be compensated by a combination
with global optimization. Specialized context specific
models can be highly compact but also with a decent
accuracy. Model sharing experiments suggest that huge
resources can be saved by bundling similar recognition
tasks together shared with bottom layers. Further, we
proposed the system design of a model compiler and spe-
cializer which can automatically optimize CNN models
and create specialized compact models conforming to
the resource specifications.
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Algorithm 3 reduceOpt: Reducing DNN resource use
by greedy resource-usage-reducing rewrites.

1:

2:

42:
43:
44:
45:

46:

function REDUCEOPT(so, ¢, v, (ag,lo,co), N,7,Aa = A, Av =
V)

> input: Model schema sp; training/validation data ¢/v;
limits ag/lop/co on accuracy/model size/computational oper-
ations of output schema; limit N on number of greedy steps;
limit Aa on drop in accuracy allowed in a single greedy step;
vector Av of greedy step size.

> output: Model schema s, the cheapest schema derived
from so under constraints (ag,lo, co); MCDNN model M and
validation accuracy a resulting from training s on t,v.

a,l, ¢ i, 8, M, ps < 1.0,1o, co, 0, so, TR'AIN(SO» t,v, T): {}
while (I >1lp —c¢>c¢p) & a>ag & i++ < N do
a',s',M' < a,s, M
$,p < TRANSFORM(S, %, ps, Av)
M < TRAIN(S, t,v,T)
if a’ — M.a > Aa then > Avoid plunges in accuracy
a, s, M,pS <~ (ll, S,7 M,7 +{p}
else
ps < {}
end if
end while
return M

: end function

: function TRANSFORM(s, %, ps, Av)

> Find and decrement the parameter p* in s (but not in ps)
that maximally decreases storage/computation usage (if step
number, 7, is even/odd). Ensure that the resulting schema s*
is well-formed and return it along with p*.

s*, k*, p* < m, oo, nil
> Find parameter+schema that maximize cost reduction.
for all p,v in s.paramValues() s.t. p € ps do
s’ <~ REPARAMETERIZE(m, p, v — Av[p])
s, + cosT(m')
> Alternately reduce storage and computational cost.
k'« s if i%2 =0 else ¢/
s*, k¥, p* « s K ,p if K <k*
end for
return s*, p*

: end function

: function TRAIN(s, ¢, v, 7 = nil, h = nil)

> Train schema s on dataset t/v.
m, a < DNNTRAIN(s, ¢, v) > Use base DNN trainer
return {s:s,m:m,h:h,a:a,v:v,7: 70,70 : 7.1}

: end function

: function cosT(s)

> Use Table 1 to sum up the cost of all operations in model
schema s. Return the total storage and computation costs.
end function

function REPARAMETERIZE(S, p, v)

> Set parameter p in model schema s to v. Prune the re-
sulting schema by (recursively) removing any operations with
no outputs. Return the resulting schema.
end function




Algorithm 4 preSpecialize: Specializing DNNs to
partially specified training data.

1: function PRESPECIALIZE(Ms, t,v, hs, N = 20)

2:

10:
11:
12:
13:
: function PRESPECIALIZEMODEL(M, ¢, v, h, N = 20)
15:
16:
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18:
19:
20:
21:
22:
: function sAMPLE(¢,v,h = {n,p,...}, N)
24:

23

25:
26:
27:
28:

> input: Model-schema-to-model-map Ms, hints hs,

training/validation data t/v, number of samples N to spe-
cialize on.

> output: Ms with original entries and new entries de-

rived by specializing original entries to ¢/v per hints hs.

for all A in hs do
> Add most accurate specialized model
Ms' + PRESPECIALIZEMODEL(M, t,v, h, N) for M in Ms
M* < argmax ;¢ M.a
Ms +—+M*
end for
return Ms

end function

> Specialize a single model to a single hint

tvs < SAMPLE(¢, v, h, N)

rs<{RETARGET(M,t',v’', h) for t',v’ in tvs}
(s*,m*,a"),04 + arg median, ,,, ocrs; Os,m,acrsa

M +{s:s*m:m* h:ha:a* 0q:0q,v:v,7: M.T}
return M’

end function

> Sample N train/validation sets from ¢, v as per hint h: p

percent of each sampled set must come from one of n classes
in ¢, with the rest chosen randomly from remaining classes.

tus + {}
foriin0...N —1do
c < set of n fresh random class labels from ¢
> rs denotes the subset of r with labels in s; r ® m

draws m samples uniformly w.o. replacement from r.

Ve te U (te ® (Jtel(2 - 1))
v 4= ve U (ve @ (|vel (5 — 1))
tus ++(t',v")

end for

return tvs

: end function

: function RETARGET(M,t,v,h = {n,p,...})

> Retrain top layer of M.m on t,v

s,m, T = M.s, M.m, M.T

sp,myp < s[: —1],m[: —=1] > Extract all but top layer of s
s¢ < [input(s[-1]), inner({nelts:n}), softmaz()]

My < TRAIN(s¢, mp(t), mp(v), )

s’ =sp+ M¢.s[1:] 1> Add top layer (minus input layer)
m/ = my + My.m[l ]

return s',m’, M;.a

45: end function
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Algorithm 5 trainSharedLayers: Identify and incor-
porate layers shared across DNNs.

1

function TRAINSHAREDLAYERS(Ms, t,v,l = “mcdnnlib”)
> input: Models Ms; training data t,v used for these
models; library of models I.
> output: List of models formed by sharing prefixes of
models in Ms with models in [ of matching type.
for all M, M; in Ms x l.Ms s.t. M < M; do
if n = NSHAREDLAYERS(M, M;) > 0 & !M;.h then
My, su < M[: n],input(M.s[n — 1]) + M.s[n :]
My, < TRAIN(Sy, M (t), M;(v))
M’ < M; + M, > Compose shared model
if M.h then » Specialize shared model if needed
M’ + PRESPECIALIZEMODEL(M’,t,v, M.h)
end if
Ms +—+M’
end if
end for
return Ms
end function

function NSHAREDLAYERS(M,M’);
> Length of common prefix of the schemas of M and M’
s,8',n,r < M.s, M'.s,MIN(|s|,|s’|),n > Seq. assignment
foriin0...n—1do
if s[i] # s'[i] then
r <— i; break
end if
end for
return r
end function




