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ABSTRACT

We demonstrate how context-dependent language model scal-
ing factors and interpolation weights can be unified in a sin-
gle formulation where free parameters are discriminatively
trained using linear and non-linear optimization. Objective
functions of the optimization are defined based on pairs of su-
perior and inferior recognition hypotheses and correlate well
with recognition error metrics. Experiments on a large, real
world application demonstrated the effectiveness of the solu-
tion in significantly reducing recognition errors, by leveraging
the benefits of both context-dependent weighting and discrim-
inative training.

Index Terms— discriminative training, language model
factor, interpolation, context dependent

1. INTRODUCTION

Discriminative training has long been a critical part of modern
ASR, particularly for training acoustic models (AMs) (e.g. [1,
2, 3]). Even though the dominant language model (LM) train-
ing strategy remains maximum-likelihood (ML) based, there
have also been many studies on discriminative LM training
that aimed at reducing recognition error metrics rather than
just minimizing perplexities of textual training data. Some
of the studies proposed direct modification of N-gram models
used in first-pass recognition (e.g. [4, 5, 6, 7]) while others fo-
cused on discriminatively training second-pass rescoring LMs
that can take on more flexible structures and incorporate fea-
tures beyond those generated from N-grams (e.g. [8, 9, 10]).
In this work we attempt to bring the benefit of discrimina-
tive training to two additional areas in language modeling
for ASR: the optimization of context-dependent LM scaling
factors and context-dependent LM interpolation weights, in a
unified framework.

In a typical ASR system, the total score used to rank
among recognition hypotheses is a combination of scores
from AM and LM. When AM and LM scores are represented
as probabilities in the log domain, the combination is simply
a sum. Since the estimated AM and LM scores often deviate
from their ”true” values and a significant mismatch exists
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between the dynamic ranges of AM and LM scores, an LM
scaling factor (LMF) is multiplied with LM score to improve
the overall accuracy of decoding [11]. Most ASRs rely on
a single global setting of LMF and its value can be set by
sweeping on tuning data. However, studies have found that
the optimal value of LMF may be dependent on the con-
text and allowing LMF to be context-specific can potentially
improve performance [12, 13].

In many practical scenarios the LM is actually an in-
terpolation of multiple individual models. Some may have
been built to cover different domains and styles; some may
have entirely different structures, such as N-gram models
and continuous-space models like neural network based LMs
[14, 15]. Linear interpolation has been the most common
technique due to its simplicity, and interpolation weights
have traditionally been estimated using ML-based techniques.
There has also been some success in optimizing interpolation
weights discriminatively such as in [16]. Several studies have
found that model interpolation can also be improved if inter-
polation weights are made context-dependent. This has been
demonstrated on both word-based models [17, 18, 19] and
class-based models [20].

As explained in the following sections, it is possible to
design a single set of context-dependent LM weight param-
eters that capture the utilities of both LMF and interpolation
weights. With appropriate error metrics we can discrimina-
tively optimize the parameters on transcribed training data.
The unified formulation can potentially be extended to in-
clude optimization of N-gram probabilities from the LMs as
well.

Our focus on discriminative training and context-dependent
parameters was motivated by the need to improve recognition
accuracy of large, practical ASR applications such as per-
sonal assistant and dictation on mobile devices. The resource
and real-time constraints make it difficult to incorporate
into first-pass decoding certain LMs and their combinations,
such as models of very large size, non-N-gram models, or
those targeting diverse scenarios. To stay close to a realistic
production setup, this work describes the algorithms and ex-
perimental results in a second-pass rescoring setting where
we assume some first-pass recognition output is available for
training and testing. It should be understood that the proposed
methods can potentially be employed in first-pass recognition



with appropriate modifications and additional engineering
work to the decoder.

In the following sections, we first outline the unified
formulation of context-dependent LMF and interpolation
weights, followed by descriptions of discriminative training
using linear and non-linear solvers. We then present experi-
mental results and conclude with potential future work.

2. A UNIFIED FORMULATION OF
CONTEXT-DEPENDENT WEIGHTS

In ASR the decoder attempts to find the optimal word se-
quence W̃ given a speech utteranceX based on the maximum
a posteriori decision rule:

W̃ = arg max
W

P (X|W )P (W ) (1)

where P (X|W ) is the AM likelihood function and P (W ) is
the LM probability. Introducing the LMF λ, in log domain,
the total score S for ranking alternate recognition hypotheses
becomes:

S = logP (X|W ) + λ

|W |∑
i=1

logP (wi|hi) (2)

where P (wi|hi) is the probability of wordwi given its history
hi in W = (w1, w2, ...).

Consider a situation where the desired LM is a log-linear
interpolation of a set of M individual LMs. By allowing λ to
vary depending on the history hi, we arrive at a unified for-
mulation of context-dependent LMF and model interpolation
weights:

S = logP (X|W ) +

|W |∑
i=1

M∑
m=1

λm(hi) logPm(wi|hi) (3)

If the mth LM is an N-gram model of order N , the his-
tory in Pm(wi|hi) is limited to the preceding words hi =
(wi−N+1, wi−N+2, ..., wi−1). However, we are free to aug-
ment the parameter space by having λm depend on more than
just the history hi. λm may depend on the current word wi,
or other features coming from e.g. the acoustic model, or
the decoder. When λm is dependent on the current word wi,
model training effectively modifies the N-gram log proba-
bilities provided by each of the LMs. Normalization is not
necessary when these modified N-gram log probabilities are
interpolated in our framework. In Section 4 we will com-
pare the performance between having and not having λm
dependent on wi.

3. DISCRIMINATIVE TRAINING

In this section we describe how to discriminatively train the
set of context-dependent LM weights Λ = {λm(hi)},∀m, i

in (3) on a set of transcribed speech utterances T = (t1, t2, ...).
Assume we have available the recognition N-best list of each
utterance in T , using a baseline ASR system with some first-
pass AM and LM. The jth hypothesis on the lth utterance’s
N-best list contains the recognized word string W j

l , the AM
score logP (Xl|W j

l ), and the LM score logPorig(W
j
l ) of the

hypothesis with respect to the original LM from the baseline
decoding.

To perform discriminative training, we need to define an
objective function that is correlated with recognition error
metrics in some fashion. In the following sections, we in-
troduce two different objective function formulations, aligned
to two separate metrics, sentence error rate (SER) and word
error rate (WER). These formulations lead to two different
optimization schemes, one using linear programming and the
other non-linear optimization.

3.1. Linear Optimization

In the first formulation we attempt to align the objective func-
tion to SER where a hypothesis string of an utterance is con-
sidered correct only if it matches the reference transcription
entirely. Consider a subset Tc of the training data T where
at least one hypothesis on the N-best list matches the ref-
erence; the remaining utterances T̄c do not need to be con-
sidered since no parameter optimization can improve their
SER. For the lth utterance in Tc, let j∗ be the index of the
hypothesis on its N-best list that matches the reference. To
obtain a zero SER on this utterance, we would need to ensure
Sj

∗

l > Sjl ,∀j 6= j∗ with S defined as in (3). Clearly, this
cannot be achieved for all utterances in Tc simultaneously.
Instead, we define a hinge loss function for an utterance as
following:

Ll = [β − min
j 6=j∗

(Sj
∗

l − S
j
l )]

+ (4)

where [x]+ = max(x, 0) denotes the positive part of x. This
loss is essentially the margin between the scores of the correct
utterance Sj

∗

l , and the best competing hypothesis, capped at β
and shifted so that it is non-negative. The total loss is obtained
by summing the losses over all utterances in Tc:

L =

|Tc|∑
l=1

Ll (5)

To minimize L with respect to Λ, we can cast it into a linear
program where the objective function as well as all constraints
remain linear in the free parameters Λ.

Let {µl},∀l be a set of slack variables, one for each ut-
terance in Tc, to represent the loss that would incur on the
utterance. The optimization task is then to minimize

Ω =

|Tc|∑
l=1

µl (6)



such that,

Sj
∗

l + µl > Sjl ,∀l, j 6= j∗ (7)

and

µl > −β,∀l (8)

The linear programming problem can be solved efficiently
with standard constrained optimization methods. The optimal
value of β can be determined on a tuning data set.

3.2. Non-linear Optimization

In the second formulation we consider pairs of hypotheses
from each utterance’s N-best list. Instead of just looking at
correctness at the utterance level, we compute the word-level
edit distance between the reference transcription and each hy-
pothesis of an utterance and construct pairs containing a hy-
pothesis with the lowest edit distance and each of the remain-
ing hypotheses with higher edit distances. This selection of
hypothesis pairs is designed to discriminate between the best
hypothesis and each of the worse hypotheses for an utterance
in terms of word edit distance to reference, and thus aims at
improving the 1-best hypothesis WER.

We would like to reward pairs where the hypothesis with
lower edit distance has a higher total score S, as defined in
(3), than the hypothesis with higher edit distance, and to pe-
nalize those of the opposite ordering. Let Ψl = {(j∗, j)}
denote a set of pairs of hypotheses for the lth utterance where
W j∗

l has the lowest edit distance among all hypotheses of this
utterance and W j

l has a higher edit distance than W j∗
l . For a

pair (j∗, j), define a score Ql(j∗, j) as:

Ql(j
∗, j) =

1

1 + e−α(Sj∗
l −S

j
l )

(9)

where α modulates the steepness of the sigmoid function and
can be adjusted on a tuning data set. Aggregating over all
selected pairs of hypotheses in the training data, the overall
objective function that we would like to maximize is defined
as:

Ω =

|T |∑
l=1

∑
Ψl

1

1 + e−α(Sj∗
l −S

j
l )

(10)

where (j∗, j),∀j 6= j∗ ranges over all selected hypothesis
pairs for the lth utterance as described above.

The gradient of Ω with respect to each context-dependent
λm(hi) can be computed as:

∂Ω

∂λm(h)
=

|T |∑
l=1

∑
Ψl

αe−α(Sj∗
l −S

j
l )

(1 + e−α(Sj∗
l −S

j
l ))2

∂(Sj
∗

l − S
j
l )

∂λm(h)

(11)

and

∂(Sj
∗

l − S
j
l )

∂λm(h)
=

∑
i,∀(hi,wi)∈W j∗

l ,hi=h

logPm(wj
∗

i |hi)

−
∑

i,∀(hi,wi)∈W j
l ,hi=h

logPm(wji |hi) (12)

where (hi, wi) ∈ W j
l means hiwi is a substring of W j

l . The
optimization can be performed with standard quasi-newton
methods [21]. To improve generalization we also included
the L2-norm of Λ for regularization during training.

3.3. N-gram Context Cutoff and Back-off

Defining a separate set of λs for each N-gram context gen-
erates a very large number of parameters, which can be
prohibitively expensive for training, and more critically, lead
to severe overtraining. Various techniques were proposed
to improve the robustness of maximum likelihood context-
dependent interpolation weight training [18, 20]. One tech-
nique is to apply a cutoff threshold on the minimum number
of times an N-gram context must be observed in the training
data to warrant a separate parameter. If an N-gram context
does not make the cut, it is backed off to a lower-order con-
text, repeatedly if necessary, until a null context is reached,
in which case the context-independent λs are employed. At
testing time, the same back-off scheme is applied if λs for an
N-gram context are not found in the trained parameters.

However, this simple back-off scheme leads to the under-
training of weights associated with some shorter contexts if
they occur mostly as a substring of a popular longer context
in the training data. For example, assume in a particular train-
ing data set, most of the occurrences of the word Obama oc-
curs in bigram contexts Barack Obama, President Obama and
Michelle Obama. The weights associated with these three bi-
gram contexts can be well trained but the weight associated
with the unigram context Obama will not since very few train-
ing samples will back off to this unigram context. If on a test
set there is an unseen bigram context Natasha Obama, it has
to use an undertrained weight associated with the unigram
context Obama. To remedy this situation, instead of using a
strict back-off scheme, we apply an interpolated weighting:

λ(wi−N+1, ..., wi) =

N∑
n=1

λ′n(wi−n+1, ..., wi) + λ′0 (13)

where λ′0 is a context-independent weight. This scheme en-
sures that weights associated with all contexts surviving the
frequency cutoff will be trained on sufficiently large num-
ber of samples. All our experiments with context-dependent
weights in Section 4 adopt this strategy.



4. EXPERIMENTS

We tested the proposed methods on real user data collected
from Cortana, Microsoft’s automated personal assistant ap-
plication. The utterances cover a wide range of domains such
as communication, reminder, on-device search, and general
web search, with a median of four words per utterance. A
total of 361K utterances (TRAIN) were used for training and
44K (VALID) for tuning and validation. Another 44K (TEST)
utterances containing 208K words were used for testing. All
utterances were professionally transcribed. As described pre-
viously our experiments were conducted as N-best rescoring
on first-pass recognition outputs, which were taken from pro-
duction results where each user utterance was recognized with
a conjunction of a large generic LM and smaller but personal-
ized and contextualized LMs. The generic LM was a 5-gram
LM trained from a large body of text covering all domains
relevant to the application. The AM was a sequence-trained
context-dependent DNN model with a front-end of 29 log-
filter bank features and their first and second derivatives.

Each utterance’s first-pass result includes an N-best list
of up to ten hypotheses, containing recognized string, and
AM and LM scores for the entire utterance. It could poten-
tially be beneficial to include a larger N-best list for each ut-
terance, especially for recognition scenarios with relatively
long utterances. However, for our task of mostly relatively
short utterances, 10-best hypotheses offer a reasonably large
room for improvement through rescoring - the oracle 10-best
WER is about 40% lower than the 1-best WER. The linear
solver trains on a subset of the training utterances where, as
described in Section 3, at least one hypothesis on the N-best
list matches the reference. In our TRAIN set, this amounts to
about 83% of the utterances. For non-linear solver, all utter-
ances in TRAIN were used for training.

To test LM interpolation we collected a set of 6 mod-
els, LM1, LM2, ..., LM6, that were not used for generating
the production recognition results and were not trained on
TRAIN, VALID or TEST sets. These LMs included N-gram
models as well as RNN-LMs [15]; some models cover multi-
ple domains while others focus on a narrower set of scenarios.
We pre-sorted the LMs by their potential benefit for rescoring,
with LM1 being the most useful. The ordering was obtained
iteratively by, starting from an empty set, greedily adding
the LM that brings the most WER reduction on VALID data.
Since these LMs did not necessarily cover the entire spectrum
of information that the LMs in the first-pass recognition did,
in all experiments, we included the first-pass LM score as an
interpolation component, with a context-independent weight
parameter. For non-linear optimization, we used an L-BFGS
implementation from Microsoft Solver Foundation [22]. For
linear optimization Gurobi’s implementation of the Simplex
method [23] was used. An early stopping criterion was ap-
plied to prevent overtraining when WER no longer decreased
on the VALID set over a number of iterations.

Fig. 1. WER% comparison between linear and non-linear
solvers on TEST and TRAIN, for context-independent weights.

Fig. 2. SER% comparison between linear and non-linear
solvers on TEST and TRAIN, for context-independent weights.

4.1. Discriminative Training Results

We first trained and tested context-independent interpolation
weights for different number of LMs. For each of M =
1, 2, .., 6 the first M models LM1, .., LMM , according to the
ordering as described above, were included in the interpola-
tion set. Figure 1 compares WERs of rescoring using weights
trained by linear and non-linear solvers, on TEST as well as
TRAIN set. With both solvers, the TEST WER decreases as
more LMs are added to the interpolation, and closely tracks
the decrease in TRAIN WER. Figure 2 makes a similar com-
parison on SERs of rescoring using weights trained with lin-
ear and non-linear solvers. Even though the linear solver was
designed to optimize a metric that correlates with SER while
the non-linear solver was not, we did not observe an advan-
tage from the linear solver over non-linear solver with respect
to the TEST SERs. For brevity of explanation, we will focus
on only the non-linear solver results for the remainder of the
experiments.

In the next set of experiments we trained context-dependent
weights for each number of LMs. The context lengths for N-



gram history and cutoff threshold for context observations
were tuned on VALID set. The context length was set to 2,
which could include up to two preceding words, in addition to
the current word, for each λ. The cutoff threshold for context
observation was set to 25.

Table 1 compares TEST set WERs between context-
independent and context-dependent weights, using non-linear
solver for each size of the interpolation set. Note that the
first row with zero LM is when only a single LMF was
trained based on the first-pass LM score, without any new
LMs being interpolated. For this special case we also tried
sweeping the value of the single LMF to find the minimum
WER on the TRAIN set, and verified that the non-linear
solver solution matched the result of the parameter sweep-
ing. The first-pass baseline WER was 12.67% and the six-
model context-dependent interpolation provided 12.2% rela-
tive WER reduction over the baseline. The last column shows
that discriminative training with context-dependent weights
provided between 4.03% and 4.56% relative WER reduction
over the context-independent weights for various number of
LMs, all of which are statistically significant at the 0.01 level
using a difference of proportions significance test.

Number Non-linear Solver WERR
of LMs CI WER% CD WER% CI to CD%

0 12.53 - -
1 12.05 11.56 4.07
2 11.83 11.29 4.56
3 11.78 11.27 4.33
4 11.71 11.19 4.44
5 11.66 11.19 4.03
6 11.63 11.13 4.30

Table 1. Non-linear solver TEST WER% for context-
independent (CI) and dependent (CD) weights, and relative
WER reduction from CI to CD, for different number of LMs.
The 1st-pass baseline WER was 12.67%.

We also compared the performance of the context-dependent
weights with and without including the current word in the
history context for each λ. Table 2 shows that for each num-
ber of LMs in interpolation, including the current word in
the history context provides a small but consistent WER re-
duction. The inclusion of the current word in the context
history also increases the total number of the free parameters
by about 30%. However, even with an average of 72K pa-
rameters per LM being interpolated, the total number of free
parameters in our proposed solution is still at least two orders
of magnitude smaller than the number of free parameters in
the LMs themselves, which ensures the discriminative train-
ing can be carried out robustly on a modestly sized training
data.

Number No Current Word With Current Word
of LMs WER% # Parameters WER% # Parameters

1 11.63 53K 11.56 72K
2 11.40 106K 11.29 144K
3 11.29 156K 11.27 217K
4 11.29 213K 11.19 289K
5 11.26 266K 11.19 361K
6 11.22 319K 11.13 433K

Table 2. Non-linear solver TEST WER% and number of pa-
rameters for context dependent (CD) weights, without and
with current word included in history context for λ, for dif-
ferent number of LMs.

4.2. Comparison to Alternative Uses of Training Data

Discriminative training of context-dependent weights re-
quires a significant amount of transcribed training data. It is
natural to ask how the proposed solution compares to alter-
natives that use the same amount of training data. Table 3
compares the performance of several alternative model in-
terpolation methods for N-best rescoring, using the first two
models in our collection, LM1 and LM2, which are both
5-gram ARPA LMs. For each method, we compare WER,
SER and relative reductions (WERR and SERR) with respect
to 1st Pass Baseline, on TEST set.

1. 2Model ML-CI: Instead of using the two LMs di-
rectly in rescoring, we first merged them offline using
context-independent linear interpolation weights esti-
mated in an ML fashion by running EM iterations to
minimize perplexities of TRAIN data;

2. 2Model ML-CD: Same as 1. except using context-
dependent linear interpolation, similar to methods in
[18];

3. 2Model Disc CI: Discriminatively trained context-
independent interpolation, same as the 2-model perfor-
mance of TEST-NonLinear in Figure 1;

4. 2Model Disc CD: Our proposed method of discrimina-
tive training of context-dependent log-linear interpola-
tion, optimized with non-linear solver.

5. 2Model+TR-LM: Instead of using TRAIN set for inter-
polation, we trained a 5-gram LM (TR-LM) from the
TRAIN set, and included it in rescoring, along with
LM1 and LM2;

For 1. and 2., since TRAIN set had already been used to
merge LMs offline, we used VALID set utterances to estimate
the context-independent interpolation weights between the
merged LM and the 1st-pass LM score for N-best rescor-
ing, using the same discriminative training method in Sec-
tion 3.2. Similarly, for 5., since TRAIN set had been used



for training TR-LM, we again used VALID set utterances
for estimating context-independent weights for rescoring.
The use of VALID set for training in those three alternatives
actually gives them a slight advantage over 2Model Disc
CD. Nevertheless, our proposed method still outperforms
the alternatives. In particular, discriminative training pro-
vides significant gain over ML training when both were using
context-dependent weights; and, context-dependent interpo-
lation significantly improves over context-independent inter-
polation when both were trained discriminatively. The pro-
posed solution also provides a more efficient use of TRAIN
data compared to training a separate TR-LM as in 5. The
WER reduction between our proposed solution and each of
the alternatives was statistically significant at the 0.01 level
using a difference of proportions significance test.

WER% SER% WERR% SERR %
1st Pass Baseline 12.67 26.38 - -
2Model ML-CI 11.86 25.29 6.39 4.13
2Model ML-CD 11.83 25.17 6.63 4.59
2Model Disc CI 11.83 25.33 6.63 3.98
2Model Disc CD 11.29 24.51 10.89 7.09
2Model+TR-LM 11.64 25.07 8.13 4.97

Table 3. Comparing TEST set WER, SER and relative
changes with respect to 1st Pass Baseline, for alternative
strategies of interpolating two models.

5. CONCLUSION AND FUTURE WORK

We presented a unified formulation for context-dependent
language model scale factors and interpolation weights, and
developed a discriminative training technique to optimize the
parameters, using linear or non-linear optimization. The ex-
perimental results of N-best rescoring on a large, real world
application demonstrated the effectiveness of the proposed
solution.When up to six language models were interpolated
with discriminatively trained context-dependent weights,
we obtained over 12% relative reduction in WER over the
first-pass baseline. In particular, context-dependent weights
provided up to 4.6% additional WER reduction over their
context-independent counterparts, which is comparable to
some of the best improvements that discriminative LM train-
ing was reported to have achieved in previous works. We
also demonstrated that the proposed solution outperformed
several alternative methods for interpolating models using
same amount of training data.

There are multiple directions to further improve the so-
lution. First, scalability of training requires further improve-
ment to support large parameter sets and training data. Tech-
niques such as parameter tying and training data selection
may potentially improve the efficiency of the parameters and
reduce overtraining. Second, the unified formulation in (3)

can be extended to include additional contextual information
beyond the N-gram context, for example, information about
acoustic conditions. Finally, the requirement of having a large
set of transcribed training data increases the cost of the pro-
posed solution. Some previous studies have successfully ap-
plied unsupervised or semi-supervised strategies to increase
the amount of training data for discriminative LM training at
relatively low cost (e.g. [24, 25, 26]). Our proposed solu-
tion can be easily extended to train on unsupervised or semi-
supervised materials that are far more abundant than manual
transcriptions, as long as some notion of superiority between
pairs of hypotheses can be defined.
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