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Abstract. The rapid development of genome sequencing technology allows researchers to access
large genome datasets. However, outsourcing the data processing to the cloud poses high risks
for personal privacy. The aim of this paper is to give a practical solution for this problem using
homomorphic encryption. In our approach, all the computations can be performed in an untrusted
cloud without requiring the decryption key or any interaction with the data owner, which preserves
the privacy of genome data.
In this paper, we present evaluation algorithms for secure computation of the minor allele frequen-
cies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately
compute the Hamming distance and approximate Edit distance between encrypted DNA sequences.
Finally, we compare performance details of using two practical homomorphic encryption schemes -
the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and
Naehrig. Such an approach with the YASHE scheme analyzes data from 400 people within about
2 seconds and picks a variant associated with disease from 311 spots. For another task, using the
BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA
sequences of size 5K and figure out the differences between them.

Keywords: Homomorphic encryption, Genome-wide association studies, Hamming distance, Ap-
proximate Edit distance.

1 Introduction

The rapid development of genome sequencing technology has led to the genome era. We ex-
pect that the price of a whole genome sequence will soon be $1K in a day, which enables
researchers to access large genome datasets. Moreover, many genome projects like the Personal
Genome Project (PGP) [2] and the HapMap Project [1] display genotypic information in public
databases, so genomic data has become publicly accessible.

Privacy Threats from Exposing Genomic Data. While genome data can be used for a wide
range of applications including healthcare, biomedical research, and forensics, it can be misused,
violating personal privacy via genetic disease disclosure or genetic discrimination. Even when
explicit identifiers (e.g., name, date of birth or address) are removed from genomic data, one
can often recover the identity information [18, 12, 26]. For these reasons, genomic data should
be handled with care.

Privacy through Encryption. There have been many attempts to protect genomic privacy
using cryptographic methods. In particular, it has been suggested that we can preserve privacy
through (partially) homomorphic encryption, which allows computations to be carried out on
ciphertexts. Kantarcioglu et al. [19] presented a novel framework that allows organizations to
support data mining without violating genomic privacy. Baldi et al. [4] proposed a cryptographic
protocol to determine whether there exists a biological parent-child relationship between two
individuals. Ayday et al. [3] recently conducted privacy-preserving computation of disease risk
based on genomic and non-genomic data. However, these methods used homomorphic compu-
tation involving a single operation on ciphertexts (e.g., either additions or multiplications, not
both), thus they could support a limited set of genomic queries.
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Fully homomorphic encryption (e.g., [13, 30, 15]) permits encrypted data to be computed on
without decryption, so it allows us to evaluate arbitrary arithmetic circuits over encrypted data.
Thus, we can privately perform all types of genome analysis using Homomorphic Encryption
(HE) cryptosystems. Moreover, we can delegate intensive computation to a public cloud and
store large amounts of data in it.

Recently, many protocols to conduct privacy-preserving computation of genomic tests with
fully homomorphic encryption have been introduced. Yasuda et al. [32] gave a practical solution
for computation of multiple Hamming distance values using the LNV scheme [21] on encrypted
data, so to find the locations where a pattern occurs in a text. Graepel et al. [16] and Bos
et al. [7] applied HE to machine learning, and described how to privately conduct predictive
analysis based on an encrypted learned model. Lauter et al. [20] gave a solution to privately
compute the basic genomic algorithms used in genetic association studies. Cheon et al. [11]
described how to calculate edit distance on homomorphically encrypted data.

Scenarios. One possible scenario could be of interest in situations involving patients, a data
owner (e.g., a healthcare organization or a medical center) and a public cloud. In our solution,
a data owner wants to store large amounts of data in the cloud and many users may interact
with the same data over time. The cloud can handle all that interaction through computation
on encrypted data, so it does not require further interaction from the data owner. The patients
can upload their encrypted data directly to the cloud using the public key. The genomic tests
are performed on the cloud and the encrypted results are returned to the data owner. Finally,
the data owner decrypts the results using the secret key to share it with the patient. All the
computations in the cloud are performed on encrypted data without requiring the decryption
key, so the privacy of genomic data can be protected by the semantic security of the underlying
HE schemes.

Our Contributions. In this paper, we propose efficient evaluation algorithms to compute
genomic tests on encrypted data. We first consider the basic tests which are used in Genome-
Wide Association Studies (GWAS). They are conducted to analyze the statistical associations
between common genetic variants in different individuals. In particular, we focus on the minor
allele frequencies (MAFs) and χ2 test statistic between the variants of case and control groups.
Secondly, we consider DNA sequence comparison which can be used in sequence alignment and
gene finding. We show how to privately compute the Hamming distance and approximate Edit
distance on encrypted data. We also adapt these methods to the practical HE schemes − BGV
scheme [14] by Gentry, Halevi and Smart and YASHE scheme [6] by Bos, Lauter, Loftus and
Naehrig. Finally, we compare the performance of the two encryption schemes in these contexts.
In practice, we take advantage of batching techniques to parallelize both space and computation
time together.

2 Background on Genome Analysis

The iDASH (Integrating Data for Analysis, ‘anonymization’ and SHaring) National Center
organized the iDASH Privacy & Security challenge for secure genome analysis. This paper is
based on a submission to the iDASH challenge which consisted of two tasks: i) secure outsourcing
of GWAS and ii) secure comparison between genomic data.
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2.1 Task 1: GWAS on Genomic Data

Given the encrypted genotypes of two groups of individuals over many single nucleotide vari-
ants (SNVs), the goal of this task is to privately compute the MAFs in each group and a χ2

test statistic between the two groups on each site.
Suppose that A and B are two alleles of the gene, and let nAA, nAB, nBB denote the numbers

of observed individuals for genotypes AA,AB,BB, respectively. The allele counts of A and B

are given by nA
let
= 2nAA + nAB and nB

let
= 2nBB + nAB. Then the MAF of the given alleles is

defined by
min(nA, nB)

nA + nB
.

If we let N be the total number of people in a sample population, the total number of alleles in
the sample is nA + nB = 2N , so we compute only one of two allele counts in encrypted form.
The minimum can then easily be computed after decryption and we obtain the MAF by one
division by 2N .

The χ2 test statistic in case-control groups is computed based on the allelic contingency
table (Table 1):

T (nAn
′
B − nBn′A)2

R · S ·G ·K
.

We observe that the test can be written as a function of nA and n′A. More precisely, it is
expressed as

4N (nA(2N − n′A)− n′A(2N − nA))2

2N · 2N ·G ·K

=
4N (nA − n′A)2(

nA + n′A
)
·
(
4N −

(
nA + n′A

)) .
Let n

(j)
A and n

′(j)
A denote the allele counts of A at SNV j in the case group and control group,

respectively. As discussed above, it suffices to compute (n
(j)
A + n

′(j)
A ) and (n

(j)
A − n

′(j)
A ) over

encrypted data.

Allele type
Total

A B

Case nA nB R = 2N

Control n′A n′B S = 2N

Total G = nA + n′A K = nB + n′B T = 4N

Table 1. Allelic Contingency Table

2.2 Task 2: Human Genome Comparison

The goal of the second task is to privately compute the Hamming distance and approximate
Edit distance between the encrypted genome sequences. Suppose that two participants have
Variation Call Format (VCF) files which summarize their variants compared with the reference
genome (e.g., insertion, deletion, or substitution at a given position of a given chromosome).
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Algorithm 1 Hamming Distance Algorithm

1: h← 0
2: for i ∈ L do
3: if (‘xi.sv’ or ‘yi.sv’) in {‘INS’, ‘DEL’} then
4: hi ← 0
5: else if ((xi or yi) == ‘∅’) or
6: ((xi.ref == yi.ref) and (xi.alt ! = yi.alt)) then
7: hi ← 1
8: else
9: hi ← 0

10: end if
11: h← h+ hi
12: end for
13: return h

Algorithm 2 Approximate Edit Distance Algorithm
1: e← 0
2: for i ∈ L do
3: if xi == ‘∅’ then
4: D(xi)← 0
5: else if ‘xi.sv’ == ‘DEL’ then
6: D(xi)← len(xi.ref)
7: else
8: D(xi)← len(xi.alt)
9: end if

10: Define D(yi) with the same way as D(xi)
11: if ((xi.ref == yi.ref) and (xi.alt == yi.alt)) then
12: ei ← 0
13: else
14: ei ← max{D(xi), D(yi)}
15: end if
16: e← e+ ei
17: end for
18: return e

If there is only one record in the VCF files at a specified location, the other one is considered
to be an empty set (‘∅’). Let L be a list indexed by the positions of two participants. Then
we can define the Hamming distance as described in Algorithm 1, where “xi.sv” denotes the
type of structural variant relative to the reference, “xi.ref ” the reference bases and “xi.alt” the
alternate non-reference alleles.

The standard dynamic programming approach to compute the full Wagner-Fischer Edit
distance [31] is computed in a recursive way, so the multiplicative depth of the circuit to be
homomorphically evaluated is too large. Recently, Cheon et al. [11] presented an algorithm to
compute the WF Edit distance over packed ciphertexts but it took about 27 seconds even on
length 8 DNA sequences. On the other hand, in this task we are given the distance to a public
human DNA sequence (called the reference genome), which allows us to efficiently approximate
the Edit distance using Algorithm 2. It is calculated based on the set difference metric, which
enables parallel processing in computation.
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3 Practical Homomorphic Encryptions

Fully Homomorphic cryptosystems allow us to homomorphically evaluate any arithmetic circuit
without decryption. However, the noise of the resulting ciphertext grows during homomorphic
evaluations, slightly with addition but substantially with multiplication. For efficiency reasons
for tasks which are known in advance, we use a more practical Somewhat Homomorphic En-
cryption (SHE) scheme, which evaluates functions up to a certain complexity. In particular,
two techniques are used for noise management of SHE: one is the modulus-switching technique
introduced by Brakerski, Gentry and Vaikuntanathan [9], which scales down a ciphertext during
every multiplication operation and reduces the noise by its scaling factor. The other is a scale-
invariant technique proposed by Brakerski [8] such that the same modulus is used throughout
the evaluation process.

Let us denote by [·]q the reduction modulo q into the interval (−q/2, q/2]∩Z of the integer or
integer polynomial (coefficient-wise). For a security parameter λ, we choose an integer m = m(λ)
that defines the m-th cyclotomic polynomial Φm(x). For a polynomial ring R = Z[x]/(Φm(x)),
set the plaintext space to Rt := R/tR for some fixed t ≥ 2 and the ciphertext space to Rq :=
R/qR for an integer q = q(λ). Let χ = χ(λ) denote a noise distribution over the ring R. We
use the standard notation a← D to denote that a is chosen from the distribution D. Now, we
recall the BGV scheme [14] and the scale-invariant YASHE scheme [6].

3.1 The BGV scheme

Gentry, Halevi and Smart [14] constructed an efficient BGV-type SHE scheme. The security
of this scheme is based on the (decisional) Ring Learning With Errors (RLWE) assumption,
which was first introduced by Lyubashevsky, Peikert and Regev [25]. The assumption is that
it is infeasible to distinguish the following two distributions. The first distribution consists of
pairs (ai, ui), where ai, ui ← Rq uniformly at random. The second distribution consists of pairs
of the form (ai, bi)=(ai, ais + ei) where ai ← Rq drawn uniformly and s, ei ← χ . Note that we
can generate RLWE samples as (ai, ais + tei) where t and q are relatively prime. To improve
efficiency for HE, they use very sparse secret keys s with coefficients sampled from {−1, 0, 1}.
Here is the SHE scheme of [14]:

– ParamsGen: Given the security parameter λ, choose an odd integer m, a chain of moduli
q0 < q1 < · · · < qL−1 = q, a plaintext modulus t with 1 < t < q0, and discrete Gaussian
distribution χerr. Output (m, {qi}, t, χerr).

– KeyGen: On the input parameters, choose a random s from {0,±1}φ(m) and generate an
RLWE instance (a, b) = (a, [as + te]q) for e ← χerr. For an integer P , we define the key
switching matrix

W =

(
bs
as

)
where bs = [as · s + tes + P s2]PqL−2

for as ← Rq uniformly at random and es ← χerr. We set the key pair: (pk, sk, evk) =
((a, b), s,W ). Then we define the SwitchKey(c, evk) for the extended ciphertext c = (d0, d1, d2)
at level l as follows: set

c′ =

(
c′0
c′1

)
=

[(
Pd0 [bs]Pql
Pd1 [as]Pql

)(
1

d2

)]
Pql

,

and then take an element c′′ ∈ Rql such that c′′ ≡ c′(mod t) and c′′ is the closet to P · c′
modulo t.
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– Encryption: To encrypt m ∈ Rt, choose a small polynomial v and two Gaussian polynomials
e0, e1 over Rq. Then compute the ciphertext given by

Enc(m, pk) = (c0, c1) = (m, 0) + (bv + te0, av + te1) ∈ R2
q .

– Decryption: Given a ciphertext ct = (c0, c1) at level l, output Dec(ct, sk) = [c0−s ·c1]ql mod t
where the polynomial [c0 − s · c1]ql is called the noise in the ciphertext ct.

– Homomorphic Evaluation: Given two ciphertexts ct = (c0, c1) and ct′ = (c′0, c
′
1) at level l, the

homomorphic addition is computed by ctadd = ([c0 + c′0]ql , [c1 + c′1]ql). The homomorphic
multiplication is computed by ctmult = SwitchKey(c0∗c1, evk) where c0∗c1 = ([c0c

′
0]ql , [c0c

′
1+

c1c
′
0, ]ql , [c1c

′
1]ql) and the key switching function SwitchKey is used to reduce the size of

ciphertexts to two ring elements. We also apply modulus switching from qi to qi−1 in order
to reduce the noise. If we reach the smallest modulus q0, we can no longer compute on
ciphertexts.

Smart and Vercauteren [29] observed that Rt is isomorphic to
∏`
i=1 Zt[x]/fi(x) if Φm(x) fac-

tors modulo t into ` irreducible factors fi(x) of the same degree. Namely, a plaintext polynomial
m can be considered as a vector of ` small polynomials, m mod fi, called plaintext slots. We can
also transform the plaintext vector (m1, . . . ,mr) ∈

∏`
i=1 Zt[x]/fi(x) to an element m ∈ Rt using

the polynomial Chinese Remainder Theorem (i.e., m = CRT(m1, . . . ,mr)). In particular, it is
possible to add and multiply on the slots: if m,m′ ∈ Rt encode (m1, . . . ,m`) and (m′1, . . . ,m

′
`)

respectively, then we see that m + m′ = mi + m′i mod fi and m ·m′ = mi ·m′i mod fi. This
technique was adapted to the BGV scheme.

3.2 The YASHE scheme

A practical SHE scheme, YASHE, was proposed in [6] based on combining ideas from [8, ?,24].
The security of this scheme is based on the hardness of the RLWE assumption similar to the
one for BGV. It also relies on the Decisional Small Polynomial Ratio (DSPR) assumption which
was introduced by Lopez-Alt, Tromer, and Vaikuntanathan [24]. Let t ∈ R×q be invertible in
Rq, yi ∈ Rq and zi = yi/t (mod q) for i = 1, 2. For z ∈ Rq, we define χz = χ + z to be the
distribution shifted by z. The assumption is that it is hard to distinguish elements of the form
h = a/b, where a ← y1 + tχz1 , b ← y2 + tχz2 , from elements drawn uniformly from Rq. The
YASHE scheme consists of the following algorithms.

– ParamsGen: Given the security parameter λ, choosem to be a power of 2 (them-th cyclotomic
polynomial is Φm(x) = xn+1 (n = φ(m) = m/2), modulus q and t with 1 < t < q, truncated
discrete Gaussian distribution χerr on R such that the coefficients of the polynomial are
selected in the range [−B(λ), B(λ)]), and an integer base ω > 1. Output (m, q, t, χerr, ω).

– KeyGen: On the input parameters, sample f ′, g ← {0,±1}φ(m) and set f = [tf ′ + 1]q. If f is
not invertible modulo q, choose a new f ′ and compute the inverse f−1 ∈ R of f modulo q
and set h = [tgf−1]q. Let `ω,q = blogω(q)c+ 1 and define

Dω,q(a) = ([ai]ω)
`ω,q−1
i=0 , Pω,q(a) = ([aωi]q)

`ω,q−1
i=0 ,

where a =
∑`ω,q−1

i=0 aiω
i, ai ∈ R with coefficients in (−ω/2, ω/2]. Sample e, s ← χ

`ω,q
err and

compute γ = [Pω,q(f) + e + hs]q ∈ R
`ω,q
q . Then we set the key pair: (pk, sk, evk) = (h, f, γ).

For a ciphertext ct, we define the SwitchKey(ct, evk) by computing
[
〈Dω,q(ct), evk〉

]
q
. Note

that the key switching function SwitchKey is used to transform a ciphertext decryptable
under the original secret key f .
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– Encryption: To encrypt m ∈ Rt, choose e, s← χerr and then compute the ciphertext

Enc(m, pk) =
[⌊q
t

⌋
· [m]t + e+ hs

]
q
∈ Rq.

– Decryption: Given a ciphertext ct, output Dec(ct, sk) =
⌊
t
q · [f · ct]q

⌉
mod t.

– Homomorphic Evaluation: Given two ciphertext ct and ct′, the homomorphic addition is com-
puted by ctadd = [ct + ct′]q. The homomorphic multiplication is computed by ctmult =
SwitchKey(

[⌊
t
q ct · ct

′⌉]
q
, evk) (see [6] for details).

4 Our Method for Private Genome Analysis

In this section, we describe how to encode and encrypt the genomic data for each task. Based on
these methods, we propose the evaluation algorithms to compute the genomic tests on encrypted
data.

4.1 Encoding Genomic Data

Lauter et al. [20] presented a method to encode a person’s genotype given a candidate allele
associated to a specified disease. They used a binary dummy vector representation, which makes
the number of ciphertexts too large. In contrast, we encode the genotypes as integers so that
one can efficiently compute their sums and differences over the integers. More precisely, for a bi-
allelic gene with alleles A and B, there are 3 possible Single Nucleotide Polymorphisms (SNPs)
- AA, AB, BB, and they are encoded as follows: AA→ 2, AB → 1, BB → 0. Figure 1 shows
the file format of the data for task 1 and its encodings.

Now, we describe how genomic data can be encoded for DNA comparison. The first step is
to curate the data using the positions in the VCF files of two participants. In other words, the
server should arrange the information and make the merged list L so that each individual can
encode their genotypic information according to the list. Let `(L) denote the length of the list
L. Then, for 1 ≤ i ≤ `(L), we define two values

ei =

{
1 if posi ∈ L,
0 o.w,

fi =

{
0 if svi ∈ {INS,DEL},
1 o.w,.

Fig. 1. A snapshot of the dataset for task 1 and its encodings.
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Fig. 2. A snapshot of the dataset for task 2 and its encodings: (a)hu604D39 and (b)hu661AD0

The value ei defines whether the genotype at the specified locus is missing; the value fi specifies
the variants compared with the reference.

Since both VCF files are aligned with the same reference genome, we don’t need to compare
the columns of ‘REF’. To improve performance, we assume that it suffices to compare 7 SNPs
between two non-reference sequences. In the following, we describe how to encode the sequences.
Each SNP is represented by two bits as

A→ 00, G→ 01, C → 10, T → 11,

and then concatenated with each other. Next we pad with 1 at the end of the bit string so as
to distinguish the A-strings. Finally, we pad with zeros to make it a binary string of length
15, denoted by si. Let si[j] denote j-th bit of si. If a person’s SNV at the given locus is not
known (i.e., ei = 0), then it is encoded as 0-string. For example, ‘GTC’ is encoded as a bit
string 01||11||10||10 . . . 0, of length 15.

Finally, let us consider the i-th genotype lengths Di, D
′
i of two participants defined as follows:

when it has no variants at the given locus of the sequence, set zero as the length at the locus.
If it includes a deletion compared with the reference, use the length of reference. Otherwise, we
take the length of the target sequence at the current locus. In Figure 2, we illustrate the file
format of the data for task 2 and its encodings.

4.2 Homomorphic Computation of The BGV Scheme

We describe how to compute the genomic algorithms described above on encrypted genetic data
using the BGV scheme.

4.2.1 Task 1: GWAS on Encrypted Genomic Data

Using the encodings that we propose for practical HE, we can homomorphically evaluate any
function involving additions and multiplications, but it is not known how to perform homomor-
phic division of integer values. We obtain the counts using a few homomorphic additions.

Let gj be the encoded value of SNV site j based on the encoding method as described in
Section 4.1. Then each person packs gj into the j-th slot. Let s be the total number of SNVs.
Assuming that each ciphertext holds ` plaintext slots for s ≤ `, the i-th person encrypts the

vector (g
(1)
i , . . . , g

(s)
i , 0 . . . , 0) ∈ Z`t using batching as

cti = Enc(CRT((g
(1)
i , . . . , g

(s)
i , 0 . . . , 0), pk).
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Let cteval be a ciphertext given by the homomorphic operation

cteval =
N∑
i=1

cti. (1)

Note that the use of batching technique enables to perform N aggregate operations in parallel.
Next, let m = Dec(cteval, sk) denote the decryption of the ciphertext cteval and decode the s
outputs from the output plaintext polynomial as follows: let mj be the constant coefficient of
m mod fj for 1 ≤ j ≤ s. That is, we have

mj
let
= m mod fj =

N∑
i=1

g
(j)
i .

Thus the MAF of SNV j in the group is computed as

min{mj , 2N −mj}
2N

.

For the homomorphic evaluation of χ2 test, each group performs aggregations over cipher-
texts as shown in (1). Let ctcase and ctcont denote the ciphertexts by the evaluations in the case
and control groups, respectively. Then one can compute two ciphertexts by the homomorphic
operations

ct+
let
= ctcase + ctcont, ct−

let
= ctcase − ctcont.

The plaintext polynomial from ct+ can be decoded as the plaintext slots which have (n
(j)
A +n

′(j)
A )

at the j-th slot. In other words, we have

Dec(ct+, sk) mod fj =
N∑
i=1

(g
(j)
i + g

′(j)
i ) = n

(j)
A + n

′(j)
A .

Similarly, the plaintext polynomial from ct− is decoded as the plaintext slots which has the
value congruent to (nA − n′A) in the interval [0, t) ∩ Z. Thus, if the output value is larger than
t
2 , then subtract t from it; that is, we have

[Dec(ct−, sk) mod fj ]t =
N∑
i=1

(g
(j)
i − g

′(j)
i ) = n

(j)
A − n

′(j)
A .

Task 2: Secure DNA Sequence Comparison

We represent sequence comparison algorithms as binary circuits and then evaluate them over en-
crypted data. We use the native plaintext space of binary polynomials (i.e., R2 = Z2[x]/(Φm(x))),
and denote XOR and AND as ⊕ and ∧, respectively. For simplicity, you may consider the plain-
text space Z`2 supporting batching operation with ` slots.

For the homomorphic evaluation of Hamming distance, the genomic data of two participants,
denoted by (ei, fi, si) and (e′i, f

′
i , s
′
i), are encrypted bit-wise. For example, the encryptions of ei’s

are in the form of

Enc (CRT(e1, . . . , e`), pk) ,

Enc (CRT(e`+1, . . . , e2`), pk) , . . . ,

Enc
(
CRT(eb`(L)/`c·`+1, . . . , e`(L), 0, . . . , 0), pk

)
.



10

This allows to compute the same function on ` inputs at the price of one computation. Then
one can evaluate the following binary circuit over encryption:(

E(si, s
′
i) ∧

(
ei ⊕ e′i ⊕ 1

)
⊕ 1

)
∧ fi ∧ f ′i

where E(si, s
′
i) = ∧15j=1 (si[j]⊕ s′i[j]⊕ 1) has 1 if and only if si, s

′
i are the same. After homomor-

phic computations, the output can be decrypted with the secret key. The plaintext polynomial
has the Hamming distance result of SNV site i at the i-th slot, so we need only aggregate them.

Now, we consider the comparison binary circuit (described in [11]) for the secure computation
of the approximate Edit distance. We express an unsigned µ-bit integer x in its binary repre-
sentation and denote the j-th coordinate of x by x[j] (i.e., x =

∑µ
j=1 x[j] · 2j−1, x[j] ∈ {0, 1}).

For two µ-bit integers x and y, the comparison circuit is defined by

C(x, y) =

{
1 if x < y,

0 o.w.,

and this is written recursively as C(x, y) := cµ where

cj =
(
(x[j]⊕ 1) ∧ y[j]

)
⊕
(
(x[j]⊕ 1⊕ y[j]) ∧ cj−1

)
for j ≥ 2 with an initial value c1 = (x[1]⊕1)∧y[1]. Then the j-th bit of maximum value between
two inputs is defined as follows:

max{x, y}[j] =
(
(1⊕ C(x, y)) ∧ x[j]

)
⊕
(
C(x, y) ∧ y[j]

)
= x[j]⊕

(
C(x, y) ∧ (x[j]⊕ y[j])

)
.

For the bit-sliced implementation, all the lengths are also expressed in a binary representation
and we denote the maximum length of SNPs by µ. It follows from the primitive circuits that
we can evaluate the circuits homomorphically:(

E(si, s
′
i) ∧ (fi ⊕ f ′i ⊕ 1)⊕ 1

)
∧ max{Di, D

′
i}[j].

Finally, one can decrypt the results and decode `(L) values from the output plaintext polyno-
mials. More precisely, let `i,j be the value at i-th slot which corresponds to the j-th bit. We see
that

∑µ
j=1 `i,j ·2j−1 is the approximate Edit distance of SNV site i, hence we need only perform

aggregation operations over them.

4.3 Homomorphic Computation of The YASHE Scheme

We explain how to evaluate the genomic algorithms homomorphically using the YASHE scheme.

4.3.1 Task 1: GWAS on Encrypted Genomic Data

Lauter et al. [21] introduced a method how to pack m bits b0, . . . , bm−1 into a single ciphertext
that encodes the polynomial b(x) =

∑m−1
i=0 bix

i. We note that polynomial addition corresponds
to simple component-wise addition of the vectors. Since a case-control study requires only
additions, this method can be used for our case. When using a ring polynomial xn + 1 with

a power-of-two n, we can embed data of n′
let
= bns c persons into a single plaintext polynomial.

Namely, one can encrypt the polynomial

pm(g1 = (g
(1)
1 , . . . , g

(s)
1 ), . . . , gn′ = (g

(1)
n′ , . . . , g

(s)
n′ ))

let
=

n′∑
i=1

s−1∑
j=0

g
(j)
i xj+s·(i−1).
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The simple aggregation operations are performed over packed ciphertexts. Now, let

m =

n′s−1∑
j=0

mjx
j ∈ Rt

denote the decryption result of the evaluated ciphertext. Then, for 1 ≤ j ≤ s, one can aggregate
n′ data from the output plaintext polynomial by computing

mj ←
n′−1∑
i=0

mj+is,

which is the allele counts of A at the SNV site j. Notice that if n′ = 1, then we don’t need to
do the above operations. Hence, the MAF of the SNV j in the group is computed as

min{mj , 2N −mj}
2N

.

Similarly, let ct+ and ct− denote the ciphertexts computed by the homomorphic additions
and subtractions after simple aggregations. As we have demonstrated, we need additional ag-
gregation processes after decryptions. Let

m+ =
n′s−1∑
j=0

m+
j x

j , m− =
n′s−1∑
j=0

m−j x
j

denote the decryption polynomials of ct+ and ct−, respectively. Then, for 1 ≤ j ≤ s, one can
obtain the allele counts by computing as

n
(j)
A + n

′(j)
A =

n′−1∑
i=0

m+
j+is, n

(j)
A − n

′(j)
A =

[n′−1∑
i=0

m−j+is

]
t

.

4.3.2 Task 2: Secure DNA Sequence Comparison

Since polynomial multiplication does not correspond to component-wise multiplication of the
vectors, we have to consider another packing method instead of [21]. Let us consider the
polynomial-CRT packing method. The m-th cyclotomic polynomial Φm(x) factors modulo 2
into a product of the same irreducible factors (i.e., Φm(x) = xn + 1 = (x + 1)n mod 2), so we
cannot apply batching technique with these parameters. We can instead do that if taking a
prime t (not 2) such that the polynomial splits into the distinct factors modulo t, but the use
of a different message space leads to change our primitive circuits.

As noted in [10], we see that for x, y ∈ {0, 1}, the following properties hold: x⊕ y = (x− y)2

and x∧y = x ·y where − and · are arithmetic operations over integers. From these observations,
we can amend the evaluation circuit for the Hamming distance as follows:(

E(si, s
′
i) ·
(
(ei − e′i)2 − 1

)
+ 1

)
· fi · f ′i

where E(si, s
′
i) =

∏15
j=1

(
1− (si[j]− s′i[j])

2
)
.

We note that for µ-bit integer x and y, the comparison circuit C(x, y) = cµ can be expressed
as

cj = (1− x[j]) · y[j] +
(
1− (x[j]− y[j])2

)
· cj−1.
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for j ≥ 2 with c1 = (1− x[1]) · y[1]. Since it is available to compute on large integer inputs, the
maximum value is defined by

max{x, y} = (1− C(x, y)) · x+ C(x, y) · y
= x+ C(x, y) · (y − x).

Using these circuits, we compute the ciphertext given by the homomorphic operations(
1 + E(si, s

′
i) ·
(
(fi − f ′i)2 − 1

))
· max{Di, D

′
i}.

Then we get the encryptions of the approximate Edit distance result of SNV i.

5 Experimental Results & Discussion

In this section, we explain how to set the parameters for homomorphic evaluations and present
our experimental results. We used BGV scheme with Shoup-Halevi’s HE library [17] (called
HELib). HELib is written in C++ and based on the arithmetic library NTL [28] over GMP.
Our experiments with BGV were performed on a Linux machine with an Intel Xeon 2.67 GHz
processor. We also implemented YASHE scheme with ARITH library in C. The measurements
were done in an Intel Core 3.60GHz, running 64-bit Windows 7.

The dataset used for task 1 consists of 200 case group (constructed from 200 participants
from PGP) and 200 control group (simulated based on the haplotypes of 174 participants from
CEU population of HapMap Project). The dataset for task 2 consists of two individual genomes
randomly selected from PGP.

5.1 Theoretical Comparison between BGV and YASHE

BGV scheme has a chain of ciphertext moduli by a set of primes of roughly the same size,
p0, · · · , pL−1, that is, the i-th modulus qi is defined as qi =

∏i
k=0 pk. For simplicity, assume

that p is the approximate size of the pis. Given the lattice dimension n = φ(m), the plaintext
modulus t, and the Hamming weight h of the secret key, it follows from Theorem 3 in [10] that
the depth of a classical homomorphic multiplication is

dn,t ≈
⌈

log2(h · n · t4)
2 log2(p)

⌉
≈
⌈

log2(h · n · t4)
36

⌉
,

so the total number of modulus switching operations during the M-levels of multiplications is
about M · dn,t. Since we first should do one modulus switching to the initial ciphertext before
homomorphic computation, we see that L = M · dn,t + 2. Thus we can approximate the size of
the ciphertext modulus qBGV in the BGV scheme (from C.3 in [14]) as follows:

log2 qBGV ≈ 24 +
3

2
log2 n+ (L− 2) · (11 +

1

2
log2 n) < (L+ 1) · (11 +

1

2
log2 n).

Since a fresh ciphertext in BGV consists of a pair of polynomials over RqL−1 , the size of ciphertext
from the above inequality is about

|ct|BGV ≈ 2n · log2 qBGV ≈ 2n(L+ 1) · (11 +
1

2
log2 n).

Similarly, [6, Lemma 9] provides a theoretical upper bound on the noise growth after M
multiplicative levels for YASHE as (nt)2(M−1) · (12n2tσ`ω,qωM) when taking B = 6σ as the
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Table 2. The theoretical sizes of ciphertext modulus and a ciphertext

BGV YASHE

log2 q (M · log2(h·n·t
4)

36
+ 3) · (11 + 1

2
log2 n) 2M · log2 nt

|ct| 2n(M · log2(h·n·t
4)

36
+ 3) · (11 + 1

2
log2 n) 2nM · log2 nt

coefficient bound of error polynomials. It should be less than the ratio of qYASHE to t so that
the decryption procedure works; we should select a ciphertext modulus qYASHE so as to satisfy

log2 qYASHE ≈ 2M · log2 nt+ log2(12σ`ω,qωM) ≥ 2M · (log2 nt).

Since a ciphertext consists of only a single ring element, the size is about

|ct|YASHE ≈ n · log2 qYASHE ≈ 2nM · (log2 nt).

We summarize the above results in Table 2.
Note that it is difficult to compare these two schemes because their parameters depend on

at least 4 variables: the plaintext modulus, t, the dimension, n, the Hamming weight, h, and
the number of multaplicative levels to be evaluated, M. However we observe that, in the case
that log2 n ≈ 14 and h = 64, we have:

log2 qYASHE − log2 qBGV ≈ 2M · (log2 nt)− (M · dn,t + 3) · (11 +
1

2
log2 n)

≈ 2M · (14 + log2 t)− (M · dn,t + 3) · 18

= 2M · (14 + log2 t− 9 · dn,t)− 54

≈ 2M

(
14 + log2 t− 9 ·

(
20 + 4 log2 t

36
+ η

))
− 54

= 18M(1− η)− 54 for some 0 ≤ η < 1.

Hence, if M is large, we can use a smaller ciphertext modulus to evaluate M-levels of multiplica-
tions with BGV in comparison to YASHE; however, the YASHE scheme has smaller ciphertexts
than BGV. This follows from the fact that

|ct|BGV − |ct|YASHE ≈ 2(M · dn,t + 3) · (11 +
1

2
log2 n)− 2M · (log2 nt)

≈ 2M · (18 · dn,t − 14− log2 t) + 108

≈ 2M · (log2 t+ 18η − 4) + 108

for some 0 ≤ η < 1; if log2 t ≥ 4, then log2 t+ 18η − 4 ≥ 0; otherwise, we have dn,t = 1 and so
18 · dn,t − 14− log2 t > 0.

Let us contrast the complexity of homomorphic multiplication operations for the two schemes.
One of the new optimizations for BGV is to convert polynomials between coefficient and evalu-
ation representations. Most of the homomorphic operations are performed in the more efficient
evaluation representation, but it sometimes requires coefficient representation. Note that these
conversions take the most time in execution. In more detail, at the l-th level of this scheme, the
key switching procedure requires O(l) Fast Fourier Transforms (FFTs) and the modulus switch-
ing operation requires (l + 1) FFTs. Since HElib uses the Bluestein FFT algorithm [5] (with
run-time complexity of O(n log n)), this yields an overall complexity of O(ln log n) for a multi-
plication of ciphertexts.
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For the polynomial multiplication in the base ring Rq = Zq[x]/(xn+1), we implemented the
FFT algorithm by Nussbaumer [27] based on recursive negacyclic convolutions (with run-time
complexity 9

2n log n log log n +O(n log n) of arithmetic operations in Zq). The homomorphic
multiplication in YASHE includes a costly key switching operation which is an inner product

on R
`ω,q
q , hence we obtain a total cost of `ω,q · (92n log n log logn +O(n log n)) operations for a

ciphertext multiplication. Therefore, BGV is expected to be faster than YASHE for a ciphertext
multiplication if we take similar parameters with q and n.

5.2 How to Set Parameters

The security of BGV relies on the hardness of the RLWE assumption. Similarly, YASHE is
provably secure in the sense of IND-CPA under the RLWE assumption and DSPR assumption.
The main difference between the schemes is that BGV uses an odd integer m while YASHE
chooses m to be a power-of-two with a prime integer q such that q ≡ 1 (mod m). In [25], it was
shown that the hardness of RLWE with the cyclotomic polynomial Φm(x) = xφ(m) + 1 can be
established by a quantum reduction to shortest vector problems in ideal lattices. This means
that YASHE is believed to be secure as long as the lattice problems are hard to solve.

5.2.1 Parameters of the BGV scheme

To homomorphically evaluate the algorithms for task 1, we first choose sufficiently large t so
that no reductions modulo t occurs in the plaintext slots. For example, we take t as the smallest
power-of-two which satisfies the following inequalities:

n
(j)
A =

200∑
i=1

g
(j)
i ≤

200∑
i=1

2 = 400 < t

since the total number of people in the same group is N = 200. So it suffices to take t = 29 for
privately computing the minor allele counts. In the case of χ2 test, we have

n
(j)
A + n

′(j)
A =

200∑
i=1

g
(j)
i +

200∑
i=1

g
′(j)
i ≤ 2

200∑
i=1

2 = 800 < t,

thus we set the parameter t = 210. For the second task, we used t = 2 to evaluate binary circuits.

Now, we derive a lower-bound on φ(m) such that

φ(m) ≥ (L(logm+ 23)− 8.5) · (λ+ 110)

7.2
. (2)

from the security analysis of [14] based on Lindner and Peikert’s method [23]. For the efficiency
of the implementation, we choose the smallest integer m so as to satisfy Inequality (2) and pack
the message into plaintext slots as many as possible. Next, we define a ladder of moduli to make
the correct decryption after computation with L levels (see [14] for details). Finally, we consider
the discrete Gaussian distribution χerr = DZ,σ with mean 0 and standard deviation σ = 3.2
over the integers to sample random error polynomials.

5.2.2 Parameters of the YASHE Scheme

As discussed before, t = 210 will suffice to compute the MAFs and χ2 statistic. For the second
task, we look for the parameter t 6= 2 which maximizes the number of slots we can handle in
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Table 3. Implementation results of task 1 using BGV and YASHE

s t log2 q n ` L |ct| KeyGen Encrypt Eval Decrypt

BGV

MAF
311

29
60 5292 378

3
78kB 6.92s 11.90s 29.99ms 290.06ms

610 61 8190 630 122kB 10.28s 14.85s 33.36ms 690.23ms

χ2
311

210
60 5292 378

3
78kB 6.35s 11.61s 30.05ms 560.10ms

610 61 8190 630 122kB 12.27s 15.13s 38.17ms 720.33ms

YASHE

MAF
311

210 48 1024 1024 0 6kB

0.01s 1.63s 5.74ms 33.71ms

610 0.04s 4.10s 16.98ms 16.78ms

χ2
311 0.01s 1.61s 5.99ms 16.73ms

610 0.04s 4.12s 17.20ms 17.01ms

one go. We fix the word ω = 2128 for the evaluation key and the standard deviation σ = 8 for
the error distribution χerr.

Since we can estimate the size of noise during homomorphic operations, we get the lower
bound on q to ensure the correctness. We also have maximal values of q to ensure the desired
security using the results of [22], so that we can have more loose bound than that from LP’s
method. Then we set m as a power-of-two to get a non-trivial interval for q and then select a
smallest q in this interval.

5.3 Implementation Results

We present the parameter setting and performance results for secure genome analysis in Table 3
and 4. All the parameters provide 80-bit security level. We give the plaintext modulus t, the size
of the ciphertext modulus q, the lattice dimension n = φ(m), and the number of plaintext slots
`. We also give the circuit depth L so that HE scheme can correctly evaluate such a computation
on encrypted data. In particular, it can be considered as the number of ciphertext moduli in
the BGV scheme. We consider the ciphertext size in kBytes for a set of parameters. The last
columns give the timings for the key generation, encryption, evaluation and decryption.

5.3.1 Performance results of task 1

In Table 3, the top four rows refer to the results using BGV, and the bottom four rows refer
to results using YASHE for computing the MAFs and χ2 statistic in case-control groups. Note
that the number of slots means that how many messages we can pack into one single ciphertext.
When using YASHE, we can evaluate simultaneously by embedding the data into the coefficients
of plaintext polynomial; the maximal degree of plaintext polynomial in this case is considered
to be the number of slots.

In practice, we need to apply one more modulus-switching during homomorphic additions
for the BGV scheme, so the total number of ciphertext moduli is L = 1+2 = 3. On the contrary,
L means the levels of multiplications in YASHE (without taking into account the additions). In
other words, when evaluating a polynomial of degree d on encrypted data, we have L ≈ log d
levels of multiplications by computing in a binary tree way. Thus, L = 0 suffices to support such
homomorphic additions in task 1. Thus we don’t need to generate the evaluation key, which
enables to take less time for key generation than BGV. Moreover, the evaluation performance
of YASHE is much better since BGV requires a costly modulus switching operations even for
computing simple homomorphic additions.
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Table 4. Implementation results of task 2 using BGV and YASHE

Size t log2 q n ` L |ct| KeyGen Encrypt Eval Decrypt

BGV

Hamming
5K

2

132

8190 630

7 264kB 2.53s
12.65s 15.39s 0.64s

10K 24.90s 29.39s 1.29s

Edit
5K

150 8 300kB 3.41s
16.98s 40.86s 2.97s

10K 33.34s 76.08s 5.81s

YASHE

Hamming
5K

8191 384 8192 4096 6 384kB 130.59s

29.70s 68.31s 2.67s

10K 58.82s 134.87s 5.04s

Edit
5K 58.46s 110.18s 2.66s

10K 116.61s 245.04s 5.07s

5.3.2 Performance results of task 2

Table 4 presents the parameter setting and performance results for secure DNA sequence com-
parison using BGV and YASHE. We evaluated the performance with the input data of different
sizes 5K and 10K. We implemented the comparison circuit with the same method as described
in [11, Lemma 1] in order to reduce the circuit depth over encryption.

As discussed before, given the parameter L, we obtain the approximate size of ciphertext
modulus as log2 q ≈ 43 + 18 · (L− 2) for BGV when using t = 2 and R = Z[x]/(Φ8191(x)). Since
it should support L = 7 or 8 to correctly evaluate genomic algorithms of task 2, we use the
modulus q around 130 to 150. On the other hand, the size of the parameter q in YASHE should
be strictly larger than 2L log2(nt) ≈ 52L with t = 29 and R = Z[x]/(x8192 + 1). So we used a
384-bit prime q such that q ≡ 1 (mod 214).

In the implementation of YASHE scheme, computing the inverse of f modulo q turns out to
be the most-time consuming part of the key-generation, which runs in around 128.34 seconds(s).
In total, it takes about 130.59s to generate the public key, secret key and evaluation keys, while
the key generation of the BGV scheme takes about 3.41s in order to support 8 levels.

There is also quite a big gap between the two schemes in timings for a multiplication of ci-
phertexts: BGV takes around 0.07s, while YASHE takes around 1.75s (including the key switching
step) under the parameter settings used in task 2. For the efficiency of the YASHE scheme, we
might avoid a costly key switching step during the homomorphic multiplication; however, it
supports a limited number of homomorphic multiplications without the key switching step.
This follows since the noise grows exponentially with the multiplicative depth through such
consecutive operations. One alternative is to use a hybrid approach, in which we leave out key
switching in certain places but do it in others using the evaluation key with a power of the
secret key so that one can keep the ciphertext noise small for correct decryption. As a result,
polynomial multiplication modulo xn + 1 takes about 0.64s, but it is still slower than that in
BGV. As expected, BGV is faster than YASHE to evaluate the genomic algorithms for DNA
sequence comparison.

6 Conclusion

In this paper, we discussed how to privately perform genomic tests on encrypted genome data
using homomorphic encryption. In addition to the efficient implementations of BGV and YASHE,
we compared two schemes both theoretically and practically. We found that there is a trade-off
between the security and performance. YASHE uses a power-of-two dimension n which defines the
2n-th cyclotomic polynomial; this is a good choice for providing strong security, but it requires
larger parameters to ensure correctness than BGV, and the homomorphic multiplication in
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YASHE is slower than that in BGV. Therefore, the performance numbers for BGV are better than
YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm
or approximate Edit distance algorithm). On the other hand, it might be more efficient to use
the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test
statistic in a case-control study.
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