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Abstract

All methods analyzed and contrasted in this chapter have the unique attribute of

exploiting prior knowledge about distortion in the training stage, in addition to training

an HMM. They then use such prior knowledge as a guide to either remove noise

or adapt models in the testing or deployment stage. Most methods which use prior

knowledge about acoustic distortions as discussed in this chapter learn the nonlinear

mapping functions between the clean and noisy speech features when they are available

in the training phase as a pair of stereo data. By modeling the differences between

the features or models of the stereo data, a distortion model can be learned accuratly

in training and subsequently used in testing to perform feature enhancement or model

compensation. Another set of methods that also exploit prior knowledge operate by

collecting and learning a set of simple models first, each corresponding to one specific

acoustic environment in the training. These environment-specific models are then

combined in the online fashion to form a new acoustic model that is aimed to fit the test

environment in an optimal matter.
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In this chapter, we explore an alternative way of categorizing and analyzing existing

robust ASR techniques, where we use the attribute of whether or not they make use of

prior knowledge and information about the acoustic distortion before applying formal

compensation procedures. This contrasts the previous chapter when the attribute was

whether the operations were applied on the feature domain or on the model domain.

Major noise-robust methods which use the prior knowledge about acoustic distortions

learn the generally nonlinear mapping functions between the clean and distorted speech

features when they are available in the form of stereo data in the training phase. By

modeling the differences between the features or models of the stereo data, a distortion

model can be learned in training and then used in testing to perform feature enhancement

or model compensation. The distortion model can be a deterministic mapping function.

It can also be formulated probabilistically as in p(y|x). A collection of these methods

can be called stereo-data mapping methods.

In addition to stereo-based methods, another collection of methods exploiting prior

knowledge are based on first establishing or sampling a set of simple models for the

acoustic environments, each corresponding to one specific environment during training.

These models are then combined online to form the final acoustic model of distorted

speech that fits the test environment to the best extent possible.

More recently, there appeared in the literature new methods based on clean speech

and noise exemplar dictionaries learned from training data for source separation. Using

non-negative matrix factorization (NMF), these methods restore clean speech by con-

structing the noisy speech with pre-trained clean speech and noise exemplars and only

keeping the clean speech exemplars. How to generalize to unseen acoustic conditions is

very important to robust ASR. Variable-parameter modeling presented in this chapter

will provide a decent solution by modeling the acoustic model parameters with a set

of polynomial functions of the environment variable. The model parameters can be

extrapolated from the learned polynomial functions if the test environments are not

observed during training.

5.1 Learning from Stereo Data

Many methods use stereo data to learn the mapping from distorted speech to clean speech.

The stereo data consists of time-aligned speech samples that have been simultaneously

recorded in training environments and in representative test environments. Stereo data

can also be obtained by digitally introducing (e.g. adding noise) distortion to the clean

speech. The success of these methods usually depends on how well the representative
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distorted samples during training really match test samples.

5.1.1 Empirical Cepstral Compensation

One group of methods is called empirical cepstral compensation [Stern et al., 1996],

developed at CMU. Let’s recap Eq-3.14 in Eq-5.1 which is the cepstral representation of

the relationship between the clean speech feature and the distorted speech feature as

y = x+h+C log(1+ exp(C−1(n−x−h))). (5.1)

Then, with

v = h+C log(1+ exp(C−1(n−x−h))). (5.2)

the distorted speech cepstrum y is expressed as the clean speech cepstrum x plus a bias

v. In empirical cepstral compensation, this bias v can be formulated to depend on the

SNR, the location of vector quantization (VQ) cluster k, the presumed phoneme identity

p, and the specific test environment e. Hence, Eq-3.14 can be re-written as

y = x+v(SNR,k, p,e). (5.3)

v(SNR,k, p,e) can be learned from stereo training data. During testing, the clean speech

cepstrum can be recovered from the distorted speech with

x̂ = y−v(SNR,k, p,e). (5.4)

Depending on how v(SNR,k, p,e) is defined, there are different cepstral compensation

methods. If SNR is the only factor for v, it is called SNR-dependent cepstral normaliza-

tion (SDCN) [Acero and Stern, 1990]. During training, frame pairs in the stereo data

are allocated into different subsets according to SNR. Then, the compensation vector

v(SNR) corresponding to a range of SNRs is estimated by averaging the difference

between the cepstral vectors of the clean and distorted speech features for all frames in

that range. During testing, the SNR for each frame of the input speech is first estimated,

and the corresponding compensation vector is then applied to the cepstral vector for that

frame with Eq-5.4.

Fixed codeword-dependent cepstral normalization (FCDCN) [Acero, 1993] is a

refined version of SDCN with the compensation vector as v(SNR,k), which depends on

both SNR and VQ cluster location. For each SNR range, there is a VQ cluster trained

from the utterances representative for the testing. During training, the frame pairs in the
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stereo data are allocated into different subsets according to the SNR and the VQ cluster

location of the distorted feature. The compensation vector is calculated by averaging the

difference between the cepstral vectors of the clean and distorted speech features for the

SNR-specific VQ cluster location. During testing, both SNR and VQ cluster locations

are estimated, and the corresponding compensation vector is then applied to the cepstral

vector for that frame. Phone-dependent cepstral normalization (PDCN) [Liu et al., 1994]

is another empirical cepstral compensation method in which the compensation vector

depends on the presumed phoneme the current frame belongs to. During testing, the

phoneme hypotheses can be obtained by a first pass HMM decoding. It can also be

extended to include SNR as a factor, and is called SNR-dependent PDCN (SPDCN)

[Liu et al., 1994]. Environment is also a factor of the compensation vector. FCDCN and

PDCN can be extended to multiple FCDCN (MFCDCN) and multiple PDCN (MPDCN)

when multiple environments are used in training [Liu et al., 2004]. The test utterance

is first classified into one specific environment e, and then the compensation vector

v(SNR,k,e) (in MFCDCN) or v(p,e) (in MPDCN) will be applied to the distorted

speech cepstral vector. Another alternative is to interpolate the compensation vectors

from those of multiple environments instead of making the hard decision of the specific

environment. The corresponding methods are called interpolated FCDCN and interpo-

lated PDCN [Liu et al., 1994].

5.1.2 SPLICE

Stereo-based Piecewise LInear Compensation for Environments (SPLICE) , proposed

originally in [Deng et al., 2000a] and described in more detail in [Deng et al., 2001,

Droppo et al., 2001b, 2002, Deng et al., 2003c], is a popular method to learn from stereo

data and is more advanced than the aforementioned empirical cepstral compensation

methods. In SPLICE, the noisy speech data, y, is modeled by a mixture of Gaussians

p(y,k) = P(k)p(y|k) = P(k)N (y;µ(k),Σ(k)), (5.5)

and the a posteriori probability of clean speech vector x given the noisy speech y and

the mixture component k is modeled using an additive correction vector b(k):

p(x|y,k) = N (x;y+b(k),Ψ(k)), (5.6)

where Ψ(k) is the covariance matrix of the mixture component dependent posterior

distribution, representing the prediction error. The dependence of the additive (linear)
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correction vector on the mixture component gives rise to a piecewise linear relationship

between the noisy speech observation and the clean speech, hence the name of SPLICE.

The feature compensation formulation can be described by

x̂ =
K

∑
k=1

P(k|y)(y+b(k)). (5.7)

The prediction bias vector, b(k), is estimated by minimizing the mean square error

(MMSE) as the weighted mean square error between the clean speech vector and the

predicted clean speech vector in the mixture component k:

E = ∑
t

P(k|yt)(xt−yt−b(k))2. (5.8)

By setting ∂E
∂b(k) = 0, the estimation of the prediction bias vector, b(k), is obtained as

b(k) =
∑t P(k|yt)(xt−yt)

∑t P(k|yt)
, (5.9)

and Ψ(k) can be obtained as

Ψ(k) =
∑t P(k|yt)(xt−yt)(xt−yt)

T

∑t P(k|yt)
−b(k)bT (k). (5.10)

To reduce the runtime cost, the following simplification can be used

k̂ = argmax
k

p(y,k),

x̂ = y+b
k̂
. (5.11)

Note that for implementation simplicity, a fundamental assumption is made in the

above SPLICE algorithm that the expected clean speech vector x is a shifted version of

the noisy speech vector y. In reality, when x and y are Gaussians given component k,

their joint distribution can be modeled as

N

([

x

y

]

;

[

µx(k)
µy(k)

]

,

[

Σx(k) Σxy(k)
Σyx(k) Σy(k)

])

. (5.12)

and a rotation on y is needed for the conditional mean as

E(x|y,k) = µx(k)+Σxy(k)Σ
−1
y (k)(y−µy(k)) (5.13)

= A(k)y+b(k), (5.14)
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where

A(k) = Σxy(k)Σ
−1
y (k) (5.15)

b(k) = µx(k)−Σxy(k)Σ
−1
y (k)µy(k). (5.16)

The feature compensation formulation in this case is

x̂ =
K

∑
k=1

P(k|y)(A(k)y+b(k)). (5.17)

It is interesting that feature space minimum phone error (fMPE) training [Povey et al.,

2005a], a very popular feature space discriminative training method, can be linked

to SPLICE to some extent [Deng et al., 2005b]. Originally derived with the MMSE

criterion, SPLICE can be improved with the maximum mutual information criterion

[Bahl et al., 1997] by discriminative training A(k) and b(k) [Droppo and Acero, 2005].

In [Droppo et al., 2001b], dynamic SPLICE is proposed to not only minimize the static

deviation from the clean to noisy cepstral vectors, but to also minimize the deviation

between the delta parameters. This is implemented by using a simple zero-phase,

non-causal IIR filter to smooth the cepstral bias vectors.

In addition to SPLICE, MMSE-based stereo mapping is studied in [Cui et al., 2008a],

and the MAP-based stereo mapping is formulated in [Afify et al., 2007, 2009]. Most

stereo mapping methods use a GMM to construct a joint space of the clean and noisy

speech feature. This is extended in [Cui et al., 2008b], where a HMM is used. The

mapping methods can also be extended into a discriminatively trained feature space,

such as the fMPE space [Cui et al., 2009a].

One concern for learning with stereo data is the requirement of stereo data, which

may not be available in real-world application scenarios. In [Droppo et al., 2002], it is

shown that a small amount of real noise synthetically mixed into a large, clean corpus

is enough to achieve significant benefits for the FCDCN method. In [Du et al., 2010],

the pseudo-clean features generated with a HMM-based synthesis method [Tokuda

et al., 2000] are used to replace the clean features which are usually hard to get in real

deployment. It is shown that this pseudo-clean feature is even more effective than the

ideal clean feature [Du et al., 2010].

5.1.3 DNN for Noise Removal Using Stereo Data

Both the empirical cepstral compensation and SPLICE are piecewise linear compensa-

tion methods, in which the noisy feature y and the estimated clean feature x̂ have an
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Figure 5.1: Generate clean feature from noisy feature with DNN

environment-dependent linear relationship. If putting them into the context of neural

network with y as the input and x̂ as the output, all of these methods may be considered

as a shallow neural network to learn the mapping of y and x̂ as x̂ = G (y). From the

success of DNNs, we learn that a deep neural network usually has more modeling power

than a shallow neural network. Hence it is natural to use a DNN to better learn the

mapping function G , and this method has been recently very successful in both speech

enhancement and speech recognition tasks [Maas et al., 2012b, Lu et al., 2013c, Wöllmer

et al., 2013b, Narayanan and Wang, 2013a, Weninger et al., 2014a,c, Feng et al., 2014b,

Du et al., 2014a,b, Narayanan and Wang, 2014b,a, Wang et al., 2014, Gao et al., 2015,

Tu et al., 2015].

As shown in Figure 5.1, a DNN can be trained to generate clean feature from noisy

feature y by minimizing the mean squared error between the DNN output x̂ = G (y) and
the reference clean features x [Lu et al., 2013c, Feng et al., 2014b, Du et al., 2014a,b]:

FMSE = ∑
t

‖x̂t−xt‖
2 (5.18)

Usually, the input noisy feature y is with a context window of consecutive frames, while

the reference clean features x only corresponds to the current frame. The enhancement

function G is realized with a DNN in Figure 5.1. This noise-removal strategy is very
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effective. Evaluated in [Du et al., 2014b], when the underlying DNN model used for

recognition is trained with clean data and the noisy test data is cleaned with the noise-

removal DNN, huge WER reduction can be achieved. If the underlying DNN model

used for recognition is trained with multi-condition data, remarkable WER reduction

still can be achieved. Note that if the underlying model for recognition is a GMM, the

improvement of using a noise-removal DNN is even larger. Also, the improvement is

much larger than that obtained with AFE [ETSI, 2002] described in Section 4.1.3. This

is due to the power of DNNs which learn the mapping between noisy and clean feature,

while AFE is a traditional front-end without learning from the stereo data.

In addition to using a standard feed-forward DNN, a recurrent neural network (RNN)

has also been proposed to predict the clean speech from noisy speech [Maas et al.,

2012b] by modeling temporal signal dependencies in an explicit way because a RNN

directly uses its time-recurrent structure to model the long-range context of speech

which cannot be approximated by the feature stacking with a context window in the

standard feed-forward DNN. Standard RNN has a known problem of weight decaying

(or blowing up) during training. This issue can be solved by replacing the sigmoid

units with long short-term memory (LSTM) units and bidirectional LSTM (BLSTM)

units [Wöllmer et al., 2013b, Weninger et al., 2014a,c] which allow for a more efficient

exploitation of temporal context, leading to an improved feature mapping from noisy

speech to clean speech. The LSTM units have an internal memory cell whose content

is modified in every time step by input, output, and forget gates so that the network

memory is modeled explicitly.

While most studies [Maas et al., 2012b, Lu et al., 2013c, Wöllmer et al., 2013b,

Weninger et al., 2014a, Feng et al., 2014b, Du et al., 2014a] use clean speech features

as the DNN training target, there are also some works [Narayanan and Wang, 2013a,

2014b,a, Wang et al., 2014] using the time-frequency (T-F) masks such as ideal binary

mask (IBM) or ideal ratio mask (IRM) as the training target. For each T-F unit, the

corresponding IBM value is set to 1 if the local SNR is greater than a local criterion,

otherwise it is set to 0. IRM is defined as the energy ratio of clean speech to noisy speech

at each T-F unit with the assumption that noise is uncorrelated with clean speech, and

can be written as a function of SNR:

IRM(t,k) =

(

SNR(t,k)

1+SNR(t,k)

)β

, (5.19)

where β is a tunable parameter to scale the mask. This is closely related to the frequency-

domain Wiener filter in Eq-4.29. The training of IBM or IRM estimation with a DNN
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is done by replacing the clean speech target in Figure 5.1 with either IBM or IRM

as the target. During testing, the estimate of the T-F mask m̂t is obtained by forward

propagating the learned DNN, and the estimated clean speech spectrum is obtained as

x̂t = m̂t .∗yt, (5.20)

where .∗ is the element wise multiplication.

It is shown in [Narayanan and Wang, 2014a] that IRM is superior to IBM for the

speech recognition task. However, it is still arguable whether using IRM is better than

using clean speech feature as the target for noise removal. Suppose a clean utterance is

corrupted by different types of noise with various SNRs, using clean speech feature as

target directly maps the features from all the utterances with different distortion to the

features from the same clean utterance. A DNN needs to learn this challenging many-

to-one mapping. In contrast, by using IRM as the training target, the DNN learning is

pretty simple – only the one-to-one mapping needs to be learned. Moreover, the target

IRM value is between 0 and 1, which makes the learning avoid estimation of unbounded

values. [Wang et al., 2014] also provides other arguments why IRM is better as the DNN

training target for the task of speech separation. As a result, IRM as the training target is

shown to outperform clean speech feature as the training target in speech separation tasks

[Wang et al., 2014, Weninger et al., 2014c]. On the other hand, using IRM in Eq-5.19 as

the training target is supposed to remove only the noise distortion. If the distorted signal

y is also impacted by the channel distortion, an additional feature mapping function has

to be provided in [Narayanan and Wang, 2014a] to remove the channel distortion in the

estimated clean speech feature from the noise-removal DNN. In contrast, using clean

speech feature as the training target can directly map the noise and channel distorted

feature to clean speech feature with its many-to-one mapping in one step.

In addition to noise removal with DNN based on the minimum square error criterion,

similar methodology can separate multiple speakers by putting the mixed feature as the

input and the target speaker feature as the output in Figure 5.1. This is done in [Weng

et al., 2014a]where separate DNNs are trained to predict individual sources. Another

solution is proposed in [Huang et al., 2014a] where a single DNN is trained to predict

all the sources as in Figure 5.2. This is optimized by minimizing the objective function

FMSE2 = ∑
t

‖x̂1t−x1t‖
2+‖x̂2t−x2t‖

2 (5.21)

One improvement proposed in [Huang et al., 2014a] is to refine the final speaker

sources with the constraint that they can be combined to form the original mixed feature
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with

x̃1t =
‖x̂1t‖

‖x̂1t‖+‖x̂2t‖
.∗yt (5.22)

x̃2t =
‖x̂2t‖

‖x̂1t‖+‖x̂2t‖
.∗yt (5.23)

In this way, the reconstructed sources are more meaningful. The DNN optimization is

still done with Eq-5.21 by replacing x̂1t and x̂2t with x̃1t and x̃2t . This method should

also be applicable to noise removal if we consider x1 and x2 are the clean speech and

noise features, respectively.

Similar to the learning with SPLICE and empirical cepstral compensation, the

supervised learning using DNN also needs stereo data which is hard to obtain in most

real world scenarios. One solution is proposed in [Du et al., 2014a], where pseudo clean

data is generated with HMM-based synthesis. When the test noise is also available

during the learning of the enhancement function G , high performance can always be
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obtained by using DNN for noise removal. However, the challenge is the generalization

to unseen conditions. This problem can be significantly alleviated by training the noise

removal function on more acoustic conditions [Wang and Wang, 2013]. In [Xu et al.,

2014], a set of more than 100 noise types is added when training the noise removal

function in order to enrich the generalization of the DNN to unseen and non-stationary

noise conditions. Although achieving satisfactory results in the area of speech separation,

this noise enrichment method still degrades the recognition performance in the unseen

test sets when the underlying acoustic model is a DNN [Du et al., 2014b].

5.2 Learning from Multi-Environment Data

This type of methods utilizes prior knowledge about the distortion by collecting and

learning a set of models first, each corresponding to one specified environment in the

training. These environment-specific models are then online combined to form a new

model that fits the test environment best.

Usually, the acoustic model can be trained with a multi-condition training set to

cover a wide range of application environments. However, there are two major problems

with multi-style training. The first is that during training it is hard to enumerate all

of the possible noise types and SNRs that may be present in future test environments.

The second is that the distribution trained with multi-style training is too broad because

it needs to model the data from all environments. Therefore, it is better to build

environment-specific models, and use the model that best fits the test environment when

doing runtime evaluation.

5.2.1 Online Model Combination

The model combination methods build a set of acoustic models, each modeling one

specific environment. During testing all the models are combined to construct a target

model used to recognize the current test utterance. Denote the set of environment-

dependent parameters as {Λ1, . . . ,ΛK}, where K is the total number of environments.

Then the model parameters during testing can be obtained as

Λ̂ =
K

∑
k=1

wkΛk, (5.24)

where wk is the combination weight for the k-th environment model. The model parame-

ters can be Gaussian mean vectors or transforms when the underlying acoustic model is

a GMM, and they can be weight matrices in the DNN case.
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Online Model Combination for GMM

Assume that K environment-specific models share the same covariance matrix and

only differ in mean parameters of GMMs. The mean parameters for each environment-

specific model are concatenated together to form mean super-vectors (sk,k = 1 . . .K),

and the mean super-vector of the test utterance, ŝ, is obtained as a linear combination of

K mean super-vectors of the environment-specific models

ŝ =
K

∑
k=1

wksk, (5.25)

where wk is the combination weight for the k-th mean super-vector, and w= [w1,w2, . . . ,wK]
T .

The combination weights w can be obtained with the maximum likelihood estimation

(MLE) criterion as

ŵ = argmax
w

logp(Y|ŝ) (5.26)

This is solved with the expectation-maximization (EM) algorithm which finds the

solution of w iteratively. The auxiliary function is defined as the following by ignoring

standard constants and terms independent of w

Q(w;w0) =−
1

2
∑
m,t

γt(m)(yt−µ(m))T Σ−1(m)(yt−µ(m)), (5.27)

where w0 is the previous weight estimate, γt(m) is the posterior of Gaussian component

m at time t determined using the previous model parameters, and yt is the feature vector

of frame t. µ(m) is the adapted mean of Gaussian component m, represented as

µ(m) =
K

∑
k=1

wksk(m) = S(m)w, (5.28)

where sk(m) is the subvector for Gaussian component m in super-vector sk and S(m) =
[s1(m), . . . ,sK(m)]. Σ(m) is the variance of the Gaussian component m, shared by all the

environment-specific models. By maximizing the auxiliary function, the combination

weight w can be solved as

w =

[

∑
m,t

γt(m)ST (m)Σ−1(m)S(m)

]−1

∑
m,t

γt(m)ST (m)Σ−1(m)yt . (5.29)
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This model combination method is very similar to general speaker adaptation methods

such as cluster adaptive training (CAT) [Gales, 2000b] and eigenvoice [Kuhn et al.,

2000]. In the CAT approach, the speakers are clustered together and sk stands for

clusters instead of individual speakers. In the eigenvoice approach, a small number

of eigenvectors are extracted from all the super-vectors and are used as sk. These

eigenvectors are orthogonal to each other and guaranteed to represent the most important

information. Although originally developed for speaker adaptation, both CAT and

eigenvoice methods can be used for robust speech recognition. Storing K super-vectors

in memory during online model combination may be too demanding. One way to reduce

the cost is to use methods such as eigenMLLR [Chen et al., 2000, Wang et al., 2001]

and transform-based CAT [Gales, 2000b] by adapting the mean vector with environment

dependent transforms. In this way, only K transforms are stored in memory. Moreover,

adaptive training can be used to find the canonical mean as in CAT [Gales, 2000b].

One potential problem of MLE model combination is that usually all combination

weights are nonzero, i.e., every environment-dependent model contributes to the final

model. This is obviously not optimal if the test environment is exactly the same as

one of the training environments. There is also a scenario where the test environment

can be approximated well by interpolating only few training environments. Including

unrelated models into the construction brings unnecessary distortion to the target model.

In ensemble speaker and speaking environment modeling (ESSEM) [Tsao and Lee, 2007,

Tsao et al., 2009, Tsao and Lee, 2009], environment clustering is first used to cluster

environments into several groups, each of which consists of environments having similar

acoustic properties. During online model combination, an online cluster selection is first

used to locate the most relevant cluster and then only the super-vectors in this selected

cluster contribute to the model combination in Eq-5.25. In this way, most weights of the

super-vectors are set to 0 and the method is shown to have better accuracy than simply

combining all the super-vectors. By suitably incorporating prior knowledge, ESSEM

can estimate combination weights accurately with a limited amount of adaptation data

and has been shown to achieve very high accuracy on the standard Aurora 2 task [Tsao

et al., 2014].

Instead of first doing the online clustering as in ESSEM, weights can also be automat-

ically set to 0 [Xiao et al., 2012b] by using Lasso (least absolute shrinkage and selection

operator) [Tibshirani, 1996] which imposes an L1 regularization term in the weight

estimation problem to shrink some weights to exactly zero. The auxiliary function in
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Eq-5.27 is modified with the L1 regularization as

Q(w;w0) =−
1

2
∑
m,t

γt(m)(yt−µ(m))T Σ−1(m)(yt−µ(m))−T α
K

∑
k=1

|wk|, (5.30)

where α is a tuning parameter that controls the weight of the L1 constraint, T is the

total number of frames in the current utterance, and |wk| denotes the absolute value of
wk. This can be solved iteratively using the method proposed in [Li et al., 2011b]. In

[Xiao et al., 2012b], it is shown that Lasso usually shrinks to zero the weights of those

mean super-vectors not relevant to the test environment. By removing some irrelevant

super-vectors, the obtained mean super-vectors are found to be more robust against noise

distortions.

Note that the noisy speech feature variance changes with the introduction of noise,

therefore simply adjusting the mean vector of the speech model cannot solve all of the

problems. It is better to adjust the model variance as well. One way is to combine

the pre-trained CMLLR matrices as in [Cui et al., 2009b]. However, this is not trivial,

requiring numerical optimization methods, such as the gradient descent method or a

Newton method [Cui et al., 2009b].

Online Model Combination for DNN

Input vector ∑ f(·) 

Activation 

function

Summing 

function

...

×

×

×

Output vector

Weight and 

bias

Figure 5.3: Linear model combination for DNN
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The realization of Eq-5.24 in a DNN is done in the weight matrix and bias level

as shown in Figure 5.3. Suppose in the l-th layer, we have trained the weight matrix

set {Hl
1, . . . ,H

l
K} and bias set {p

l
1, . . . ,p

l
K} for all the environments. Then at test time,

the weight matrix Âl and bias b̂l for the new environment can be obtained as a linear

combination of the trained counter parts as

Âl =
K

∑
k=1

wkHl
k, (5.31)

b̂l =
K

∑
k=1

wkpl
k. (5.32)

Because the number of environments observed during training usually is much less than

the number of parameters in a DNN, the combination weight w = [w1,w2, . . . ,wK]
T

can be easily estimated online with only a few utterances with the standard error back

propagation training.

5.2.2 Non-Negative Matrix Factorization

In Section 5.2.1, the acoustic model for the current test utterance is obtained by com-

bining the pre-learned acoustic models. Recently, there is increasing interest to use

exemplar-based methods for general ASR [Demuynck et al., 2011, Sainath et al., 2011b]

and noise-robust ASR [Gemmeke and Virtanen, 2010, Raj et al., 2010, Gemmeke et al.,

2011]. Exemplar refers to an example speech segment from the training corpus. In

exemplar-based noise-robust ASR [Gemmeke and Virtanen, 2010, Raj et al., 2010,

Gemmeke et al., 2011], noisy speech is modeled by a linear combination of speech

and noise [Gemmeke and Virtanen, 2010, Gemmeke et al., 2011] (or other interfering

factors, such as music [Raj et al., 2010]) exemplars. If the reconstructed speech consists

of only the exemplars of clean speech, the impact of noise is removed. This is a source

separation approach, and non-negative matrix factorization (NMF) [Lee and Seung,

2000] has been shown to be a very successful method [Smaragdis and Brown, 2003,

Schmidt and Olsson, 2007, Virtanen, 2007], and can directly benefit noise-robust ASR

[Gemmeke and Virtanen, 2010, Raj et al., 2010, Gemmeke et al., 2011, Mohammadiha

et al., 2013]. An advantage of the exemplar-based approach is that it can deal with

highly non-stationary noise, such as speech recognition in the presence of background

music. The source separation process with NMF is described below.

First the training corpus is used to create a dictionary xl(1≤ l ≤ L) of clean speech

exemplars and a matrix X is formed as X = [x1x2 . . .xL]. The exemplars are drawn
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randomly from a collection of magnitude spectral vectors in a training set. Similarly, the

noise matrix N is formed with noise exemplars. Then speech and noise exemplars are

concatenated together to form a single matrix A = [XN], with a total of K exemplars.

The exemplars of A are denoted ak,1≤ k ≤ K. The reconstruction feature is

ŷ =
K

∑
k=1

wkak = Aw, s.t. wk ≥ 0 (5.33)

with w as the K-dimensional activation vector. All exemplars and activation weights

are required to be non-negative. The objective is to minimize the reconstruction error

d(y,Aw) between the observation y and the reconstruction feature ŷ while constraining

the matrices to be element-wise non-negative. It is also good to embed sparsity into the

objective function so that the noisy speech can be represented as a combination of a

small set of exemplars, similar to the concept of online GMM model combination with

Lasso regularization in Section 5.2.1. This is done by penalizing the nonzero entries of

w with the L1 norm of the activation vector w, weighted by element-wise multiplication

(operation .*) of a non-negative vector λ . Therefore the objective function is

d(y,Aw)+‖λ .∗w‖1 s.t. wk ≥ 0 (5.34)

If all the elements of λ are zero, there is no enforced sparsity [Raj et al., 2010]. Oth-

erwise, sparsity is enforced [Gemmeke and Virtanen, 2010, Gemmeke et al., 2011].

In [Lee and Seung, 2000], two measures are used for the reconstruction error d(y, ŷ),
namely Euclidean distance and divergence. In most speech-related work [Gemmeke

and Virtanen, 2010, Raj et al., 2010, Gemmeke et al., 2011], Kullback-Leibler (KL)

divergence is used to measure the reconstruction error.

d(y, ŷ) =
E

∑
e=1

ye log

(

ye

ŷe

)

− ye + ŷe, (5.35)

where E is the vector dimension.

To solve Eq-5.34, the entries of the vector w are initialized to unity. Then Eq-5.34

can be minimized by iteratively applying the multiplicative update rule [Gemmeke et al.,

2011]

w← w.∗ (A(y./(Aw)))./(A1+λ ) (5.36)

with .∗ and ./ denoting element-wise multiplication and division, respectively. 1 is a

vector with all elements set to 1.
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After getting w, the clean speech feature can be reconstructed by simply combining

all the speech exemplars with nonzero weights [Schmidt and Olsson, 2007]. Good

recognition performance has been observed particularly at very low SNR (below 0 dB).

Better results are reported by using the following filtering [Raj et al., 2010, Gemmeke

et al., 2011, Gemmeke and Van hamme, 2012] as

x̂ = y.∗Axwx./(Axwx +Anwn), (5.37)

where Ax and wx denote the exemplars and activation vector for clean speech, respec-

tively, and An and wn denote the exemplars and activation vector for noise, respectively.

This procedure can be viewed as filtering the noisy speech spectrum with a time-varying

filter defined by Axwx./(Axwx +Anwn), similar to Wiener filtering in Eq-4.28. This

is referred as feature enhancement (FE) in [Gemmeke et al., 2011, Gemmeke and

Van hamme, 2012].

Instead of cleaning the noisy speech magnitude spectrum, a sparse classification

(SC) method is proposed in [Gemmeke and Virtanen, 2010] to directly use the activation

weights to estimate the state or word likelihood. Since each frame of each speech

exemplar in the speech dictionary has state or word labels obtained from the alignment

with conventional HMMs, the weights of the exemplars in the sparse representation

wx can be used to calculate the state or word likelihood. Then, these activation-based

likelihoods are used in a Viterbi search to obtain the state sequence with the maximum

likelihood criterion.

Although the root methodology of FE and SC are the same, i.e., NMF source

separation, it is shown in [Weninger et al., 2012, Gemmeke and Van hamme, 2012] that

they are complementary. If combined together, more gain can be achieved. There are

also variations of standard NMF source separation. For example, a sliding time window

approach [Gemmeke et al., 2009] that allows the exemplars to span multiple frames

is used for decoding utterances of arbitrary length. Convolutive extension of NMF is

proposed to handle potential dependencies across successive input columns [Smaragdis,

2007, Weninger et al., 2012]. Prior knowledge of the co-occurrence statistics of the basis

functions for each source can also be employed to improve the performance of NMF

[Wilson et al., 2008]. In [Grais and Erdogan, 2013], by minimizing cross-coherence

between the dictionaries of all sources in the mixed signal, the bases set of one source

dictionary can be prevented from representing the other source signals. This clearly gives

better separation results than the traditional NMF. Superior digit recognition accuracy

has been reported in [Gemmeke and Van hamme, 2012] with the exemplar-based method

by increasing the number of update iterations and exemplars, designing artificial noise

dictionary, doing noise sniffing, and combining SC with FE.
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Although the objective of NMF is to accurately recover clean features from noisy

features, most NMF approaches have not directly optimized this objective. This problem

is addressed in [Weninger et al., 2014d], where discriminative training of the NMF bases

are performed so that given the weight coefficients obtained on a noisy feature, the

desired clean feature is optimally recovered. This is done by minimizing the distance

between the recovered and reference clean feature. However, this objective becomes

a bi-level optimization problem because the recovered clean feature also depends on

the bases. Therefore, this involves very complicated iterative inference. In [Hershey

et al., 2014] a concept of deep unfolding is proposed to address this issue by unfolding

the inference iterations as layers in a DNN. Rather than optimizing the original model,

the method unties the model parameters across layers to create a more powerful DNN.

Then this DNN can be optimized with the back-propagation algorithm. This deep

unfolding method gives superior performance to discriminative NMF than the solution

in [Weninger et al., 2014d].

There are still plenty of challenges. e.g., how to deal with convolutive channel

distortions [Gemmeke et al., 2013], how to most effectively deal with noise types in

testing that have not been previously seen in the development of the noise dictionary

[Gemmeke and Van hamme, 2012], and how to generalize to LVCSR tasks although

there are recent improvements on Aurora 4 tasks [Geiger et al., 2014a]. Finally, although

it is challenging to a noise-robust front-end to improve over the performance of a DNN

back-end fed with raw features, it is reported in [Geiger et al., 2014a] that NMF en-

hancement improves the recognition accuracy substantially when the training data is

clean, and it still brings improvement even with multi-condition training data.

5.2.3 Variable-Parameter Modeling

We have seen two broad classes of variables that affect the observation of speech signals:

discrete (e.g. speaker and speaker classes, types of noises) and continuous (e.g. SNR,

speaking rate, distance to the microphone). The variability of speech signals as a

function of continuous variables can be explicitly modeled in the acoustic models. The

concept of variable-parameter modeling is that speech model parameters in a specific

test environment can be obtained as a function of environment variables. There are three

advantages with this modeling techniques.

• When the test environment is unseen during training, the model parameters can

still be extrapolated very well with the learned function. Therefore, this method

generalizes very well to unseen test environments.
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• With the introduction of a continuous parameterization of the model, any data

sample contributes to the training of all the model parameters of the variable-

parameter model. This improves training data effectiveness compared to multi-

condition training where there is no design to leverage data across conditions.

• Another advantage is that the model is sharper than the model trained with standard

multi-style training because it can fit the underlying individual test environments

better by adjusting its parameters according to the test environment variable. This

concept is first proposed to dynamically adjust GMM parameters [Cui and Gong,

2003, 2006, 2007], and then extended to DNN modeling [Zhao et al., 2014a,b].

Variable-Parameter Modeling for GMM

As shown in Cui and Gong [2007], the mean and variance of the Gaussian distribution

of the observed speech acoustic feature are functions of SNR. Pooling such distributions

together and training SNR-independent models, as multi-style training does, inevitably

yields relatively flat distributions. Apparently, the standard GMM-HMM which em-

ploys a constant set of model parameters to describe the acoustics under all different

environments is imperfect and inadequate to deal with the phenomena.

To improve the modeling accuracy and performance, it is better to make the parame-

ters of the acoustic model change according to the environment. This is the motivation

of variable-parameter HMM (VPHMM) [Cui and Gong, 2003, 2006, 2007] which

models the speech Gaussian mean and variance parameters as a set of polynomial

functions of an environment variable u. A popular environment variable is SNR [Cui

and Gong, 2003, 2006, 2007]. Hence, the Gaussian component m is now modeled as

N (y;µ(m,u),Σ(m,u)). µ(m,u) and Σ(m,u) are polynomial functions of environment

variable u. For example, µ(m,u) can be denoted by

µ(m,u) =
J

∑
j=0

c j(m)u j, (5.38)

where c j(m) is a vector with the same dimension as the input feature vectors. The choice

of polynomial function is based on its good approximation to continuous functions,

its simple derivation operations, and the fact that the change of means and variances

in terms of the environment is smooth and can be modeled by low order polynomials.

Note that strictly speaking, variable parameter modeling using Eq-5.38 should be called

variable-parameter Gaussian mixture model instead of VPHMM because only Gaussian

parameters are modeled with polynomial functions, although transition probabilities can

also be modeled using variable parameter techniques (e.g. speaking rate changes). Here
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we still use the term VPHMM to follow the literature in which it was proposed [Cui and

Gong, 2003, 2006, 2007].

Other functions can also be used for a VPHMM. For example, in [Yu et al., 2009b],

piecewise spline interpolation is used to represent the dependency of the HMM param-

eters on the environment parameters. To reduce the total number of parameters for

a VPHMM, parameter clustering can be employed [Yu et al., 2008c]. The VPHMM

parameters can be trained either with the MLE criterion [Cui and Gong, 2007] or a

discriminative criterion [Yu et al., 2008b]. In addition to Gaussian mean and variance

parameters, other model parameters can also be modeled. In [Cheng et al., 2011, Li et al.,

2013b], a more generalized form of VPHMM is investigated by modeling tied linear

transforms as a function of environment variables. In addition to using the standard

MFCC as the input feature for a GMM, [Xie et al., 2014] shows the effectiveness of

using bottle-neck features generated from a DNN as the features of a VPHMM.

During testing, the actual set of speech model parameters can be calculated by

evaluating the parametric function with the estimated environment variable. Even if

the estimated environment is not seen during training, the curve fitting optimization

naturally uses the information on articulation/context from neighboring environments.

Therefore, VPHMM can work well in unseen environment instances modeled by the

environment variable.

Variable-Component DNN

Usually multi-style data is used to train a DNN [Seltzer et al., 2013a] and good accuracies

can be obtained. However, as shown in Section 3.4, speech samples from different

environments cannot be well aligned even with the DNN’s high-level feature extraction.

Therefore, if a single DNN is used to model the multi-style speech data, it is possible

to end up with “flat” distributions. So for the test speech produced in a particular

environment, such a "flat" model would not be the optimal matched model. Actually,

a flat model does not represent any of the training environments. It is also difficult to

collect training data to cover all possible types of environments, so the performance

on unseen noisy environments remains unpredictable. Therefore, it is desirable that

DNN components can be modeled as a function of a continuous environment-dependent

variable. At the recognition time, a set of DNN components specific to the given value

of the environment variable is instantiated and used for recognition. Even if the test

environment is not seen in the training, the estimated DNN components can still work

well because the change of DNN components in terms of the environment variable can

be predicted. Variable-component DNN (VCDNN) [Zhao et al., 2014a,b] is proposed

for this purpose.
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In the VCDNN method, any component in the DNN can be modeled as a set of

polynomial functions of an environment variable. To that end, four types of variation

can be defined for VCDNN: variable-parameter DNN (VPDNN) in which the weight

matrix and bias are variable dependent, variable-output DNN (VODNN) in which the

output of each hidden layer is variable dependent, variable-activation DNN (VADNN) in

which the activation function is variable dependent, and variable-input DNN (VIDNN)

in which the input feature is variable dependent.

Figure 5.4 shows the flow chart of one layer of a VPDNN , in which the weight

matrix A and bias b of layer l is modeled as a function of the environment variable u:

Al =
J

∑
j=0

Hl
ju

j 0< l ≤ L (5.39)

bl =
J

∑
j=0

pl
ju

j 0< l ≤ L (5.40)

J is the polynomial function order. Hl
j is a matrix with the same dimensions as Al and

pl
j is a vector with the same dimension as bl .

Then the relation between the input vl and the output vl+1 of the l-th layer at a

VPDNN is

vl+1 = σ(zl), (5.41)

where

zl = Alvl +bl (5.42)

and σ(·) is the sigmoid function.

Combining Eq-5.39 and 5.40 with the error back propagation algorithm introduced

in Section 2.4, the update formulas for Hl
j and pl

j can be obtained as:

Ĥl
j = Hl

j +αvl(el)T u j (5.43)

p̂l
j = pl

j +αelu j (5.44)

where vl is the input to the l-th layer, α is the learning rate, and el is the error signal at

the l-th layer, defined in Eq-2.38.

In the recognition stage, the weight matrix A and bias b of each layer are instantiated

according to Eq-5.39 and 5.40 with the estimated environment variable of the test data.

Then the senone posterior can be calculated in the same way as in the standard DNN.
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Figure 5.4: Variable-parameter DNN

Comparing Eq-5.39 and Eq-5.40 in VPDNN with Eq-5.31 and Eq-5.32 in linear

DNN model combination, we can see that they are very similar – both methods linearly

combine a set of basis matrix and bias at test time. However, they also have several

different aspects as shown in Table 5.1. Similar comparison can also be applied to

VPHMM and linear GMM model combination.

Table 5.1: Difference between VPDNN and linear DNN model combination

VPDNN linear DNN model combination

DNN weight matrix

and bias of test utter-

ances

a learned polynomial function of

environment variables

linear combination of a set of

weight matrix and bias trained

from different environments

combination coeffi-

cients

directly calculated with environ-

ment variables

online estimated

environment variables can be continuous such as SNR discrete, each associated with a

weight matrix and bias

In a VODNN , it is assumed the output of each hidden layer could be described by a

polynomial function of the environment variable u:

vl+1 =
J

∑
j=0

σ(zl
j)u

j 0< l < L (5.45)
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where

zl
j = (Hl

j)
T vl +pl

j (5.46)

The framework of one layer in a VODNN is shown in Figure 5.5. Similarly, the

updating formulas can be obtained by combining Eq-5.45 and Eq-5.46 with the error

back propagation algorithm:

Ĥl
j = Hl

j +αvl(el
j)

T u j (5.47)

p̂l
j = pl

j +αel
ju

j (5.48)

The difference between the update formulas of VPDNN and VODNN parameters is that

the order-independent error signal el is used in Eq-5.43 and 5.44 while the error signal

el
j used in Eq-5.47 and 5.48 depends on the polynomial order j as

el
i( j) =

[

J

∑
n=0

Nl+1

∑
k=1

hl+1
ik(n)e

l+1
k(n)

]

σ ′(zl
i j) (5.49)

where el
i( j) is the i-th element of the error signal vector el

j at the l-th layer, zl
i j is the i-th

element of zl
j, and hl+1

ik(n)
is the element of matrix Hl+1

n in the i-th row and k-th column at

the layer l +1. σ ′(·) is the derivative of the sigmoid function.

In a VADNN , the activation function of hidden layers has environment-variable-

dependent parameters as

vl+1 = σ
(

al.∗ zl +ml
)

(5.50)

where zl is defined in Eq-5.42 and .∗ means the element-wise product. al and ml are

defined as the polynomial functions of the environment variable u

al =
J

∑
j=0

hl
ju

j 0< l < L (5.51)

ml =
J

∑
j=0

pl
ju

j 0< l < L (5.52)

Figure 5.6 shows one layer of a VADNN. The additional variable-dependent parame-

ters hl
j and pl

j in a VADNN for each hidden layer are vectors with dimension Nl , which
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Figure 5.5: Variable-output DNN

is the number of nodes of the l-th layer. Hence its number of parameters is much smaller

than that in a VPDNN or a VODNN. In the training of a VADNN, hl
j and pl

j as well

as the DNN parameters Al and bl need to be updated with the error back propagation

algorithm as

Âl = Al +αvl(el.∗al)T (5.53)

b̂l = bl +α(el.∗al) (5.54)

ĥl
j = hl

j +α(el.∗ zl)u j (5.55)

p̂l
j = pl

j +αelu j (5.56)

Finally, the simplest DNN structure to use environment variables is VIDNN , which

concatenates environment variables with the original input feature. Even with the first-

order polynomial, a VPDNN or a VODNN doubles the number of parameters from the

standard DNN. If a large amount of training data is available, these two models may

give better accuracy. In contrast, a VADNN or a VIDNN only increases negligibly the

number of parameters, but still achieves satisfactory robustness.

The advantage of VCDNNs is shown in [Zhao et al., 2014a] where VCDNNs

achieved better relative WER reduction from the standard DNN under unseen SNR

conditions than under the seen SNR conditions. This indicates that a standard DNN has

a strong power to model the various environments it has observed, but for the unseen

environments, there is more room for improvement from the standard DNN. With the
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Figure 5.6: Variable-activation DNN

polynomial function, VCDNNs can very well predict the DNN components used for

unseen condition by extrapolation. Therefore, VCDNNs can generalize very well to

unseen environments.

5.3 Summary

Method Proposed

around

Characteristics

empirical cepstral compensa-

tion [Acero and Stern, 1990,

Acero, 1993, Liu et al., 1994,

Stern et al., 1996, Droppo

et al., 2001a]

1990 calculates all kinds of factor-dependent (including

SNR, VQ cluster, phoneme identity, etc.) bias us-

ing stereo training data, and remove that bias during

testing

online GMM model combi-

nation [Kuhn et al., 2000,

Gales, 2000b]

2000 online combines a set of environment-specific GMM

models, representative methods are eigenvoice and

cluster adaptive training

stereo piecewise linear com-

pensation for environment

(SPLICE) [Deng et al.,

2000a]

2000 the additive correction vector is piecewise linear be-

tween the noisy speech observation and the clean

speech of the stereo training data

variable-parameter HMM

(VPHMM) [Cui and Gong,

2003]

2003 models the Gaussian mean and variance parameters

as a set of polynomial functions of the environment

variable
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ensemble speaker and speak-

ing environment modeling

(ESSEM) [Tsao and Lee,

2007, Tsao et al., 2009]

2007 To remove unrelated models into construction, an

online cluster selection is first used to locate the most

relevant cluster and then only the super-vectors in this

selected cluster contribute to the model combination

exemplar-based reconstruc-

tion with non-negative

matrix factorization (NMF)

[Gemmeke and Virtanen,

2010, Raj et al., 2010]

2010 NMF is used to reconstruct speech with only clean

speech exemplars extracted from the training dictio-

nary

Lasso model combination

[Xiao et al., 2012b]

2012 imposes an L1 regularization term in the weight es-

timation problem of online model combination to

shrink some weights to exactly zero

discriminative NMF

[Weninger et al., 2014d]

2014 discriminative training of the NMF bases is performed

so that the desired clean feature is optimally recov-

ered given the weight coefficients obtained on a noisy

feature

Table 5.2: Compensation with prior knowledge methods originally proposed for GMMs

in Chapter 5, arranged chronologically

Method Proposed

around

Characteristics

RNN for noise removal

[Maas et al., 2012b, Wöllmer

et al., 2013b, Weninger et al.,

2014a,c]

2012 Uses a RNN which better models temporal sequence

to learn the mapping from noisy feature to clean fea-

ture, and it is extended with advanced structure such

as LSTM and BLSTM

DNN for noise removal

[Lu et al., 2013c, Feng

et al., 2014b, Du et al.,

2014a, Narayanan and Wang,

2014a]

2013 Use a DNN to learn the mapping from noisy feature

to clean feature

online DNN model combi-

nation [Wu and Gales, 2015,

Tan et al., 2015]

2015 online combines a set of environment-specific DNN

models

variable-component DNN

[Zhao et al., 2014a,b]

2014 any component in the DNN can be modeled as a set

of polynomial functions of an environment variable

so that better modeling of test environments can be

achieved.

deep unfolding [Hershey

et al., 2014]

2014 solves the complicated bi-level optimization problem

in discriminative NMF by unfolding the inference

iterations as layers in a DNN
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Table 5.3: Compensation with prior knowledge methods originally proposed for DNNs

in Chapter 5, arranged chronologically

To provide a better view of the development trend of robustness methods from the GMM

era to the DNN era, we summarize the representative methods described in this chapter

for robust ASR exploiting prior knowledge originally proposed for GMM and DNN in

Table 5.2 and Table 5.3, respectively, in a chronological order. Further comments and

summary of these methods, as well as additional relevant work that we did not describe

in detail in this chapter, are made below:

• If stereo data is available, a mapping from noisy feature to clean feature can be

learned. Empirical cepstral compensation is widely used to address all kinds of

factors (SNR, VQ cluster, phoneme identity, etc.) with a bias, and it is improved

by SPLICE which uses piecewise linear compensation. With the layer-by-layer

nonlinear modeling power of a DNN, a much better learning of the noisy-to-clean

feature mapping can be obtained. This is further improved by the introducing the

recurrent structure and (B)LSTM units which better model the temporal sequence

of speech signals.

• Online model combination is one way to fast adapt acoustic models to environ-

ments with limited adaptation data because only combination coefficients need to

be computed online. For GMM models, eigenvoice and cluster adaptive training

are representative methods. The combination coefficients can be made sparse with

either clustering or L1 regularization. Similar idea can be easily extended to DNN

by online combining weight matrices.

• VPHMM is another way to online constructing an adapted GMM model with a set

of polynomial functions of the environment variable. It is extended to VCDNN

in which any component in the DNN (parameter in VPDNN, output in VODNN,

activation in VADNN, and input in VIDNN, respectively) can be modeled as a

set of polynomial functions of an environment variable. With the polynomial

functions, the model can be instantiated even in the unseen case by extrapolation,

thus enjoying good generalization property.

• NMF is used to reconstruct the clean speech spectrum from the noisy speech

spectrum using pre-constructed clean speech and noise exemplars. While no

stereo data is required, examples of the corrupting noise are nevertheless required

to form the noise dictionary. There are plenty of extensions of NMF, including

discriminative NMF in which discriminative training of the NMF bases is per-
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formed so that the desired clean feature is optimally recovered given the weight

coefficients obtained on a noisy feature.

• Last, deep unfolding was proposed to solve the complicated bi-level optimization

problem in discriminative NMF. It builds a bridge between DNN modeling and

model-based approaches. As will be described in detail in Chapter 6, model-based

approaches are very powerful because of the use of explicit distortion models

between the clean and distorted speech. However, the inference is sometimes

very complicated and may rely on the underlying Gaussian model assumption.

On the other hand, it is straightforward to optimize parameters in DNN modeling

with the back propagation algorithm. A well-known disadvantage of the DNN

is that it is closer to mechanisms than problem-level formulation, and is usually

considered as a “black-box”. Deep unfolding may be a potential framework that

allows model-based approaches to guide the exploration of the space of DNNs,

which is important but missing in current literature.
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