
Attacks on Search-RLWE

Hao Chen1, Kristin Lauter2, and Katherine E. Stange3

1 University of Washington, Seattle, USA
chenh123uw.edu

2 Microsoft Research, Redmond, USA
klauter@microsoft.com

3 University of Colorado, Boulder, USA
kstange@math.colorado.edu

Abstract. We describe a new attack on the Search Ring Learning-With-Errors (RLWE) problem based
on the chi-square statistical test, and give examples of RLWE instances in Galois number fields which
are vulnerable to our attack. We prove a search-to-decision reduction for Galois fields which applies for
any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks.
The time complexity of our attack is O(q2f ), where f is the residue degree of q in K.

We also show an attack on the RLWE problem in general cyclotomic rings (non 2-power cyclotomic
rings) which works when the modulus is a ramified prime. We demonstrate the attacks in practice by
finding many vulnerable instances and successfully attacking them. We include the code for all attacks.

1 Introduction

The Ring Learning-with-Errors (RLWE) problem, proposed in [13], is a variant of the traditional Learning-
with-Errors (LWE) problem, and is an active research area in lattice based cryptography. It has drawn
increased attention due to the important application to constructing homomorphic encryption schemes
([3,2,4,8,16,12,1]).

Central to an RLWE problem instance is a choice of a number field K and a prime q called the modulus.
The authors of [13] considered the case where K is some cyclotomic field, and proved a reduction from certain
hard lattice problems to the dual variant of RLWE. The hardness for the non-dual variant was proved in [5].
Also in [13], a search-to-decision reduction was proved for RLWE problems for cyclotomic fields and modulus
q which splits completely. This reduction was then generalized to general Galois number fields where q splits
in [6]. As an auxiliary result in this paper, we generalize this search-to-decision reduction to the case of
arbitrary degree primes q.

The authors of [7] proposed an attack on the decision RLWE problem. The attack makes use of ring
homomorphisms π : R → Fq, and works when the image of the RLWE error distribution under the map
π only takes values in a small subset of Fq with overwhelming probability. The authors of [7] then gave
an infinite family of examples vulnerable to the attack. Unfortunately, the vulnerable number fields in [7]
are not Galois. Hence, the search-to-decision reduction theorem does not apply, and the attack can not be
directly used to solve the search variant of RLWE for those instances.

In our paper, we generalize the attack of [7] to Galois number fields and moduli of higher degree. As a
result, we have an attack on the Search-RLWE problem and an implementation of the attack on concrete
RLWE instances, including the search-to-decision reduction. Our attack is new in two major ways: first,
the attack considers ring homomorphisms from R → Fqf , for f > 1, instead of just homomorphisms from
R → Fq; second, the error distribution is distinguished from random (i.e. from the uniform distribution)
using the statistical chi-squared test, instead of relying on the values of the error polynomial to be small
or in a small subset. The attack aims at an intermediate problem used in the search-to-decision proof of
[13], which is to recover the secret modulo a prime ideal (denoted SRLWE(R, q); see Definition 8). The time
complexity of our attack is O(q2f ), where f is the residue degree of q in K.

Importantly, we also show an attack on non-2-power cyclotomic rings, which succeeds with high prob-
ability and with surprising efficiency when the modulus is a ramified prime. For example, we show that in
dimension n = 808, we can attack an RLWE instance in the the cyclotomic ring Q(ζ809) effectively in 35
seconds, where the modulus is 809. This opens up the question of whether general cyclotomic fields are safe



for cryptography, depending on whether modulus switching can be used to transfer this attack from the
ramified modulus to other larger moduli which are used in practice.

An important difference between this paper and the attacks of [7] is that here we work directly with the
RLWE error distribution, and we do not need to work with a polynomial basis for the ring in order for the
attack to work. Thus we also eliminate the need for the assumption that the ring is monogenic, which is
helpful in finding Galois fields which are vulnerable. The attacks of [7] succeed for rings R such that the
defining polynomial has special roots modulo q, and we do not need such a restrictive condition on the
number field and modulus in order for our new attacks to succeed. We give heuristic arguments about what
properties are sufficient for a ring to be vulnerable to our new attacks.

Auxiliary results we present include several stand-alone items of possibly independent interest: We prove
a search-to-decision reduction for Galois fields which applies for any unramified modulus q, regardless of the
residue degree of q. We consider some heuristic arguments as to whether modulus switching techniques are
likely to be successfully combined with our attacks. Also, we analyze the vulnerability of cyclotomic fields
to our attack, and show that they are in general safe, except for the case when the modulus p is ramified in
the cyclotomic field.

1.1 Organization

In Section 2, we recall definitions related to the RLWE problems. In Section 3, we prove a search-to-decision
reduction for Galois extensions K and unramified moduli. In Section 4, we introduce an attack on RLWE
problems based on the chi-square statistical test, which directly generalizes the attack in [7]. In Section 5, we
give examples of subfields of cyclotomic fields vulnerable to our new attack, where the modulus q has residue
degree two. In Section 6, we show that our attack works on prime cyclotomic fields when the modulus is
the unique ramified prime. In Section 7, we consider the possibility of modulus switching. Finally, in Section
8, we use Fourier analysis to give a heuristic argument, which we then combine with numerical evidence to
support the view that cyclotomic extensions with unramified moduli of small residue degree are invulnerable
to our attack.

All computations in this paper were performed in Sage [17]. All the relevant code is available and can be
found at https://github.com/haochenuw/GaloisRLWE.

2 Background

Let K be a number field of degree n with ring of integers R and let σ1, · · · , σn be the embeddings of K into
C, the field of complex numbers. The canonical embedding of K is

ι : K → Cn

x 7→ (σ1(x), · · · , σn(x)).

To work with real vector spaces, we define the adjusted embedding of K as follows. Let r1, r2 denote the
number of real embeddings and conjugate pairs of complex embeddings of K. Without loss of generality,
assume σ1, · · · , σr1 are the real embeddings and σr1+r2+j = σr1+j for 1 ≤ j ≤ r2. We define

ι̃ : K → Rn

x 7→ (σ1(x), · · · , σr1(x),Re(σr1+1)(x), Im(σr1+1)(x), · · · ,Re(σr1+r2)(x), Im(σr1+r2)(x)).

Then ΛR = ι̃(R) is a lattice in Rn, and we call it the embedded lattice of R.
Let w = (w1, · · · , wn) be an integral basis for R.

Definition 1. The canonical (resp. adjusted) embedding matrix of w, denoted by Aw (resp. Ãw), is the
n-by-n matrix whose i-th column is ι(wi) (resp. ι̃(wi)).

The two embedding matrices are related in a simple way: let T denote the unitary matrix

T =

[
Ir1 0
0 Tr2

]
, where Ts =

1√
2

[
Ir2 Ir2
−iIr2 iIr2

]
,

https://github.com/haochenuw/GaloisRLWE


Then we have
Ãw = TAw,

and the lattice ΛR has a basis consisting of columns of Ãw.
For σ > 0, define the Gaussian function ρσ : Rn → [0, 1] as ρσ(x) = e−||x||

2/2σ2

(our σ is equal to r/
√

2π
for the parameter r in [13]).

Definition 2. For a lattice Λ ⊂ Rn and σ > 0, the discrete Gaussian distribution on Λ with parameter σ
is:

DΛ,σ(x) =
ρσ(x)∑
y∈Λ ρσ(y)

, ∀x ∈ Λ.

Equivalently, the probability of sampling any lattice point x is proportional to ρσ(x).

2.1 Ring LWE Problems for General Number Fields

We follow [7] in setting up the Ring LWE problem for general number fields. In particular, we do not consider
the dual of the ring of integers.

Definition 3. An RLWE instance is a tuple R = (K, q, σ, s), where K is a number field with ring of integers
R, q is a prime, σ > 0, and s ∈ R/qR is the secret.

Definition 4. Let R = (K, q, σ, s) be an RLWE instance and let R be the ring of integers of K. The error
distribution of R, denote by DR, is the discrete Gaussian distribution

DR = DΛR,σ.

As pointed out in [7], when analyzing the error distribution, one needs to take into account the sparsity
of the lattice ΛR, which is measured by its covolume VR. In light of this, we define a relative version of the
standard deviation parameter:

σ0 =
σ

V
1
n

R

.

The notation x← D indicates that variable x is distributed according to distribution D.

Definition 5 (RLWE distribution). Let R = (K, q, σ, s) be an RLWE instance with error distribution
DR. We let Rq denote R/qR, then a sample from the RLWE distribution of R is a tuple

(a, b = as+ e (mod qR)) ∈ Rq ×Rq,

where the first coordinate a is chosen uniformly at random in Rq, and e← DR.

We use the shorthand notation (a, b)← R to represent that (a, b) is sampled from the RLWE distribution
of R.

The RLWE problem has two major variants: search and decision.

Definition 6 (Search RLWE). Let R be an RLWE instance. The Search Ring-LWE problem, denoted by
SRLWE(R), is to discover s given access to arbitrarily many independent samples (a, b)← R.

Definition 7 (Decision RLWE). Let R be an RLWE instance. The Decision Ring-LWE problem, denoted
by DRLWE(R), is to distinguish between the same number of independent samples in two distributions
on Rq × Rq. The first is the RLWE distribution of R, and the second consists of uniformly random and
independent samples from Rq ×Rq.

2.2 Sampling Methods

In practice, there are different ways to approximately sample from the RLWE error distribution DR, and
we will consider three sampling methods in our paper. While searching for weak Galois RLWE instances
as well as attacking ramified primes, we use the sampling algorithm in [9]; when analyzing the security of
cyclotomics, we use the PLWE distribution Pm,τ and another distribution P ′m,k to assist the analysis. The
efficient sampling algorithm in [14] for cyclotomic fields is related to the dual version of RLWE, so we will
not use it in our paper.



3 Search-to-Decision Reduction

In [6], the search-to-decision reduction of [13] is extended to Ring-LWE for Galois number fields, where q is
an unramified prime of degree one. The approach is via an intermediate problem, denoted qi-LWE in [13]. In
this section, we extend this result to primes q of arbitrary residue degree. Our intermediate problem, which
we denote by SRLWE(R, q), is the same as qi-LWE, and it amounts to find the secret modulo the prime q.
The Galois group allows us to bootstrap this piece of information to discover the full secret.

The attack in Section 4 targets SRLWE(R, q) and hence, by the results of this section, will solve Search
Ring-LWE. In Section 5, we demonstrate the attack on Search Ring-LWE in practice.

Definition 8. Let R = (K, q, σ, s) be an RLWE instance and let q be a prime of K lying above q. The
problem SRLWE(R, q) is to determine s (mod q), given access to arbitrarily many independent samples
(a, b)← R.

We recall some facts from algebraic number theory in the following lemma.

Lemma 9. Let K/Q be a finite Galois extension with ring of integers R, and let q be a prime unramified in
K. Then there exists a unique divisor g of n and a set of g distinct prime ideals q1, · · · , qg of R such that:

1. qR =
∏g
i=1 qi,

2. the quotient R/qi is a finite field of cardinality qf for each i, where f = n
g ,

3. there is a canonical isomorphism of rings

Rq ∼= R/q1 × · · · ×R/qg, (1)

4. the Galois group acts transitively on the ideals q1, . . . , qg and this action descends to an action on Rq
which permutes the corresponding factors in (1) in the same way.

The number f in the above lemma is called the residue degree of q in K. Note that the prime q splits
completely in K if and only if its residue degree is one.

Theorem 10. Let R = (K, q, σ, s) be an RLWE instance with K/Q Galois of degree n and q unramified in
K with residue degree f. Let A be an oracle which solves SRLWE(R, q) using a list of m samples modulo q.
Let S be a set of m RLWE samples in Rq ×Rq. Then the problem SRLWE(R) can be solved using S by n/f
calls to the oracle A , 2mn/f reductions Rq → R/q, and 2mn/f evaluations of a Galois automorphism on
Rq.

Proof. The Galois group G = Gal(K/Q) acts on the set {q1, · · · , qg} transitively. Hence for each i, there
exists σi ∈ Gal(K/Q), such that σi(q) = qi, Then we call the oracle A on the input (σ−1i (S) (mod q), q).
The algorithm will output σ−1i (s) (mod q), from which we can recover s (mod qi) using σi. We do this for
all 1 ≤ i ≤ g and use (1) of Lemma 9 to recover s. ut

In particular, if the number of samples m is polynomial in n and the time taken to evaluate Galois
automorphisms on a single sample is also polynomial in n, then Theorem 10 gives a polynomial time reduction
from SRLWE(R) to SRLWE(R, q).

Remark 11. For a proper runtime analysis of the reduction, one must examine the implementation, in par-
ticular with regards to Galois automorphisms. The runtime for evaluating an automorphism depends rather
strongly on the instance and on the way ring elements are represented. For example, for subfields of cyclotomic
fields represented with respect to normal integral bases, the Galois automorphisms are simply permutations
of the coordinates, so the time needed to apply these automorphisms is trivial.

The search-to-decision reduction will follow from the lemma below.

Lemma 12. There is a probabilistic polynomial time reduction from SRLWE(R, q) to DRLWE(R).

Proof. This is a rephrasing of [13, Lemma 5.9 and Lemma 5.12]. ut

Corollary 13. Suppose R is an RLWE instance where K is Galois and q is an unramified prime in K.
Then there is a probabilistic polynomial-time reduction from SRLWE(R) to DRLWE(R).



4 The Chi-square Attack

In this section, we extend the f(1) ≡ 0 (mod q) attack of [6] and the root-of-small-order attack of [7]. These
attacks can be viewed as examples of a more general attack principle, as follows. Suppose one has a ring
homomorphism

φ : Rq → F

where F is a finite field, and where two properties hold:

1. F is small enough that its elements can be examined exhaustively; and
2. the error distribution on Rq, transported by φ to F , is detectably non-uniform.

Then the attack on DRLWE on Rq is as follows:

1. Transport the samples (a, b) in Rq ×Rq to F × F via φ.
2. Loop through possible guesses for the image of the secret, φ(s), in F .
3. For each guess g, compute the distribution of φ(b) − φ(a)g on the available samples (this is φ(e) if the

guess is correct).
4. If the samples are RLWE samples with secret s and g = φ(s), then this distribution will follow the error

distribution, which will look non-uniform.
5. If all such distributions look uniform, then the samples were uniform, not RLWE, samples.

The fact that φ is a ring homomorphism is essential in guaranteeing that for the correct guess, the
distribution in question is the image of the error distribution. The only ring homomorphisms from Rq to a
finite field are given by reduction modulo a prime ideal q lying above q in R.

4.1 Chi-square Test for Uniform Distribution

We briefly review the properties and usage of the chi-square test for uniform distributions over a finite set
S. We partition S into r subsets S =

⊔r
j=1 Sj , called bins. Suppose there are M samples y1, . . . , yM ∈ S.

For each 1 ≤ j ≤ r, we compute the expected number of samples in the j-th subset: cj :=
|Sj |M
|S| . Then we

compute the actual number of samples in Sj , i.e., tj := |{1 ≤ i ≤ r : yi ∈ Sj}|. Finally, the χ2 value is
computed as

χ2(S, y) =

r∑
j=1

(tj − cj)2

cj
.

Suppose the samples are drawn from the uniform distribution on S. Then the χ2 value follows the chi-square
distribution with (r − 1) degrees of freedom, which we denote by χ2

r−1. Let Fr−1(x) denote its cumulative
distribution function. For the chi-square test, we choose a confidence level parameter α ∈ (0, 1) and compute
δ = F−1r−1(α). Then we reject the hypothesis that the samples are drawn from the uniform distribution if
χ2(S, y) > δ.

If P,Q are two probability distributions on the set S, then their statistical distance is defined as

d(P,Q) =
1

2

∑
t∈S
|P (t)−Q(t)|.

For convenience, we also define the l2 distance between P and Q as d2(P,Q) = (
∑
t∈S |P (t)−Q(t)|2)

1
2 . We

have the inequality d(P,Q) ≤
√
|S|
2 d2(P,Q).

4.2 The Chi-square Attack on SRLWE(R, q)

Let R be an RLWE instance with error distribution DR and q be a prime ideal above q. The basic idea of
our attack relies on the assumption that the distribution DR (mod q) is distinguishable from the uniform
distribution on the finite field F = R/q. More precisely, the attack loops through all qf possible values s̄ = s
(mod q), and for each guess s′, it computes the values ē′ = b̄ − ās′ (mod q) for every sample (a, b) ∈ S. If



the guess is wrong, or if the samples are taken from the uniform distribution in (Rq)
2, the values ē′ would

be uniformly distributed in F and it is likely to pass the chi-square test. On the other hand, if the guess
is correct, then we expect the test on the errors ē′ to reject the null hypothesis. Let N = qf denote the
cardinality of F . We remark that one needs at least Ω(N) samples for the test to work effectively.

For the attack to be successful, we need the (N −1) tests corresponding to wrong guesses of s (mod q) to
pass, and the one test corresponding to the correct guess to be rejected. For this purpose, we need to choose
the confidence level α to be close enough to one (a reasonable choice is α = 1− 1

10N ). The detailed attack is
described in Algorithm 1. Let FN−1(x) denote the cumulative distribution function of χ2

N−1.

Algorithm 1 chi-square attack of SRLWE(R, q)

Input: R = (K, q, σ, s) – an RLWE instance; R – the ring of integers of K; q – a prime ideal in K above q; F = R/q
– the residue field of q; N – the cardinality of F ; S – a collection of M (M = Ω(N)) RLWE samples from R;
0 < α < 1 – the confidence level.

Output: a guess of the value s (mod q), or NOT-RLWE, or INSUFFICIENT-SAMPLES
δ ← F−1

N−1(α), G ← ∅.
for s in F do
E ← ∅.
for a, b in S do

ā, b̄← a (mod q), b (mod q).
ē← b̄− ās.
add ē to E .

end for
χ2(E)←

∑N
j=1

(|{c∈E:c=j}|−M/N)2

M/N
.

if χ2(E) > δ then
add s to G.

end if
end for
if G = ∅ then

return NOT-RLWE
else if G = {g} then

return g
else

return INSUFFICIENT-SAMPLES
end if

Remark 14. For simplicity of exposition, we use N bins in Algorithm 1, that is one element per bin. In some
situations, it might be advantageous to choose the bins differently.

The time complexity of the attack is O(N2) since there are N possible values for s (mod q) and the
number of samples needed is O(N). The correctness of the attack is captured in Theorem 15 below. We use
DR,q as a shorthand notation for DR (mod q). For λ ∈ R and d ∈ Z, we use Fd,λ(x) to denote the cumulative
distribution function of the noncentral chi-square distribution with degree of freedom d and parameter λ.

Theorem 15. Let R = (K, q, s, σ) be an RLWE instance. Suppose q be a prime ideal in K above q, and let
∆ denote the statistical distance between the distribution DR,q and the uniform distribution on R/q. Let M
be the number of samples used in Algorithm 1, and let λ = 4M∆2. Let 0 < α < 1 and let δ = F−1N−1(α). If p
is the probability of success of the attack in Algorithm 1, then

p ≥ αN−1(1−FN−1;λ(δ)).

Proof. It is a standard fact (see [15], for example) that the chi-square value on samples from DR,q follows
the noncentral chi-square distribution with (N − 1) degrees of freedom and parameter λ0 given by

λ0 = d2(DR,q, U(R/q))2 ·MN.



Note that we have λ0 ≥ (2d(DR,q, U(R/q))/
√
N)2MN = 4M∆2 = λ. Recall that our attack succeeds if the

“error” set E from each of the (N − 1) wrong guesses of s (mod q) passes the test, and the true reduced
errors fails the test. We assume that the results of these tests are independent of each other. Then the first
event happens with probability αN−1, whereas the second event has probability (1−FN−1;λ0

(δ)). Since this
is an increasing function in λ0, we replace λ0 by λ and the theorem follows. ut
Remark 16. One could choose the value of α in Theorem 15 to suit the specific instance. The probability
of success will change accordingly. When we expect the statistical distance ∆ to be large, it is preferable
to choose a larger α to increase the probability of success. For example, if we choose α = 1 − 1

10N , then

αN−1 ≥ e−1/10 = 0.904 · · · .
Figure 1 shows a plot of p versus ∆ for various choices of N , made according to Theorem 15, where we

fix the number of samples to be M = 5N and fix α = 1− 1
10N .

Fig. 1. Success probability versus statistical distance

5 Vulnerable Instances among Subfields of Cyclotomic Fields

We searched for instances of RLWE vulnerable to the chi-square attack. For this purpose, we restricted
attention to subfields of cyclotomic fields Q(ζm), where we assume m is odd and squarefree. The Galois group
Gal(Q(ζm)/Q) is canonically isomorphic to G = (Z/mZ)∗. For each subgroup H of G, let Km,H = Q(ζm)H

be the subfield of elements fixed by H. Then the extension Km,H/Q is Galois with degree n = ϕ(m)
|H| . Also,

the residue degree of a prime q in Km,H is equal to the order of [q] in the quotient group G/H. Moreover,
Km,H has canonical normal integral basis, whose embedding matrix is easy to compute. More precisely, let
C denote a set of coset representatives of the coset space G/H. If c is an integer coprime to m, we use [c] to
denote its coset in G/H. For each [c] ∈ C, set

w[c] =
∑
h∈H

ζhcm .

Then w := (w[c])[c]∈C is a Z-basis of R. (For a proof of this fact, see [10, Proposition 6.1]). Setting ζ =
exp(2πi/m), the canonical embedding matrix of w is

(Aw)[i],[j] =
∑
h∈H

ζhij , for [i], [j] ∈ C.



Lemma 17. Suppose R is an RLWE instance such that the underlying field K is a Galois number field and
q is unramified in K. Then the reduced error distribution DR,q (that is, DR( (mod q))) is independent of
the choice of prime ideal q above q.

Proof. From Lemma 9, we may switch from a prime q to q′ via Gal(K/Q). On the other hand, the Galois
group acts on the embedded lattice ΛR by permuting the coordinates. Hence we have a group homomorphism

φ : Gal(K/Q)→ Aut(Λ).

Since permutation matrices are orthogonal, the Galois group action on ΛR given by φ is distance-preserving.
In particular, it preserves any spherical discrete Gaussian distribution on ΛR. ut

5.1 Searching

Algorithm 1 allows us to search for vulnerable instances among fields of the form Km,H by generating actual
RLWE samples and running the attack. Success of the attack will indicate vulnerability of the instance. Note
that our field searching requires sampling efficiently from a discrete Gaussian DΛ,σ, for which we use the
efficient algorithm of [9].

In Table 1, we list some instances on which the attack has succeeded. The columns of Table 1 are as
follows. The first two columns specify m and the generators of H, where H is represented as a subgroup of
(Z/mZ)∗; the column labeled f is the residue degree of q. The last column consists of either the runtime for
an actual attack which succeeded, or an estimation of the runtime. Note that we omitted our choice of prime
ideal q, since due to Lemma 17 the choice of q is irrelevant to our attack. The parameters σ0 in Table 1
represent the boundary of the power of our attack, i.e., we tried higher σ0 and the attack failed. Note that
although σ0 is relatively small, in practice it still provides exponentially many error vectors. Intuitively, when
σ0 = 1, our σ is equal to the geometric mean of the lengths of a Gram-Schmidt basis of ΛR. In practice, the
lengths of these basis vectors do not differ by a lot, so we still expect to get at least Ω(2n) error vectors.

The rows of Table 1 with “estimated” runtime mean the following. First, we ran the chi-square test on the
correct reduced errors to obtain an estimate ∆̂ of the statistical distance ∆. We then chose α according to ∆̂
and obtained an estimation p̂ of the success probability of our attack, using the formula in Theorem 15. The
corresponding rows in the table all have p̂ > 1 − 2−10, suggesting that the attack is very likely to succeed.
Finally, we ran a few chi-square tests on samples obtained from a few randomly chosen incorrect guesses to
compute the average time t for running one chi-square test. We set the estimated runtime for the attack to
be tN .

Table 1. Attacked sub-cyclotomic RLWE instances

m generators of H n q f σ0 no. samples runtime (in hours)

2805 [1684, 1618] 40 67 2 1 22445 3.49
15015 [12286, 2003, 11936] 60 43 2 1 11094 1.05
15015 [12286, 2003, 11936] 60 617 2 1.25 8000 228.41 (estimated)
90321 [90320, 18514, 43405] 80 67 2 1 26934 4.81
255255 [97943, 162436, 253826, 248711, 44318] 90 2003 2 1.25 15000 1114.44 (estimated)
285285 [181156, 210926, 87361] 96 521 2 1.1 5000 75.41 (estimated)
1468005 [312016, 978671, 956572, 400366] 100 683 2 1.1 5000 276.01 (estimated)
1468005 [198892, 978671, 431521, 1083139] 144 139 2 1 4000 5.72

5.2 Discussion

We searched for vulnerable instances where the modulus has residue degree one or two. It turns out that
all vulnerable instances we found and listed in Table 1 have a modulus of degree two. We have a heuristic



explanation for the existence of examples of higher degree. Let K be a Galois number field and suppose q is
a prime of degree f in K. Suppose we have found a short basis w1, · · · , wn of R with respect to the adjusted
embedding. Fix a prime ideal q above q. Then the images of the basis under the reduction modulo q map
are elements of F = R/q. Now if for some index i, the element wi lies inside some proper subfield K ′ of K,
and if q has residue degree f ′ < f in K ′, then wi (mod q) will lie in a proper subfield of F . If this occurs
for a large number of the basis elements wi, then we could expect the reduced error distribution DR,q to
take values in a proper subfield of F more frequently. This would allow us to distinguish it from the uniform
distribution on F .

In practice, we found out that the above scenario is more likely to happen when the field K has a subfield
K ′ of index 2 such that q splits completely in K ′, while q has degree 2 in K. Since the ring of integers of K ′

is a subring of the ring of integers of K, one has at least n/2 vectors in ΛR with the desired property, i.e.,
their reduction modulo some prime q above q lie inside Fq instead of Fq2 .

5.3 A Detailed Example

In order to illustrate our discussion above together with the search-to-decision reduction, we present a
vulnerable Galois RLWE instance in detail, where we generated RLWE samples, performed the attack, and
used the search-to-decision reduction to recover the entire secret s.

Let m = 3003 and H be the subgroup of (Z/mZ)∗ generated by 2276, 2729 and 1123. Then K = Km,H

is a Galois number field of degree n = 30. We take the modulus to be q = 131, a prime of degree two in K,
and take σ0 = 1. We generate the secret s from the discrete Gaussian DΛR,σ. There are 15 prime ideals in K
lying above q, which we denote by q1, · · · , q15. We then generate 1000 RLWE samples and use Algorithm 1
and Theorem 10 to recover s (mod qi) for each 1 ≤ j ≤ 15. Then we use Chinese remainder theorem to
recover s. The attack succeeded in 32.8 hours. The code for this attack is in Section 9.5.

6 Attacking Prime Cyclotomic Fields when the Modulus is the Ramified
Prime

Let p be an odd prime and let K = Q(ζp) be the p-th cyclotomic field. Then K has degree (p − 1) and
discriminant pp−2. In addition, the prime p is totally ramified in K. There is a unique prime ideal p = (1−ζp)
above p, and the reduction map π : R/pR→ Fp satisfies

π(ζip) = 1, ∀i ∈ Z.

Writing an RLWE error as e =
∑
eiζ

i
m, we have e (mod p) =

∑
i ei. Since the coefficients ei tend to be small,

it may be that e (mod p) takes on small values with higher probability, making the instance vulnerable to
our chi-square attack. Table 2 contains data of some actual attacks we have done. Note that the parameters
σ0 represent the boundary of the power of our attack, i.e., we tried higher σ0 and the attack failed.

Table 2. Attacked instances of DRLWE for K = Q(ζp)

q (= p) n σ0 runtime (in seconds)

251 250 0.5 2.62
503 503 0.575 12.02
809 808 0.61 34.38

7 Can Modulus Switching be Used?

The modulus switching procedure is a technique to reduce noise in RLWE samples, and has been discussed
extensively in [2] and [11]. We recap the basic ideas of modulus switching. Let R = (K, q, σ, s) be an RLWE



instance. Choose another prime p less than q as the new modulus and consider the instance R′ = (K, p, σ′, s)
for some σ′ > σ. We can “switch modulus” if there exists a map

πq,p : Rq → Rp,

which takes RLWE samples with respect to R to RLWE samples with respect to R′. In what follows, we give
a heuristic argument that our attack will not work in combination with modulus switching under a näıve
implementation, and isolate the key characteristics a successful implementation of the attack would require.

One example of a map πq,p being used in practice is as follows. Let α = p
q and fix a small positive number

τ . For an equivalence class [a] in Rq, we sample a vector a′ from the “shifted discrete Gaussian” DΛR,τ,αa,
defined as follows. For a lattice Λ and a vector c ∈ Rn,

DΛ,τ,c(x) =
ρτ (x− c)∑
y∈Λ ρτ (y − c)

, ∀x ∈ Λ.

Finally, we set πq,p([a]) = a′ (mod pR). Note that the definition of πq,p([a]) is independent of the choice of
representative a, as follows. Suppose we choose another representative a1, then a1 = a+ λq for some λ ∈ R,
hence αa1 = αa+ λp. Finally, observe that the shifted discrete Gaussian behaves well under translating by
a lattice point, i.e., we have DΛ,τ,c+u = DΛ,τ,c + u for any u ∈ Λ.

Put loosely, the map πq,p scales a by p/q and then rounds back into the lattice. It is a natural question
then to ask whether modulus switching can be combined with our attack, to switch from a “strong” modulus
to a “weak” modulus. However, a heuristic argument shows that the naive combination of our attack with
modulus switching will not work.

Let a′′ = αa − a′. By construction, we expect a′′ to be a short vector in Rn, and the point a′ can be
viewed as a “rounding” of the point αa to the lattice ΛR.

We will make two heuristic assumptions:

1. That πq,p takes the uniform distribution on Rq to an almost uniform distribution on Rp.
2. The distribution of a′′ and (sa)′′ is independent modulo q, for s 6= ±1.

Proposition 18. Under the assumption that πq,p takes the uniform distribution on Rq to an almost uniform
distribution on Rp, the reduction of a′′ modulo p will be almost uniformly distributed in R/pR.

Proof. The reduction map R → R/p is a ring homomorphism that can be extended to a homomorphism of
additive groups φ : 1

qR→ R/p by the following chain of maps:

1

q
R

(mod p 1
qR)

−−−−−−−−−→ 1

q
R
/
p

1

q
R
×q−−→ R/pR

×[q]−1

−−−−→ R/pR.

Then the relation a′′+a′ = αa is preserved by this map. However, φ(αa) = 0 (mod p), so that φ(a′′) ≡ −φ(a′).
ut

Suppose we have a sample (a, b) ← R and the switched sample (a′, b′) = (πq,p(a), πq,p(b)). Consider the
error e′ := b′ − a′s. Suppose b = as+ e+ λq for some λ ∈ R. Then

e′ = b′ − a′s
= α(b− as)− b′′ + a′′s.

= αe+ λp− b′′ + a′′s.

and therefore, considering this as an additive relation in 1
qR and applying the map of the proof above,

e′ ≡ −b′′ + a′′s (mod p).

By the Proposition above, a′′ and b′′ are uniformly distributed modulo p. Hence, if we assume the a′′ and
b′′ are independent, then the reduced rounding errors a′′ (mod p) and b′′ (mod p) are also independent, and
the new reduced errors e′ (mod p) would follow the uniform distribution. So our chi-square attack will fail
on these modulus-switched samples, even though p might be a “weak” modulus.



Therefore, the best hope of attack is if one of our two assumptions is violated by a map πq,p. The second
is the most likely target. Note that a′′ and b′′ are the rounding errors when we try to round αa and αb to
the lattice ΛR. However, ΛR is a n-dimensional lattice, so there are Ω(2n) options of rounding a vector in
Rn to a moderately close lattice point. Even in the scenario with zero error, i.e., e = 0, an attacker will face
the task of finding a “nice” rounding algorithm, so that the roundings of the two vectors αa and αb = αas
are somehow related.

So far, we are not aware of any such algorithm, unless the secret s is trivial, e.g., s = 1, in which case αa
is almost equal to αb, and one expects that a′′ is close to b′′.

8 Invulnerability of General Cyclotomic Extensions for Unramified Primes

In this section we provide some numerical evidence that for cyclotomic fields, the image of the RLWE error
distribution modulo an unramified prime ideal q of residue degree one or two is practically indistinguishable
from uniform, implying that the cyclotomics are protected against the family of attacks in this paper. For
simplicity of analysis, we will define two error distributions that approximate the RLWE error distribution
(the PLWE error distribution and the modified PLWE error distribution). The advantage of these simpler
distributions is the relative accessibility of a formula for a bound on the statistical distance between these
distributions and the uniform distribution. This eases computation and allows for heuristic arguments. Then,
we generate the actual RLWE samples, run our chi-square attack, and confirm that the errors modulo q are
indeed uniform.

Let m ≥ 1 be an integer and let K = Q(ζm) be the m-th cyclotomic field. Let q be a prime such that
q ≡ 1 (mod m), so q is unramified in K. Finally, let q be a prime ideal above q.

First, we introduce the PLWE error distribution on cyclotomic fields, which is commonly used in practice
for homomorphic encryption schemes as a substitute for the RLWE error distribution. Let n = ϕ(m) be the
degree of K.

Definition 19. Let τ > 0. A sample from the PLWE distribution Pm,τ is

e =

n−1∑
i=0

eiζ
i
m,

where the ei are sampled independently from the discrete Gaussian DZ,τ .

Next, with the aim of simplifying our analysis, we introduce a class of “shifted binomial distributions”
indexed by even integers k ≥ 2, which approximate discrete Gaussians over Z.

Definition 20. For an even integer k ≥ 2, let Vk denote the distribution over Z such that for every t ∈ Z,

Prob(Vk = t) =

{
1
2k

(
k

t+ k
2

)
if |t| ≤ k

2

0 otherwise

We will abuse notation and also use Vk to denote the reduced distribution Vk (mod q) over Fq, and let νk
denote its probability density function. Figure 2 shows a plot of the function v8.

Definition 21. Let k ≥ 2 be an even integer. Then a sample from the modified PLWE error distribution
P ′m,k is

e′ =

n−1∑
i=0

e′iζ
i
m,

where the coefficients e′i are sampled independently from Vk.



Fig. 2. Probability density function of V8

8.1 Bounding the Distance from Uniform

We recall the definition and key properties of Fourier transform over finite fields. Suppose f is a real-valued
function on Fq. The Fourier transform of f is defined as

f̂(y) =
∑
a∈Fq

f(a)χ̄y(a),

where χy(a) := e2πiay/q.
Let u denote the probability density function of the uniform distribution over Fq, that is u(a) = 1

q for all

a ∈ Fq. Let δ denote the characteristic function of the one-point set {0} ⊆ Fq. Recall that the convolution of
two functions f, g : Fq → R is defined as (f ∗ g)(a) =

∑
b∈Fq f(a− b)g(b). We list without proof some basic

properties of the Fourier transform.

1. δ̂ = qu; û = δ.

2. f̂ ∗ g = f̂ · ĝ.
3. f(a) = 1

q

∑
y∈Fq f̂(y)χy(a) (the Fourier inversion formula).

The following is a standard result.

Lemma 22. Suppose the random variables F,G are independent random variables with values in Fq, having
probability density functions f and g. Then h = f∗g. In general, suppose F1, · · · , Fn are mutually independent
random variables in Fq, with probability density functions f1, · · · , fn. Let f denote the density function of
the sum F =

∑
Fi, then f = f1 ∗ · · · ∗ fn.

The Fourier transform of νk has a nice closed-form formula, as below.

Lemma 23. For all even integers k ≥ 2, ν̂k(y) = cos
(
πy
q

)k
.

Proof. We have

2k · ν̂k(y) =

k
2∑

m=− k2

(
k

m+ k
2

)
e2πiym/q

= e−πiyk/q

k
2∑

m=− k2

(
k

m+ k
2

)
e2πiy(m+k/2)/q

= e−πiyk/q
k∑

m′=0

(
k

m′

)
e2πiym

′/q

= e−πiyk/q(1 + e2πiy/q)k

= (e−πiy/q + eπiy/q)k

= (2 cos(πy/q))k.



Dividing both sides by 2k gives the result. ut

Next, we concentrate on the reduced distributions Pm,τ (mod q) and P ′m,k (mod q). Note that there is
a one-to-one correspondence between primitive m-th roots of unity in Fq and the prime ideals above q in
Q(ζm). Let α be the root corresponding to our choice of q. Then a sample from Pm,τ (mod q) (resp. P ′m,k
(mod q)) is of the form

n−1∑
i=0

αiei (mod q),

where ei are independent variables under the distribution DZ,τ (resp. Vk). We use eα and e′α to denote
their probability density functions. Then

Lemma 24.

ê′α(y) =

n∏
i=1

cos

(
αiπy

q

)k
.

Proof. This follows directly from Lemma 23 and the basic properties of Fourier transform. ut

Now we are able to bound the difference using the Fourier inversion formula.

Proposition 25. Let f : Fq → R be a function such that
∑
a∈Fq f(a) = 1. Then for all a ∈ Fq,

|f(a)− 1/q| ≤ 1

q

∑
y∈Fq,y 6=0

|f̂(y)|. (2)

Proof. For all a ∈ Fq,

f(a)− 1/q = f − u(a)

=
1

q

∑
y∈Fq

(f̂(y)− û(y))χy(a)

=
1

q

∑
y∈Fq

(f̂(y)− δ(y))χy(a)

=
1

q

∑
y∈Fq,y 6=0

f̂(y)χy(a). (since f̂(0) = 1)

Now the result follows from taking absolute values on both sides, and noting that |χy(a)| ≤ 1 for all a and
all y. ut

Taking f = eα or f = e′α in Proposition 25, we immediately obtain

Theorem 26. The statistical distance between eα and u satisfies

d(eα, u) ≤ 1

2

∑
y∈Fq,y 6=0

|êα(y)|.

Similarly,

d(e′α, u) ≤ 1

2

∑
y∈Fq,y 6=0

|ê′α(y)|. (3)

Now let ε′(m, q, k, α) denote the right hand side of (3), i.e.,

ε′(m, q, k, α) =
1

2

∑
y∈Fq,y 6=0

n−1∏
i=0

cos

(
αiπy

q

)k
.



To take into account all prime ideals above q, we let α run through all primitive m-th roots of unity in Fq
and define

ε′(m, q, k) := max{ε′(m, q, k, α) : α has order m in Fq}.

If ε′(m, q, k) is negligibly small, the distribution P ′m,k (mod q) will be computationally indistinguishable from
uniform.

We can run the same analysis for the PLWE distribution, with the only difference being that there is no
obvious closed-form formula for the density function d of DZ,τ (mod q). Nonetheless, we could numerically
approximate this probability density function, using the formula

d(a) =

∑
z∈Z

z≡a mod q

e−|z|
2/2τ

∑
z∈Z

e−|z|
2/2τ

, ∀a ∈ Fq.

Since the sums in the definition of d(a) converge rapidly, we could obtain good approximations of d by

truncating the sums and then evaluating. Then we compute numerically the Fourier transform d̂, and obtain

êα(y) =

n−1∏
i=0

d̂(αiy)

Finally, we compute ε(m, q, τ) = 1
2

∑
y∈Fq,y 6=0

∏n−1
i=0 d̂(αiy). Then ε(m, q, τ) is an upper bound of the statis-

tical distance between the distribution eα and the uniform distribution over Fq.

8.2 Numerical Distance from Uniform

We have computed ε′(m, q, k) and ε(m, q, k) for various choices of parameters. Smaller values imply that the
error distribution looks uniform when transfered to R/q, rendering the instance of RLWE invulnerable to
the attacks suggested in this paper.

The following is a table of data. Note that we chose k = 2 and τ = 1. For each instance in the table,
we also generated the actual RLWE samples (where we fixed σ0 = 1) and ran the chi-square attack using
the confidence level α = 0.99. The column labeled “χ2” contains the χ2 values we obtained, and the column
labeled “uniform?” indicates whether the reduced errors are uniform. We can see from data how the practical
situation agrees with our analysis on the approximated distributions.

Table 3. Values of ε′(m, q, 2) and ε(m, q, 1) and the χ2 values

m n q −[log2(ε′(m, q, 2))] −[log2(ε(m, q, 1))] χ2 uniform?

96 32 193 35 38 231.6 yes
55 40 331 44 51 308.8 yes
160 64 641 55 79 658.0 yes
101 100 1213 177 203 1254.4 yes
244 120 1709 230 248 1721.2 yes
256 128 3329 194 253 3350.0 yes
197 196 3547 337 410 3475.2 yes
512 256 10753 431 511 10732.8 yes

The data in Table 3 shows that when n ≥ 100 and the size of the modulus q is polynomial in n,
the statistical distances between P ′m,k (mod q) (or Pm,τ (mod q)) and the uniform distribution are both
negligibly small. Also, note that we fixed k = 2 and τ = 1, and the epsilon values becomes even smaller
when k and τ increases.



It is possible to generalize our discussion in this section to primes of arbitrary residue degree, in which
case the Fourier analysis will be performed over the corresponding extension field. The only change in the

definitions would be χy(a) = e
2πiTr(ay)

q . Similarly, we have

ê′α(y) =

n∏
i=1

cos

(
πTr(αiy)

q

)k
.

Table 4 contains some data for primes of degree two.

Table 4. Values of ε′(m, q, 2) for primes of degree two

m n q −[log2(ε′(m, q, 2))]

64 32 383 31
63 36 881 33
55 40 109 48
53 52 211 61
512 256 257 263

8.3 Heuristics

There is a heuristic argument as to why one expects ε′(m, q, k, α) to be small. Each term in the summand is

a product of form
∏n−1
i=0 cos

(
αiπy
q

)k
. For each 0 6= y ∈ Fq, if one assumes the elements αi are distinct and

uniformly distributed in Fq, it is very likely that αiy is close to q/2 for at least some values of i, making the
product of cosines small.

References

1. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption
scheme. In: Cryptography and Coding, pp. 45–64. Springer (2013)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. pp. 309–325. ACM (2012)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-lwe and security for key dependent
messages. In: Advances in Cryptology–CRYPTO 2011, pp. 505–524. Springer (2011)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) lwe. SIAM Journal
on Computing 43(2), 831–871 (2014)

5. Ducas, L., Durmus, A.: Ring-lwe in polynomial rings. In: Public Key Cryptography–PKC 2012, pp. 34–51.
Springer (2012)

6. Eisenträger, K., Hallgren, S., Lauter, K.: Weak instances of plwe. In: Selected Areas in Cryptography–SAC 2014,
pp. 183–194. Springer (2014)

7. Elias, Y., Lauter, K., Ozman, E., Stange, K.: Provably weak instances of ring-lwe. In: Advances in Cryptology –
CRYPTO 2015, Lecture Notes in Comput. Sci., vol. 9215, pp. 63–92. Springer, Heidelberg (2015)

8. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Advances in
Cryptology–EUROCRYPT 2012, pp. 465–482. Springer (2012)

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.
In: Proceedings of the fortieth annual ACM symposium on Theory of computing. pp. 197–206. ACM (2008)

10. Johnston, H.: Notes on galois modules. Notes accompanying the course Galois Modules given in Cambridge in
(2011)

11. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptog-
raphy 75(3), 565–599 (2014)

12. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully
homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
pp. 1219–1234. ACM (2012)

13. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. Journal of the
ACM (JACM) 60(6), 43 (2013)



14. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-lwe cryptography. In: Advances in Cryptology–
EUROCRYPT 2013, pp. 35–54. Springer (2013)

15. Ryabko, B.Y., Stognienko, V., Shokin, Y.I.: A new test for randomness and its application to some cryptographic
problems. Journal of statistical planning and inference 123(2), 365–376 (2004)

16. Stehlé, D., Steinfeld, R.: Making ntru as secure as worst-case problems over ideal lattices. In: Advances in
Cryptology–EUROCRYPT 2011, pp. 27–47. Springer (2011)

17. Stein, W., et al.: Sage Mathematics Software (Version 6.4). The Sage Development Team (2014),
http://www.sagemath.org

9 Appendix: Code

9.1 SubgroupModm.sage

This file contains the object needed for manipulating subgroups H of (Z/mZ)∗.

class SubgroupModm:
"""
a subgroup of (Z/mZ)^*
"""

def __init__(self,m, gens, elements = None):
self.m = m
self.phim = euler_phi(m)
self.Zm = Integers(m)

newgens = []
for a in gens:

a = self.Zm(a)
if not a.is_unit():

raise ValueError(’the generator %s must be a unit in the ambient group.’%a)
newgens.append(a)

self.gens = newgens

if elements is None:
print ’computing group elements...’
t = cputime()
self.H1 = self.compute_elements()
print ’Time = %s’%cputime(t)
sys.stdout.flush()

else:
self.H1 = elements

self.order = len(self.H1)
print ’group order = %s’%self.order
sys.stdout.flush()

self._degree = ZZ(self.phim // self.order)

print ’computing coset representatives...’
t = cputime()
self.cosets = self.cosets()
print ’Time = %s’%cputime(t)
sys.stdout.flush()

self._is_totally_real = self.is_totally_real()

if not self._is_totally_real:
merged_cosets = []
for c in self.cosets:

if not any([-c/d in self.H1 for d in merged_cosets]):
merged_cosets.append(ZZ(c))

newcosets = merged_cosets + [-a for a in merged_cosets]
self.cosets = newcosets

def __repr__(self):
return "subgroup of (Z/%sZ)^* of order %s generated by %s"%(self.m, self.order, self.gens)

def is_totally_real(self):
"""
The fixed field Q(zeta_m)^H is totally real if and only if -1 mod m \in H.
"""
return self.Zm(-1) in self.compute_elements()



def compute_elements(self):
"""
core function. Gives all the group elements
"""
gens = self.gens
result = [self.Zm(1)]
for gen in gens:

if gens != self.Zm(1):
order = gen.multiplicative_order()
pows = [gen**j for j in range(order)]
result = set([a*b for a in result for b in pows])

return result

def cosets(self):
"""
another core function, assuming we have elements, this shouldn’t be hard.
"""
Zm = self.Zm
elts = self.H1
m = self.m
result =[]
explored = []

for a in range(m):
if gcd(a,m) == 1 and a not in explored:

for h in elts:
explored.append(h*a)

result.append(Zm(a))
if euler_phi(m) == len(result)*len(elts): # already have enough cosets

return result

@cached_method
def coset(self, a):

"""
elt -- an integer
returns the coset representative for this element
"""
Zm = self.Zm
for bb in self.cosets:

if Zm(a)/Zm(bb) in set(self.H1):
return bb

raise ValueError(’did not find a coset.’)

def extension_degree(self,vec):
"""
vec -- a vector indexed by cosets of self, representing an element z in K.
return the degree of the extension QQ(z)/QQ.
"""
try:

vec = list(vec)
except:

raise ValueError(’input can not be turned into a list. Please debug.’)
C = self.cosets
ele_dict = dict([(a,b) for a,b in zip(C,vec) if b != 0])
fixGpLen = 0
for ll in C:

fixed = True
for a in ele_dict.keys():

lla = self.coset(ll*a)
try:

coef = ele_dict[lla]
except:

fixed = False
break

if coef != ele_dict[a]:
fixed = False
break

if fixed:
fixGpLen += 1

return self._degree // fixGpLen

def _check_cosets(self):
"""
sanity check that the cosets has been computed correctly.
"""
H1 = self.H1
cosets = self.cosets
from itertools import combinations
return not any([c[1]*c[0]**(-1) in H1 for c in combinations(cosets, 2)])



def __hash__(self):
return hash((self.m,tuple(self.gens)))

def _associated_characters(self):
"""
Definition: a Dirichlet character chi of modulus m is associated to
a subgroup H <= Z/mZ)^* if chi|_H = 1.

return all the associated characters of self.
"""
m, Zm = self.m, self.Zm
G = DirichletGroup(m)
H1 = Set(self.compute_elements())

result =[]
for chi in G:

ker_chi = Set([Zm(a) for a in chi.kernel()]) # a list of integers
if H1.issubset(ker_chi):

result.append(chi)
return result

def multiplicative_order(self, a):
"""
return the multiplicative order of [a] in the quotien group G/H
"""
m = self.m
Zm = self.Zm
if gcd(m,a) != 1:

raise ValueError
a = Zm(a)
o = self._degree
for dd in o.divisors()[:-1]:

if a**dd in self.H1:
return dd

return o

def discriminant(self):
"""
return, up to sign, the discriminant of the fixed field of self as a subfield of Q(zeta_m).
"""
return prod([chi.conductor() for chi in self._associated_characters()])

def intersection(self, other):
"""
intersection of two subgroups of the same m.
"""
if self.m != other.m:

raise ValueError(’the underlying m of self and other must be same.’)
H1 = self.H1
H1other = other.H1
Hnew = Set(H1).intersection(Set(H1other))
print ’size of intersection = %s’%len(Hnew)
Hnew_reduced = _reduce_gens(self.m,Hnew)
print ’reduced gens for intersection = %s’%Hnew_reduced
sys.stdout.flush()
return SubgroupModm(self.m, Hnew_reduced, elements = Hnew)

def _reduce_gens(m,H1):
"""
given a full group, get a short list of generators.
"""
Zm = Integers(m)
gens = set([])
gensSpan = set([Zm(1)])
for a in H1:

if Zm(a) not in gensSpan:
sys.stdout.flush()
ordera = Zm(a).multiplicative_order()
alst = [Zm(a)**j for j in range(1, ordera)]
newelts = set([cc*aa for cc in gensSpan for aa in alst])
gensSpan |= newelts
gens.add(a)

if len(gensSpan) == len(H1):
# found enough generators.
return list(gens)

raise ValueError(’did not find enough generators.’)



9.2 MyLatticeSampler.sage

This file allows sampling from discrete lattice Gaussian distributions using the algorithm in [9]. It took the
current implementation in sage and modified it slightly to fix some issues. The authors claim no originality
of any code in this file.

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler
def _fpbkz(A, K = 10**20, block = 8, delta = 0.75):

"""
including a transpose operation.
"""
print ’blocksize for bkz = %s’%block
At = A.transpose()
RF = A[0][0].parent()
AA = Matrix(ZZ, [[ZZ(round(K*a)) for a in row] for row in list(At)])
F = FP_LLL(AA)
F.BKZ(block_size = block, delta= delta)
B = F._sage_()
T = B*AA**(-1)
B1 = Matrix(RF, [[a/RF(K) for a in row] for row in list(B)])
return T.transpose().change_ring(ZZ), B1.transpose()

class MyLatticeSampler:
"""
Sampling from discrete Gaussian.
"""

def __init__(self,A,sigma = 1,dps = 60, method = ’LLL’, block = None, already_orthogonal = False, gram_schmidt_norms = None):
self.A = A # we are using column span instead of rowspan
self.sigma = sigma

print ’reducing the lattice...’
t = cputime()
self._degree = A.nrows()
if method == ’LLL’:

self.T = self._lll_reduce()
elif method == ’BKZ’:

self.T = self._bkz_reduce(block = block)
else:

print ’no reduction is done.’
self.T = identity_matrix(self._degree)

self.B = self.A*self.T
print ’reduction done. Time: %s’%cputime(t)

print ’Gram Schmidting...’
t = cputime()

if already_orthogonal: # The columns of A are already gram-schmidt.
self._G = self.A
if gram_schmidt_norms is None:

self._gs_norms = [self._G.column(i).norm() for i in range(self._degree)]
else:

self._gs_norms = gram_schmidt_norms
else:

# Compute the gram-schmidt ourselves. Can be slow.
self._gs_norms, self._G = self.compute_G(dps = dps)

print ’Gram Schmidt done. Time: %s’%cputime(t)

self.final_sigma = sigma*(prod(self._gs_norms))**(1/self._degree)

def _bkz_reduce(self,block = None):
print ’bkz being performed...’
if block is None:

block = min(50, ZZ(self._degree // 2))
return _fpbkz(self.A, block = block)[0]

def _lll_reduce(self):
print ’lll being performed...’
A = self.A
return gp(A).qflll().sage()

@cached_method
def col_sum(self):

"""
related to the evaluation attack, return the list a where

a[i] = colsum(A^-1,i)
"""



return vector([1 for _ in range(self._degree)])*(self.A**(-1))

def babai_quality(self):
"""
inspired by Kim’s explanation, I think the quality of a basis
for babai should be the ratio ||\tilde{bn}||/||\tilde{b1}||
"""
gs_norms = self._gs_norms
return float(min(gs_norms)/max(gs_norms))

def __repr__(self):
return ’Discrete Gaussian sampler with dimension %s and sigma = %s’%(self._degree, self.final_sigma.n())

def compute_G(self, dps = 50):
t = cputime()
B = self.B
n = self._degree
from mpmath import *
mp.dps = dps
prec = dps*6
AA = mp.matrix([list(w) for w in list(B)])
Q,R = qr(AA) # QR decomposition

M = mp.matrix([list(Q.column(i)*R[i,i]) for i in range(n)]);
M_sage = Matrix([[RealField(prec)(M[i,j]) for i in range(n)] for j in range(n)])
verbose(’gram schmidt computation took %s’%cputime(t))
return [abs(RealField(prec)(R[i,i])) for i in range(n)], M_sage

def set_sigma(self,newsigma):
self.final_sigma = newsigma

def babai(self,c):
"""
run babai’s algorithm and find a lattice vector close to the
input point c.
Note this is super similar to the __call__ function

Returns a tuple (v,z), where v is the actual vector in R^n,
and z is its coordinate *in terms of a*. So we have
v = Az.
"""
n = self._degree
try:

c = vector(c)
except:

pass
G, norms = self._G, self._gs_norms
B = self.B
T = self.T
zs = []
v = c

for i in range(n)[::-1]:
b_ = G.column(i)
v_ = v.dot_product(b_) / norms[i]**2
z = ZZ(round(v_))
v = v - z*B.column(i)
zs.append(z)

return c - v, T*(vector(zs[::-1]))

def __call__(self, c = None):
"""
c -- an n-dimensional vector, so that we are sampling a discrete gaussian
centered at c.
"""
v = 0
sigma, G = self.final_sigma, self._G
n = self._degree
if c is None:

c = zero_vector(n)
B = self.B
T = self.T
zs = []
norms = self._gs_norms
for i in range(n)[::-1]:

b_ = G.column(i)
c_ = c.dot_product(b_) / norms[i]**2
sigma_ = sigma/norms[i]
assert(sigma_ > 0)
z = DiscreteGaussianDistributionIntegerSampler(sigma=sigma_, c=c_, algorithm="uniform+table")()
c = c - z*B.column(i)



v = v + z*B.column(i)
zs.append(z)

return v, T*vector(zs[::-1])

9.3 SubCycSampler.sage

This file allows generating the errors and reducing them modulo prime ideals when the field K is a subfield
of some cyclotomic field with odd and squarefree m.

from sage.stats.distributions.discrete_gaussian_integer import DiscreteGaussianDistributionIntegerSampler
import sys

class SubCycSampler:
"""
We write our own GPV sampler for sub-cyclotomic fields.
It also has the functionality of simulating an attack.

Caution: according to GPV, we need to have s >= ||tilde(B)||*log(n)
for the sampler to approximate discrete lattice Gaussian. So if
s is smaller than what is required, the __call__() method is not
guaranteed to output discrete Gaussian.
"""

def __init__(self,m,H,sigma = 1,prec = 100, method = ’BKZ’,block = None):
"""
require: m must be square free and odd.

disc: the discriminant of K = Q(zeta_m)^H. We pass it
as an optional parameter, since when the order of H is
large, the computation could be very slow.
"""

self.m = m
self.H = H

self.H1 =self.H.H1
sys.stdout.flush()

self.cosets = H.cosets

self.sigma = sigma
self.prec = prec

t = cputime()
self._degree = euler_phi(m) // len(self.H1)

self._is_totally_real = self.H._is_totally_real

print ’computing embedding matrix...’
t = cputime()
self.TstarA, self.Acan = self.embedding_matrix(prec = self.prec)
self.Acaninv = None
print ’time = %s’%cputime(t)
sys.stdout.flush()

self.D = MyLatticeSampler(self.TstarA, sigma = self.sigma, method = method, block = block)
self.Ared = self.D.B

self._T = self.D.T

self.final_sigma =self.D.final_sigma
self.secret = self.__call__()

def __repr__(self):
return ’RLWE error sampler with m = %s, H = %s, secret = %s and sigma = %s’%(self.m, self.H, self.secret, self.final_sigma.n())

def minpoly(self):
K.<z> = CyclotomicField(self.m)
return sum([z**h for h in self.H1]).minpoly()

def compute_G(self, prec = 53):
"""
computing a colum gram-schmidt basis for the embedded lattice O_K.
return the basis and the length of each vector as a list.



Modified on 8/2: do this after using LLL to reduce the basis.
"""
B = self.Ared
n = self._degree
from mpmath import *
mp.dps = prec // 2
BB = mp.matrix([list(ww) for ww in list(B)])
Q,R = qr(BB) # QR decomposition
M = mp.matrix([list(Q.column(i)*R[i,i]) for i in range(n)]);
M_sage = Matrix([[RealField(prec)(M[i,j]) for i in range(n)] for j in range(n)])
v = [abs(R[i,i]) for i in range(n)]
return M_sage,v # vectors are columns

def degree_of_prime(self,q):
"""
return the degree of q in K
"""
if not q.is_prime():

raise ValueError(’q must be prime’)
return (self.H).multiplicative_order(q)

def degree_n_primes(self, min_prime, max_prime, n =1):
"""
return a bunch of primes of degree n in K. When n = 1, this
is split primes.
"""
result = []
for p in primes(min_prime, max_prime):

try:
if self.degree_of_prime(p) == n:

result.append(p)
except:

pass
return result

def basis_lengths(self):
return [self.Ared.column(i).norm() for i in range(self._degree)]

def galois_permutation(self, c):
"""
c -- a coset.
returns a dictionary d such that d[a] = \sigma_c(a),
representing a Galois group action.
"""
H = self.H
Zm = Integers(self.m)
c = Zm(c)
d = {}
for a in self.cosets:

d[a] = self.H.coset(a*c)
return d

def _vec_modq_coset_dict(self,q):
vec = self.vec_modq(q)
cc = self.cosets
return dict(zip(cc,vec))

def vec_modq_twisted_by_galois(self,q,c, reduced = False):
_dict = self._vec_modq_coset_dict(q)
_galois = self.galois_permutation(c)
result = []
for a in self.cosets:

result.append(_dict[_galois[a]])
if not reduced:

return vector(result)
else:

return vector(result)*self._T

def embedding_matrix(self, prec = None):
"""
We are in a simplified situation because the field K is Galois over QQ,
so it is either totally real or totally complex.
to-do: can optimize this.
"""
m = self.m
H1 = self.H1
if prec is None:

prec = self.prec
C = ComplexField(prec)



zetam = C.zeta(m)
cosets = self.cosets
n = self._degree

_dict = {}
for l in cosets:

_dict[l] = sum([zetam**(ZZ(l*h)) for h in H1])

A = Matrix([[_dict[self.H.coset(l*k)] for l in cosets] for k in cosets])

if self._is_totally_real:
Areal = _real_part(A)
return Areal, A

else:
T = t_matrix(n,prec = prec)
return _real_part(T.conjugate_transpose()*A),A

def coset_reps(self):
"""
I need this for representing the basis vectors. Each coset rep c
represents the element \alpha_c = \sum_{h \in H} \zeta_m^{ch}.
"""
return self.cosets

def __call__(self,c = None):
"""
return an integer vector a = (a_c) indexed by the coset reps of self,
which represents the vector \sum_c a_c \alpha_c
Use the algorithm of [GPV].
http://www.cc.gatech.edu/~cpeikert/pubs/trap_lattice.pdf

If minkowski = True, return the lattice vector in R^n. Otherwise,
return the coordinate of the vector in terms of the embedding matrix of self.
"""
return self.D(c = c)[1]

def babai(self,c):
return self.D.babai(c)[1]

def _modq_dict(self,q):
"""
a sanity check of the generators modulo q.
"""
cc = self.cosets
vv = self.vec_modq(q)
return dict(zip(cc,vv))

def subfield_quality(self):
"""
portion of elements of our reduced basis that lie in proper subfields.
"""
T = self._T
count = 0
for i in range(S._degree):

col = T.column(i)
sys.stdout.flush()
deg = S.H.extension_degree(col)
print ’degree of Q(b_i) = %s’%deg
sys.stdout.flush()
if deg < S._degree:

count += 1
return float(count/S._degree)

def subfield_quality_modq(self,q, twist = None):
if twist is None:

vq = self.vec_modq(q,reduced = True)
else:

vq = self.vec_modq_twisted_by_galois(q,twist, reduced = True)
F = vq[0].parent()
deg = F.degree()
return float(len([aa for aa in vq if aa.minpoly().degree() < deg])/self._degree)

@cached_method
def vec_modq(self,q, reduced = False):

"""
the basis elements (normal integral basis) modulo q.

If reduced is true, return the LLL-reduced basis mod q



v dot Tz = (vT) dot z
"""
m = self.m
degree = self.degree_of_prime(q)
v = finite_cyclo_traces(m,q,self.cosets,self.H1, deg = degree) # could be slow
if not reduced:

result = vector(v)
else:

result = vector(v)*self._T
return result

def _to_ccn(self, lst):
"""
convert an element in O_K from C^n to Z^n.
"""
return list(self.Acan*vector(lst))

def _to_zzn(self,lst):
"""
the inversion of the above.
"""
if self.Acaninv is None:

self.Acaninv = (self.Acan)**(-1)
return list(self.Acaninv*vector(lst))

def _prod(self,lsta, lstb):
"""
multiplying two field elements using the canonical embedding
"""
lsta, lstb = list(lsta), list(lstb)
lsta_cc, lstb_cc = self._to_ccn(lsta), self._to_ccn(lstb)
float_result = self._to_zzn([aa*bb for aa, bb in zip(lsta_cc,lstb_cc)])
return [ZZ(round(tt.real_part())) for tt in float_result]

def set_sigma(self,newsigma):
self.D.final_sigma = newsigma

def set_secret(self, newsecret):
self.secret = newsecret

9.4 Chisquare.sage

This file implements the a variant of the chi-square test over finite fields Fqf for q a prime and f > 1.

def subfield_unifrom_test(samples, probThreshold = 1e-5):
"""
Assume that the samples are from a finite field.
we separate the ones that are from a proper subfield.
"""
F = samples[0].parent()
q = F.characteristic()
degF = F.degree()
numsamples = len(samples)
eltsWithFullDegree = elts_of_full_degree(q,degF)
nSmall = 0
nLarge = 0
for aa in samples:

if aa.minpoly().degree() < degF:
nSmall +=1

else:
nLarge +=1

card = q**degF
eLarge= float(eltsWithFullDegree/card*numsamples)
eSmall= numsamples - eLarge
verbose(’eSmall, eLarge = %s,%s’%(eSmall, eLarge))
verbose(’nSmall, nLarge = %s,%s’%(nSmall, nLarge))
if min(eSmall, eLarge) < 5:

raise ValueError(’samples size too small.’)

chisquare = (nSmall - eSmall )^2/eSmall + (nLarge - eLarge)^2/eLarge
T = RealDistribution(’chisquared’, 1)
verbose(’chisquare = %s’%chisquare)
prob = 1 - T.cum_distribution_function(chisquare)
if prob < probThreshold:

verbose(’non-uniform’)



return False
else:

verbose(’uniform’)
return True

9.5 Example of an attack

This code implements the attack on an Galois RLWE instance described in Section 5.3.

print ’We peform the full attack on an Galois instance.’

totaltime = cputime()
import sys

load(’SubgroupModm.sage’,’MyLatticeSampler.sage’,’SubCycSampler.sage’,’Chisquare.sage’)

def _my_dot_product(lst1,lst2):
return sum([a*b for a,b in zip(lst1,lst2)])

m = 3003; H = SubgroupModm(m, [2276, 2729, 1123]);
S = SubCycSampler(m,H);

sigma0 = 1.0

S = SubCycSampler(m,H,prec = 300, method = ’LLL’, sigma = sigma0)

print ’S = %s’%S

q = 131
degq = H.multiplicative_order(q)
print ’degree of prime q = %s is %s’%(q, degq)
sys.stdout.flush()

print ’final sigma = %s’%S.final_sigma

print ’degree of field = %s’%(euler_phi(m)//H.order)
sys.stdout.flush()

numsamples = 1000;
print ’generating %s errors...’%numsamples
sys.stdout.flush()
errors = []
for dd in range(numsamples):

error = S()
errors.append(error)
if dd > 0 and Mod(dd,1000) == 0:

print ’%s/%s samples generated’%(dd, numsamples)
print ’an example error is %s’%error
sys.stdout.flush()

print ’error generation done.’
sys.stdout.flush()
save(errors, ’errors.sobj’)

vq = S.vec_modq(q)
print ’vq = %s’%vq
sys.stdout.flush()
F = vq[0].parent()
sys.stdout.flush()

Flst = [a for a in F]
alpha = F.gen()
Fp = F.prime_subfield()
print ’defining polynomial of F = %s’%alpha.minpoly()
sys.stdout.flush()

print ’Generating uniform a...’

alst = [[ZZ.random_element(q) for _ in range(S._degree)] for jj in range(numsamples)]
print ’Generation of uniform a done.’
sys.stdout.flush()

s = [ZZ.random_element(q) for _ in range(S._degree)]
print ’secret = %s’%s
sys.stdout.flush()

# The attack.
success, SUCCESS = True, True
count = 1
for cc in S.cosets:



t = cputime()
success = True
print ’coset %s/%s with representative %s’%(count, S._degree, cc)
sys.stdout.flush()

count += 1
vqcc = S.vec_modq_twisted_by_galois(q,cc)
smodq = F(_my_dot_product(s,vqcc))
print ’smodq = %s’%smodq
sys.stdout.flush()

amodqlst,bmodqlst = [],[]
for a,e in zip(alst, errors):

emodq = F(_my_dot_product(e,vqcc))
amodq = F(_my_dot_product(a,vqcc))
amodqlst.append(amodq)
bmodqlst.append(amodq*smodq+emodq)

countsmall = 0
for sguess in Flst:

countsmall +=1
sys.stdout.flush()
if Mod(count, 1000) == 0 or sguess == smodq:

print ’example run: %s/%s runs’%(count,len(Flst))
print ’sguess = %s’%sguess
if sguess == smodq:

print ’this is the correct guess’
set_verbose(1)

reducedErrors = [bb - aa*sguess for aa, bb in zip(amodqlst, bmodqlst)]
uniform = subfield_unifrom_test(reducedErrors, probThreshold = 1e-10)
if uniform and sguess == smodq:

print ’failed to detect’
success = False
break

elif (not uniform) and sguess != smodq:
print ’uniform is distorted’
success = False
break

set_verbose(0)
print ’Done computing with coset [%s]. success = %s’%(cc, success)
sys.stdout.flush()

print ’Time taken = %s’%cputime(t)
SUCCESS = SUCCESS and success
sys.stdout.flush()
print ’*’*20

print ’#’*40
print ’Summary:’
print ’H = %s’%H
print ’degree of field = %s’%(euler_phi(m)//H.order)
print ’q = %s, degree of q = %s’%(q, degq)
print ’sigma_0 = %s’%sigma0
print ’number of samples = %s’%numsamples
print ’success? : %s’%SUCCESS
print ’Total Time = %s’%cputime(totaltime)
sys.stdout.flush()


	Attacks on Search-RLWE

