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ABSTRACT

Interaction data such as clicks and dwells provide valuable signals
for learning and evaluating personalized models. However, while
models of personalization typically distinguish between clicked
and non-clicked results, no preference distinctions within the non-
clicked results are made and all are treated as equally non-relevant.

In this paper, we demonstrate that failing to enforce a prior on
preferences among non-clicked results leads to learning models that
often personalize with no measurable gain at the risk that the per-
sonalized ranking is worse than the non-personalized ranking. To
address this, we develop an implicit preference-based framework
that enables learning highly selective rankers that yield large reduc-
tions in risk such as the percentage of queries personalized. We
demonstrate theoretically how our framework can be derived from a
small number of basic axioms that give rise to well-founded target
rankings which combine a weight on prior preferences with the
implicit preferences inferred from behavioral data.

Additionally, we conduct an empirical analysis to demonstrate
that models learned with this approach yield comparable gains on
click-based performance measures to standard methods with far
fewer queries personalized. On three real-world commercial search
engine logs, the method leads to substantial reductions in the number
of queries re-ranked (2x-7x fewer queries re-ranked) while main-
taining 85-95% of the total gain achieved by the standard approach.

Categories and Subject Descriptors
H.3.3 [Information Retrieval]: Retrieval Models
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1. INTRODUCTION

Personalizing search results based on context has been consis-
tently reported to improve retrieval effectiveness [3, 27, 31, 34, 35].
However, personalization cannot help all queries and knowing when
to selectively apply personalization is one of the key challenges
of personalization [33]. In particular, when personalization is not
necessary, personalizing the ranking runs the risk of decreasing
performance relative to the non-personalized ranker. In order to per-
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sonalize appropriately, we need an indication of the user’s personal
preferences as a target for learning.

Ideally one would obtain explicit judgments from each person for
each personalized query, but that is not feasible at scale. A common
alternative is to use “satisfied”! or long-dwell clicks to infer an
implicit relevance judgment. In particular, the literature suggests
that clicks indicate a relative preference over non-clicks but should
not be interpreted as absolute relevance [1, 2, 22, 24]. As a result,
a number of personalization studies have been conducted where
the goal is to see a relative change in how high clicked results are
ranked in the personalized versus non-personalized rankings [3, 4].
For example, an increase in the mean average precision of satisfied-
clicked results (relevant) vs. the remaining results (non-relevant)
over the non-personalized baseline indicates that, on average, the
personalized ranker lists results users prefer higher in the rankings.

While technically correct, the lack of a prior on the many unclicked
documents leads to models that often re-rank even when there are
no demonstrable gains. This leads to a risk of personalization failure
[37] not captured by click-based measures of risk. Furthermore, spu-
riously re-ranking when there is no need increases variance in the
rankings. This variance masks the signal of performance improve-
ments when any new improvement is tested — increasing the cost of
interleaving [25] and A/B testing by requiring longer experiments
and slowing development cycles. Ultimately, this occurs because
click-based behavioral measures of relevance treat any ranking of
the unclicked results as equivalent. We alleviate this by introducing a
method which uses the non-personalized ranking to inform the target
ranking of unclicked results in the absence of other information.

Table 1 presents an illustrative example of the problem of in-
terpreting interactions as implicit relevance judgments. Here the
user has been presented with a set of search results in response to
the query [acl] in the ranked order of the first column (Rank)
and clicked and dwelled on the sixth result for the “Association for
Computational Linguistics” homepage. The table presents two hy-
pothetical rankings, A and B, which both place the satisfied clicked
item first but differ greatly in how the non-clicked results are ranked.

Ranking A leaves all of the remaining results in their original or-
der; for both learning and evaluation this is highly conservative—if
personalization is not appropriate, a set of users for whom the orig-
inal non-personalized order was appropriate would find a desired
result at most one position lower. Likewise, the variance from the
original ranking or across people who may experience different per-
sonalized rankings is minimal at this conservative point. In contrast,
after the satisfied clicked result is placed first, ranking B then inverts
the order of the original first five results and then gives the last four
results in their original order. Intuitively, if we believe the original

"'We use the common definition of a “satisfied” click as a click with
dwell of > 30s or one that terminates the search session [7, 17].



Table 1: Given ranked documents presented to a user with a click interaction given in “Satisfied Click”, we show two possible
re-rankings which order the documents as: A = [6,1,2,3,4,5,7,8,9,10] and B = [6, 5,4, 3,2,1,7,8,9, 10]. Both rankings have the
same average precision (AP) when treating clicks as relevance judgments, but A is much more conservative in reordering the non-
personalized ranking while B is much riskier. The columns on the right show two sets of gains derived according to the method in
Section 2.1 that would both give rise to ranking A as the ideal ranking, but the column on the left places more weight on the original
non-personalized ranking when computing the gains. See Section 2.1 for details.

. Satisfied Proposed Target Gain
Rank | Title and URL Click Re-rankings (@.B)
A | B (1,0.5)| (1,0.05)

1 Anterl(?r cruciate llgament - _Wlklped}a, thc? free encyclopedia No > 6 4.0 0.40
en.wikipedia.org/wiki/Anterior_cruciate_ligament

9 Austin City I_Jmlts Music Festival - Official Site No 3 5 35 035
www.aclfestival.com

3 ACL compliance, audit, governance & risk software No & 2 30 0.30
www.acl.com
Anterior Cruciate Ligament (ACL) Injuries-Topic Overview s s

4 . g . - L . . No 5 3 2.5 0.25
www.webmd.com/a-to-z-guides/anterior-cruciate-ligament-acl-injuries-topic-overview

5 Acce.ss. con.trol list - Wlklpedla, the free gncyclopedla No 6 9 20 0.20
en.wikipedia.org/wiki/Access_control_list

6 Association for Computational Linguistics | ACL Homepage Yes I r 9.0 90
www.aclweb.org/

7 Association of Christian Librarians: Welcome No 7 7 L5 0.15
www.acl.org/
About ACL - Administration for Community Living s s

8 www.acl.gov/About_ACL/Index.aspx No 8 8 1.0 0.10

g | ACLCargo No 9 o 050 | 005
www.aclcargo.com

10 ACL Live, Austin, Texas No 10 10° 0 0
acl-live.com

ranking is tuned for the overall population, ranking B is riskier since
a high penalty is paid when the original non-personalized ranking
is the correct intent. Even when correct, it introduces variance that
can lengthen experiment time to determine statistical significance.
Click-based measures of risk cannot capture distinctions among the
order of the unclicked items, but other measures can — such as the
percentage of queries re-ranked (personalized) and the correlation
of the personalized rankings with the non-personalized rankings.

We seek to formally capture these intuitions about how to combine
interaction data with the original ordering. We continue in the next
section by establishing two simple axioms for deriving preference
strengths from clicks. We demonstrate that when preference is
defined according to these axioms, the pairwise preferences give
rise to a target ranking with desirable properties.

2. PROBLEM APPROACH

We propose our model — referred to as Weight-Initial-Pref here-
after — based on a set of axioms which determine how we assign
the strength of preferences between results based on their original
presented position® and click-derived relevance. We demonstrate
that when preferences are assigned in accordance with these axioms,
the target ranking of results that can be derived from the prefer-
ences is constrained in terms of how far it can deviate from the
non-personalized ranking. We then respect these constraints during
training personalized rankers by using the target ranking derived
from the preferences to learn a more conservative model.

In order to balance the search engine’s non-personalized ranking
and user interaction, we take a simple approach which encodes the
strength of preferences between two search results as a function
of the ranking and interaction. These pairwise strengths are then

2We typically refer to the non-personalized ranking as determining
presentation order but the model easily applies to the case where
the user interacted with a personalized ranker, and these interactions
will be used to learn a new, updated personalized model.

accumulated to each result to indicate the overall utility or gain that
the result has. When sorted from greatest to least gain this yields
a desired or farget ranking with associated gains to use in learning
a ranking. We demonstrate how starting from basic principles in
designing the pairwise preference function, the final target ranking
has several desirable properties.

2.1 Axioms for Stable, Personalized Ranking

As illustrated in Table 1, using whether a result received a satisfied
click as a relevance label® does not distinguish between results in the
same relevance class. It is this lack of a default order that ultimately
gives rise to the variance in rankings when learning from clicks. An
intuitive order to use as a default prior is the ordering given by the
non-personalized ranking. We thus desire a way to incorporate this
default order with the relevance signal from interaction and a way
to increase or decrease the weight on the prior. In this section, we
demonstrate a simple approach to achieving these goals.

More formally, we assume we have a set of results D that have
been returned to the user in response to a particular query. Further,
we assume an initial complete ordering II over the results; that is, II
yields a consistent, transitive set of pairwise orderings of any two
results d;, d; € D which we indicate by d; > d;, to signify d; is
preferred to d;. In our setting 11 is the ranking of results that a user
was presented with and d; being ranked “above” or “higher” than
d; is indicated by d; =, d;.*

We assume a setting where given the presented ranking II and a
set of interactions, we would like to define a function, pref(d; >
d;), that indicates the strength of updated beliefs given the interac-
tions consistent with the following two axioms:

3When we reach the empirical evaluation, those results with a sat-
isfied click will be deemed to be in the relevant class while the
remaining will be deemed to be non-relevant.

“Note that if i and j correspond to the ranks of the results in IT then
d; = dj if and only if ¢ < j.



1. The strength of preference for a relevant result over a non-
relevant result should be stronger than any other preference.

2. For any labeled result from the same relevance class (relevant,
non-relevant), the preference should reflect the preference of
the presented ranking, I1.

The first of these axioms is commonly accepted in the literature.
However, the second axiom is novel and essentially introduces the
notion that: absent of any deciding behavioral signal from the user,
the default preference should conservatively break ties by preferring
the non-personalized ranking — which has benefited from being
optimized over a large set of non-personalized relevance judgments.

In this paper, we assume the interactions partition the results
into two sets, the satisfied clicks or relevant results, R, and the
non-satisfied clicks or non-relevant results, Z. We assume two user-
defined parameters «, S such that o, 8 > 0 where « indicates
the preference for a relevant result over an irrelevant result and 5
indicates the preference for maintaining the prior ranking for results
in the same relevance class. We break the definition into two parts:

When d; € R: 3 d; € R,d; =r d;
pref(di - dj) = 0 d]' ER, di <r dj
« dj S
When d; € Z:

0 deR
153 dj €Z,d; = dj
0 dj GI,di < dj

pref(d; > d;) =

The gain for a result d; is then defined to be:

G(di)= > pref(d; = d;) (1)
dj€D,d;#d;
where a higher gain is considered to be more highly relevant. That is,
the gain for a result is simply the sum of the strength of preferences
across all pairs of documents in the result set for this query.

In our approach we will maximize the normalized discounted
cumulative gain (NDCG) [20] using these gains. We choose to do
this since NDCG encourages placing the results with the highest
gains high in the rankings, but one could also use the gains to
optimize a measure that does not weight according to position in
the ranking if desired. The ranking derived from sorting the results
according to these gains can be considered to be the target ranking
as far as a learning algorithm is considered.

Properties of the Target Ranking. To provide guidance in
setting «, B, we now consider what properties the target rankings
that are used for learning have when the parameters take values
satisfying « > f > 0. This is important for demonstrating that
the goal of optimization is sensible and meets our overall goals of
improving personalized relevance while being conservative. We
sketch the proofs of these statements briefly below.

First, we can prove that in the target ranking all results in the
relevant set are above any from the non-relevant set (see Theorem 1
and Corollary 1). Additionally, we can prove that the target ranking
is conservative in that when there are multiple results in the relevant
set, the original non-personalized ranking is preserved among the
relevant set in the target ranking (see Theorem 2 and Corollary 2).
Finally, we can prove that the target ranking is conservative in that
when there are multiple results in the non-relevant set, the original
non-personalized ranking is preserved among the non-relevant set
in the target ranking (see Theorem 3 and Corollary 3).

If B > «is allowed, target rankings can result where an irrelevant
result has a higher gain than a relevant result. As [ increases,
these violations of the first axiom occur more frequently in target

rankings in the training set. We omit this from the experimental
section but performance degrades almost immediately when 8 > a,
demonstrating the desirability of the first axiom.

Proof Sketches. We remind the reader of the assumption of an
initial complete ordering II over the documents whose ordering of
two documents d;, d; € D is indicated by, d; > d;, to signify d; is
preferred to d;. In our setting II is the non-personalized ranking that
a user was presented with and d; being ranked “above” or “higher”
than d; indicates d; > d;.

THM.1. Ifa>B >0, d; €Z, and d; € R then G(d;) < G(d;).

G(di) pref(d; > dj;) + Z pref(d; > dx) 2
dp €D, dy #d;,d;

Sinced; € Z,d; € R, and o > 3 > 0, then

Vdy, pref(d; > di) < pref(d; > di), and

Z pref(d; > di) 3)

d, €D, dy#d; ,dj

IA

pref(d; > dj) +

Since d; € Z and d; € R, then we have
pref(d; = d;) < pref(d; > d;), yielding

> pref(d; - di) (4)
dr€D,dp#d;,d;

= Gd). O

< pref(d; = d;) +

COROLLARY 1. In the target ranking, all relevant documents are
above all non-relevant documents. Proof: Follows trivially from
Theorem 1 and sorting in descending order by gain. [

THM.2. Ifa, >0, d; €R, dj € R, and d; > dj, then G(d;) >
G(d;).

G(di) = pref(d; = d;)+ > pref(d; ~ di) 5)

d€D,dp#d;,dj

Z pref(d; > dx)

d €R,dy#d;,d;

+ Z pref(d; > di) 6)

dy€T,dy#d; ,d;

= pref(d; > d;) +

Note we have Vdy € R s.t. di, == dj,
pref(d; = di) = 0and Vd, € R s.t. dj == di,

d; = dj since d; >, d; and Il is a complete ranking.

Therefore Vdy,, pref(d; > di,) > pref(d; > di) yielding

Y

pref(d; > dj) + Z pref(d; > di) @)
dy€D,dy#d;,d;

Finally since d;,d; € R and d; > d;,

pref(d; = d;) > pref(d; > d;) yielding

> pref(d; = dy) ®)

dp€D,d#d;,d;

= G(dy). |

> pref(d; > d;) +

COROLLARY 2. In the target ranking, all relevant documents
have the same order as in the initial ranking, 11. Proof: Follows triv-
ially from Theorem 2 and sorting in descending order by gain. []

THM. 3. If,B >0,d; €7, dj c€Z, and d; =~ dj, then G(dl) >
G(d;). (The proof of this theorem follows the same basic approach
as Theorem 2 and is omitted.)



COROLLARY 3. Inthe target ranking, all non-relevant documents
have the same order as in the initial ranking, 11. Proof: Follows triv-
ially from Theorem 3 and sorting in descending order by gain. [

Implications of Choices for o and . To provide further
guidance in how a user can control risk via the parameters, we con-
sider the interpretation of the values of o and 8. As 3 increases
relative to a, an increasing amount of cumulative gain across all re-
sults comes from enforcing the preference for the non-personalized
ranking. Therefore, increasing /3 can be viewed as being increas-
ingly risk averse since a higher percentage of the cumulative gain
can be increasingly achieved by returning the non-personalized
ranking. This is illustrated in Table 1 by the two gain columns —
each of which would give rise to the target ranking A in the table.
When the ratio of S to awis 0.5 : 1 = 1 : 2 the non-personalized
ranking achieves 0.80 NDCG @10 relative to the optimal ranking
A. When we decrease [ relative to « to 0.05 : 1 = 1 : 20 the
non-personalized ranking only achieves 0.20 NDCG @10 relative to
the optimal. Thus, fixing « and varying S from 0 to « is a smooth
way of creating increasingly risk-averse models. In the empirical
section, we demonstrate this holds empirically as well.

2.2 Extension to Unexamined Results

Next, we consider the results that were not examined by the user
and therefore not clicked due to lack of examination rather than lack
of relevance. That is, we may want to treat unexamined results dif-
ferently than results examined and intentionally not clicked (skips).
In particular we may desire to weaken the constraint of the second
axiom and not require the order of the unexamined results to be
maintained in the target ranking.

To this end, we adapt earlier work to our setting. In particu-
lar, Radlinski & Joachims [24] used implicit preferences to learn
preference-based models and achieved the best results by treating a
clicked result as more relevant than both the unclicked results above
it as well as the immediately next result when unclicked. Their find-
ings gave rise to the cascade-model [11] of user interaction where
a user scans from top to bottom and the results below the lowest
click are not examined. As Radlinski & Joachims noted, however, if
unexamined results are simply omitted when learning a personalized
model, a machine learning model overfits the data by learning to
“flip the ranking” since a click is nearly always the lowest (or second
to lowest) result in the ranking. To correct this, they introduce a
positivity weight constraint strictly greater than zero on the weight
of a feature derived from the non-personalized ranking. Increasing
the weight constraint in their model corresponded to placing more
emphasis on the non-personalized ranking. We generalize their
approach to be usable in situations where the learning algorithm
cannot easily deal with weight-based constraints by limiting the
results for each query in the training set to only those results from
one position beyond the lowest click and above. Then, using the
weighting model of Section 2.1 with 5 > 0 is highly similar to
Radlinski & Joachims’ introduction of a constraint and increasing 3
is like increasing their weight constraint. Note that because there
are almost no irrelevant results low in the rankings (which boost
the gain of irrelevant results above them), 3 can slightly exceed «
for a small amount before target rankings end up with an irrelevant
result with higher gain than a relevant result. Because empirically
a larger range is permissible, in the empirical section we allow a
greater range of exploration of the 5 parameter for this method.

3. EMPIRICAL METHODOLOGY

We compare our approach (Weight-Initial-Pref) against several
baselines from the literature on three large-scale datasets from com-

mercial search engine logs. As in other works that attempt to reduce
the risk of a retrieval method, the goal here is not to further increase
relevance but to reduce re-ranking percentage and risk and yield a
better tradeoff [9, 10, 37].

We implement our approach of using both the interaction data
together with the weighted initial preferences within the Lamb-
daMART framework [6]. Specifically, we aggregate the prefer-
ences according to Eq. 1 to determine gains using the definition
of the strength of preference function, “pref” defined in Section
2.1. We then simply optimize NDCG using this definition of gain.
Because it is primarily the ratio of o to 8 which controls the
emphasis placed on the original ranking, we fix & = 1and vary
B € {0.01,0.02,...,0.09,0.1,0.2,...,1}. We select a particular
model by selecting the value of 3 that yielded the largest area under
the gain vs. re-ranking percentage curve over validation data.

3.1 Performance Measures

We examine two primary measures of effectiveness which have
been used by many others, mean average precision (MAP) and nor-
malized discounted cumulative gain (NDCG) [20] where satisfied
clicks are relevant and the remaining are non-relevant. Although
such an approach is imperfect, we use it because changing both the
optimization and evaluation methods together could lead to bias that
favors the method we introduce. We use MAP as a measure of effec-
tiveness in our first two datasets that only distinguish two degrees of
relevance (non-relevant, relevant). We use NDCG in the WSCD ‘14
dataset, because the dataset publishers set that as the standard for
that dataset. The dataset publishers have defined relevance labels of
irrelevant, relevant, and highly relevant according to how long the
user dwelled on a document. We describe MAP and the measures
derived from MAP in detail and omit the details of NDCG whose
derived measures are analogous.

MAP and A MAP. To remind the reader, the average preci-
sion (AP) of a ranking for a particular query is the average of the
precision@¥k at each position k£ where a relevant document is ranked.
Because the average is taken only with respect to where relevant
documents occur, it encourages ranking relevant documents higher
in the ranking. AP consequently has a value of 1 when all relevant
documents are ranked above non-relevant documents. Note that
in the results section we scale all measures in the [0, 1] interval to
[0, 100] for ease of readability. The mean average precision (MAP)
is the mean of the average precision across all queries.

‘We may also consider the mean change in average precision for a
system .S relative to the non-personalized ranker baseline (BASE):

AMAP = % S [APs(g) — APpase(9)] ©)
q

where NV is the total number of queries in the test set. This change is
equivalent to the MAP of a system with the baseline’s performance
removed — meaning it is positive when personalization increases
performance relative to the non-personalized ranker and negative
otherwise. We focus on A MAP as our primary gain measure since
it follows the same trends as MAP and proprietary reasons prevent
releasing absolute MAP numbers on one dataset.

Combining Effectiveness and Reranking. In addition to
mean average precision and NDCG, we will also use other measures
that provide a more accurate view of the tradeoff between rele-
vance and risk. In particular, we examine gain per query re-ranked,
mean correlation with the non-personalized ranking, and the mean
correlation per query re-ranked.



Each re-ranked query implies a risk of performance degradation.
To normalize for the number of re-rankings, we can divide by the
total number of queries for which a system generated a re-ranking
different than the non-personalized ranker, Rs. When penalizing
the difference in MAP this way, we refer to it as A MAP/R.

Risk, Reward, and Gain. Wang et al. [37] took an approach
to risk by separating the differences in performance from a baseline
ranker (e.g., Eq. 9) into the queries where performance is improved
Q-+ and the queries where performance is decreased )—. The
overall gain can then be rewritten as a difference of the reward,
which for MAP is + Y geq, [APs(q) — APBase(q)]. and the
risk, v >.co_ [APBask(q) — APs(g)]. When we use the term
“risk” in the empirical section we mean this specific click-based
measure of risk — not the broader notions of risk discussed earlier
in the paper. As in their work, the maximal risk, reward, and gain
are achieved by simply maximizing gain. For ease of interpretation,
we normalize changes in risk and gain by dividing by performance
of the model with maximal gain (which also has maximal risk).
We give the result as a percentage. While this performance-based
definition of risk has become more common in the last several years
(e.g., as one of the key measures for the TREC Web Track [10]),
there is a difference between using it for personalization and using
it for standard ad-hoc relevance. This is because, in personalization,
there are pseudo-nonrelevant judgments, but in the TREC Web
Track setting, there are actual relevance judgments. In the same
work, Wang et al. also looked at several other measures that implied
risk even when relevance judgments and clicks were not available —
namely the percentage of queries re-ranked and the mean Kendall’s
7 ranking correlation with the non-personalized ranking. We display
both of these as well as the mean Kendall’s 7 over just those queries
that are re-ranked (“% Re-ranked”, K-, and K-7|R, respectively),
but we focus on the percentage of queries that are re-ranked as a
better reflection of a more general notion of risk.

3.2 Baselines

Standard Gain. First, we compare to optimizing ranking perfor-
mance as has been usually done (e.g. [3]) — treating all satisfied
clicks as relevant and the rest as non-relevant. We do this using
LambdaMART which is an application of the LambdaRank ap-
proach [5] to gradient-boosted decision trees. Gradient-boosted
decision trees have been very successful in a number of information
retrieval tasks (e.g., the Yahoo! Learning To Rank challenge Track
1 where LambdaMART was a key component [6]). We set the key
parameters for LambdaMART to default settings appropriate for
learning problems with similar amounts of data: we set number of
leaves = 10, minimum documents per leaf = 2000, number of trees
= 500, learning rate = 0.25, and used the validation set for pruning.
Since all of the models are integrated to work with LambdaMART,
to aid comparability we do not change these parameter settings. We
refer to this as the Standard Gain approach.

Naive. We can reduce the gain, risk, and re-ranking of a per-
sonalized model in a naive way that gives up an amount of gain
proportional to the amount of risk/re-ranking reduced. Namely, take
the personalized Standard Gain model and apply it on a per-query
basis by flipping a biased coin with probability p and use the person-
alized Standard Gain model when the coin comes up “heads” and
the non-personalized ranker for “tails”. By selecting an appropriate
p € [0, 1] any point on the line between the Standard Gain and the
non-personalized ranker can be attained.

Lowest Click Plus One. To see the impact on re-ranking when
the likely unexamined results were not included to stabilize the
ranking, we implemented the method of Section 2.2. Again this
was integrated into LambdaMART using the aggregated gains of
Eq. 1 and the strength of preference function of 2.1. We again fix
a=1andvary 8 € {0.1,0.2,...,2}. To show this method in the
best light, we chose to perform model selection for this approach by
maximal gain over the validation set.

Risk-sensitive Optimization. As mentioned throughout the
paper, we also could use the risk-sensitive optimization introduced
by Wang et al. [37]. In particular, they decompose the change of gain
relative to a baseline into risk and reward and introduce a parameter
arisk > 0 such that increasing ;s makes the learning algorithm
learn increasingly low risk models. We implement this in our setting
by optimizing over the training set of queries, (), the reward minus
the weighted risk:

RS@Qant) = [ [APs() — APmase(a)l]  (10)

q€EQ 4+
—(arise + 1) Y [APpase(q) — APs(q)]].

q€Q—

Here a5 =0 is equivalent to the Standard Gain model. Since
Wang et al. demonstrated both a reduction in the number of queries
re-ranked and an increase in correlation with the non-personalized
ranking with increasing a,isk (at a cost to a less than proportional
reduction in gain), this method makes a natural baseline. On the vali-
dation set we explore ais; € {0,0.1,0.2,...,0.9,1,2,3,...10}.
We select a particular model by selecting the value of a5k that
yielded the largest area under the gain vs. re-ranking percentage
curve over validation data. We also consider how re-ranking would
compare if we compared a risk-sensitive model at the same gain
achieved as the Weight-Initial-Pref model. We do this and present
the results for this as RS (Min Risk, Gain Parity). Likewise, we
could use the risk-sensitive model that has the same re-ranking as
the Weight-Initial-Pref model and observe the difference in gain. We
present results for this as RS (Max Gain, near Rerank).

4. DATA & FEATURES

We evaluate the methods on three datasets. The first is a propri-
etary dataset from Bing, Microsoft’s search engine. The second and
third are anonymized public datasets from the Yandex search engine
first released to participants of the Relevance Prediction Challenge’
which was part of the WSDM 2012 WSCD workshop and for the
Personalized Web Search Challenge® organized in conjunction with
the WSDM 2014 WSCD workshop. We refer to these testbeds,
respectively, as the WSCD ‘12 and WSCD ‘14 datasets.

The Bing dataset consists of queries sampled between 25 October
2013 and 14 November 2013 (three weeks). We use the first week
of data for training and the last two respectively for validation and
testing. The training/validation/test sets contain 449K/444K/443K
queries respectively. Because we have full access to this dataset we
are able to compute a variety of short- and long-term features for
personalization studied elsewhere in the literature. In particular, we
implemented the features studied by others for long-term personal
navigation in [34], location features in [4], and short- and long-
term topical and navigation features as in [3]. Since our focus is
not on features we refer the reader to those articles for details; it
is only important to us that the Standard Gain model represent

Shttp://imat-relpred.yandex.ru/en

®https://www.kaggle.com/c/yandex-personalized
-web-search—-challenge



a competitive and realistic baseline for personalization from the
literature. In particular, in order to have non-trivial relationships
between gain and risk at the model level, the feature set should
contain a rich set of features with the potential for the trade-off to
be exploited.

To complement the analysis over the Bing data, the WSCD ‘12
and WSCD ‘14 datasets give two publicly available datasets to
reproduce a similar style of experiment where the amount of per-
sonalization is limited by the types of features that are available. In
particular in the WSCD °12 dataset only short-term (session) identi-
fiers for users are available while the WSCD ‘14 dataset has both
short- and long-term information via a consistent user ID across ses-
sions. In both datasets, query text and URLs have been replaced with
numerical IDs and topic and location information are not available.
Thus, some well-studied personalization features in the literature de-
pendent on location and topic cannot be computed. However, we can
compute proxies for many studied features and have implemented
the proxies for short-term refinding, personal navigation, and query
similarity features described in [30] for the WSCD ‘12 dataset and
both short- and long-term proxies of the same for the WSCD 14
dataset. We note that, on all datasets, we have the original position
and score of documents under the ranking presented to the user as
both a re-ranking feature and to compute our preference models.

For the WSCD ‘12 dataset, we split the data according to the
SessionlD metadata in the logs. Sampled sessions with SessionID
smaller than 3E + 07 were used for training and validation, and the re-
mainder were used for testing. In total, the sampled train/validation/test
sets contain 593K/591K/592K queries respectively. We performed
a similar partitioning by user ID over the published training set for
WSCD ‘14 and downsampled to obtain train/validation/test sets of
1.31M/654K/654K queries, respectively.

S. RESULTS AND DISCUSSION

Performance Summary. We start by discussing results on the
Bing dataset in Table 2 (top) . First, we note that all of the personal-
ization models selected achieve significant gains in A M AP over the
non-personalized baseline. Furthermore, the baseline Standard Gain
model demonstrates similar performance to reported models in the
literature that use both short- and long-term features [3]; However, it
also re-ranks quite often (41.19%), and when the change in MAP is
penalized by dividing by the number of queries re-ranked the credit
drops to a difference of 2.58 (A MAP/R). This re-ranking can also
be seen by Kendall’s 7 where the average overall (K-7) is lower than
all of the other models except the Lowest-Click-Plus-One model
even though the average Kendall’s 7 over only those queries re-
ranked (K-7|R) for the Standard Gain model is comparable to those
other models: this indicates when the model does change the rank-
ing, the number of pairwise swaps relative to the non-personalized
ranking is about the same. However, it changes the rankings far
more often with no measurable gain. Both our method, Weight-
Initial-Pref and the Risk Sensitive models improve the tradeoff of
gain to percentage of queries re-ranked, but Weight-Initial-Pref is
able to reduce the percentage of queries far more while maintaining
gain. In the following discussion section, we describe more details
about the differences in these methods.

When examining the Lowest-Click-Plus-One model, large gains
relative to the non-personalized ranking are achieved, but a large
number of queries are re-ranked (62.02%), and when changed, they
are reordered on average the most of any method (K-7|R=86.68).
As aresult, a favorable tradeoff relative to the Standard Gain model
is never attained. One possibility is that this model is simply increas-
ing the variance among the unexamined documents; however, this
exploration comes at a noticeable cost to measurable relevance.

Summarizing the results on WSCD ‘12 and WSCD ‘14 (respec-
tively middle and bottom sections in Table 2), we note the same
trends generally hold up although they are less pronounced in these
datasets where less rich personalization features are available. Once
again the personalized Standard Gain model produces gains over
the non-personalized baseline ranking presented to the user. We
suspect that the absence of many personalization signals (due to the
anonymized nature of the release) is why none of the models reach as
high of a level of effectiveness for low re-ranking as observed in the
Bing data. Comparing between models, in the WSCD ‘12 dataset
the Weight-Initial-Pref model again demonstrates a substantially
higher re-ranking penalized change in MAP (A MAP/R = 2.48)
while maintaining 84.60% of the gain. This is while reducing re-
ranking by a 2x factor from the Standard Gain model of 98.14%
and a 1.33x factor from the most comparable gain Risk Sensitive
model of 65.35%. Results trend similarly on WSCD ‘14.

Discussion. The trade-offs between gains and percentage of
queries reranked are illustrated in Figures 1 - 3 respectively for
Bing, WSCD ‘12 and WSCD ‘14 datasets. In all these figures, the -
axis represents the percentage of re-ranked queries while the y-axis
shows the performance of different methods in terms of normalized
gain. The left plots in each figure are generated based on models
selected for each approach while the right plots depict the gain vs.
reranking trade-offs across all parameter values. Next we describe
our selection criterion for picking these models.

Examining the left figures for Naive baseline, as p — 1, the
resulting mixed model has a performance that moves to the top right
and as p — 0, the mixed model is increasingly the non-personalized
ranking that has no relative improvements. The Naive baseline
represents the achievable performance by fixing p to some value in
[0, 1]. Therefore, only improvements above and to the left of the
Naive line represent useful tradeoffs not dominated by some Naive
model’s performance with appropriately chosen p. More generally,
for any two models, the tradeoffs along the line between them can be
achieved in the same fashion. This means that increasing the convex
hull” is better, and in particular, having a set of models whose area
under the curve is maximized.

On the Bing dataset (Figure 1) we see that both the Weight-Initial-
Pref models and Risk Sensitive models achieve improved tradeoffs
of gain and percentage of queries re-ranked relative to the Naive
method. However, relative to all of the risk sensitive models, the
Weight-Initial-Pref model offers substantial improvements, main-
taining 95.28% of the total gain while only re-ranking 5.92% of the
queries (See Table 2 for details). This is a 7x reduction in num-
ber of queries re-ranked relative to the Standard Gain model while
keeping nearly all of the gain. As can be seen from the impact on
queries where the SAT clicked results changed position, this was
achieved by learning a model where the changed queries have a
larger average gain than the Standard Gain model, and when penal-
ized for re-ranking, the amount of improvement per query re-ranked
(AMAP/R = 17.08) is much better than the other methods.

In comparing the Weight-Initial-Pref model to various risk sensi-
tive tradeoffs, we see that if we try to choose a risk sensitive model
with a similar gain but minimum risk, RS (Min Risk, Gain Parity), we
re-rank 3.5x more often (5.92% vs. 20.77%). This is the horizontal
space between the black diamond and orange plus in Figure 1 (left).
If we try to choose a risk sensitive model with a similar amount
of re-ranking but maximal gain, RS (Max Gain, near Rerank), we
never reach as little re-ranking before gain starts dropping precipi-
tously for 81.54% gain at 8.43% of re-ranking for the risk model vs.

"The outer edge not below a line connecting any other two points.



Table 2: Results on Bing (top), WSCD ‘12 (middle), and WSCD ‘14 (bottom). There are 443k, 592K, and 654K queries in the test sets,
respectively. Statistically significant (p < 0.05 two-tailed paired ¢-test) gains relative to the non-personalized ranker are underlined.

[ Method | Param. [ AMAP | AMAP/R | % Re-ranked | % Risk | % Gain | K-1 | K-7[R |
Standard Gain Qpisk =0 1.06 41.19 100.00 100.00 | 95.43 88.90
Weight-Initial-Pref £=0.2 1.01 5.92 59.27 95.28 99.39 89.70
Risk Sensitive Qrisk =05 0.95 10.04 37.87 89.39 99.02 | 90.23
RS (Min Risk, Gain Parity) Qpisk =1.6 1.01 20.77 57.95 95.21 97.83 89.55
RS (Max Gain, near Rerank) | ;s =10 0.87 10.27 8.43 26.99 81.54 99.24 | 90.98
Lowest-Click-Plus-One £=1.2 0.93 62.02 50.46 87.53 91.74 | 86.68

[ Method | Param. | MAP | AMAP [ AMAP/R | % Reranked | % Risk | % Gain | K- | K-7[R |
Standard Gain Qpisk =0 68.12 1.43 1.46 98.14 100.00 100.00 | 80.82 | 80.46
Weight-Initial-Pref £=0.4 67.90 1.21 2.48 49.01 55.34 84.60 96.18 | 92.21
Risk Sensitive sk =1.7 | 67.90 1.22 1.87 65.35 43.37 85.19 92.60 | 88.68
RS (Min Risk, Gain Parity) arisk=1.7 | 67.90 1.22 1.87 65.35 43.37 85.19 92.60 | 88.68
RS (Max Gain, near Rerank) | a,jsp =3 67.66 0.97 1.92 50.82 25.24 67.93 95.39 | 90.93
Lowest-Click-Plus-One £=0.9 67.02 0.34 0.34 99.87 28.15 23.72 7487 | 74.84

[ Method | Param. [NDCG@10 [ ANDCG@10 | ANDCG@10/R | % Re-ranked | % Risk | % Gain | K-7 | K-7[R ]
Standard Gain Qrisk =0 80.54 0.8255 0.88 93.99 100.00 100.00 | 88.38 87.64
Weight-Initial-Pref £=0.01 80.45 0.7324 4.24 17.27 55.20 88.72 97.74 | 86.91
Risk Sensitive Qrisk =93 80.41 0.6949 4.21 16.50 32.37 84.18 98.07 88.30
RS (Min Risk, Gain Parity) Qrisk =2 80.45 0.7317 3.3 21.58 40.39 88.64 97.54 | 88.60
RS (Max Gain, near Rerank) | o, ;sx =3 80.41 0.6949 21 16.50 32.37 84.18 98.07 88.30
Lowest-Click-Plus-One B=1 80.13 0.4162 0.42 99.98 45.45 50.42 79.7 79.70
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Figure 1: In the Bing dataset, trade-off between gain (normalized to max of standard model) and queries re-ranked for selected
models (Left) and at all parameter values for the Risk-Sensitive and Weight-Initial-Pref approaches (Right).

95.28% gain at 5.92% re-ranking for the Weight-Initial-Pref model
(vertical distance between the black ‘x’ and orange ‘4’ in Figure
1). If we select the risk sensitive model to maximize the area for
gain vs. re-ranked, both gain and re-ranking suffer; the risk model
has 89.39% gain with 10.04% re-ranking vs. 95.28% gain at 5.92%
re-ranking for the Weight-Initial-Pref model (diagonal distance be-
tween the black ‘o’ and orange ‘+’ in Figure 1). In addition, while
the Weight-Initial-Pref model is slightly worse in measurable risk
than the Risk Sensitive model (59.27% to 57.95%) the comparable
gain indicates that there has been an increase in measurable reward.
Thus, for a slight increase in click-based risk there is a corresponding
increase in click-based reward and a major reduction in re-ranking.
Furthermore, we see in Figure 1 across the whole range of gain vs.
re-ranking tradeoffs that the Weight-Initial-Pref models perform at
least as well as the risk models and substantially outperform them
in the low re-ranking, high gain corner (the optimal top left corner).
On the WSCD datasets, the Weight-Initial-Pref models also achieve
better gain for comparable re-ranking across the full range in Figure
2 (right). In the WSCD ‘14, the impact is the lowest, here the edge
of gain to re-ranking percentage is the least but still visible in Figure

3. In comparison to the risk-sensitive model that attains the same
gain, RS (Min Risk, Gain Parity), there is still a 20% reduction in
re-ranking and a 5x reduction relative to the Standard Gain model.
We believe improvements on this dataset could be increased by gen-
eralizing our method to preserve order between degrees of relevance
— this is the only dataset with multiple degrees of relevance.

In summary, on all datasets the Weight-Initial-Pref models show
large decreases in the amount of re-ranking relative to the baseline
personalized Standard Gain models while reducing measurable gain
slightly. It also provides moderate to large reductions in re-ranking
relative to the risk-sensitive and Lowest-Click-Plus-One models
while providing as much to substantially more gain than them.

6. RELATED WORK

Our work is related to prior research in personalization, learning
to rank, axiomatic IR, click modeling, and online learning. We
briefly review the most relevant work in each of these areas next.

Search Personalization. Personalizing search results based on
context has been consistently reported to improve retrieval effective-
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Figure 2: In the WSCD €12 dataset, trade-off between gain (normalized to max of standard model) and queries re-ranked for selected
models (Left) and at all parameter values for the Risk-Sensitive and Weight-Initial-Pref approaches (Right).
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Figure 3: In the WSCD ‘14 dataset, trade-off between gain (normalized to max of standard model) and queries re-ranked for selected
models (Left) and at all parameter values for the Risk-Sensitive and Weight-Initial-Pref approaches (Right).

ness [3, 27, 31, 34, 35]. Typically, context refers to anything that can
distinguish the user from the rest — or most — of the population. The
most widely used contextual features are users’ previous queries
and clicks [3, 30, 34, 39], but other contextual features based on a
user’s browsing history [35], user-specific topical profiles [3, 31],
location [4] or demographics [29] have also been demonstrated to
be effective for personalizing search results.

In the majority of these studies, the original results returned
by a context-independent ranker are passed to a re-ranker trained
for personalization. Like those works, we assume throughout that
personalization will be conducted by learning a single model which
re-ranks the results from a non-personalized ranker [3, 34, 35], but
our technique is equally applicable for learning a single re-ranking
model per user or constructing a target ranking for evaluation by
other personalization frameworks. Such re-rankers are typically
trained by sampling sessions from search logs and consider satisfied
clicks in those sessions as ground-truth relevance.

What has often been overlooked by these techniques is the po-
tential pairwise preferences between non-SAT or non-clicked doc-
uments. By treating all such documents as equally non-relevant,
the personalized re-ranking models ignore the underlying pairwise
preferences between such documents that could be inferred by re-
specting the positions in the original non-personalized ranking. In
this paper, we demonstrate how integrating preferences based on the

original ordering and click modeling can significantly reduce the
risk of wrong re-rankings in personalization.

Multi-objective Learning to Rank. Learning to rank [23]
covers a large body of supervised and semi-supervised techniques in
which the goal is to learn a ranking function over available retrieval
features. The labels for training are usually collected manually for a
set of documents, or as stated earlier, are inferred based on collected
clicks. The common objective among ranking models is to optimize
for relevance. However, in many ranking scenarios, there might be
more than one measure for optimization. For instance, Dong et al.
[13] demoted outdated labels in their training data and developed
a ranker that can be optimized for freshness and relevance. In a
similar vein, Svore et al. [32] used historical clicks to break the ties
in training when a pair of documents share the same relevance label.

Our work is related to these multi-objective scenarios, as we are
interested in maximizing the personalization gain while minimizing
the risk of diverging from the original preferences. The closest study
to our work, which we also use as one of our experimental baselines,
is the risk-sensitive optimization framework of Wang et al. [37] that
is trained to maximize the difference between the total improvement
in ranking relative to a baseline and the weighted total decrease in
performance. Increasing the weight penalizes failures more heavily
to learn more risk-averse models. Quite recently Dinger et al. [12] ex-
tended this framework to a query-specific risk-weighting where the



weight was derived from the significance of deviation in risk relative
to the overall risk distribution. In experimentation, we demonstrate
that only optimizing a click-based measure of risk in personalization
using the uniform weighting of queries as in [37] yields an inferior
overall solution viewed according to several other measures of risk
— such as percentage of queries re-ranked. Furthermore, although
we do not pursue it here, our approach could be combined with
either the optimization of the uniform query-weighting of risk or
the query-specific weighting by using the implicit preferences to
infer a target ranking and the optimization framework to optimize
the risk-objective relative to the inferred target ranking.

Axiomatic Information Retrieval. Our work is related to
other axiomatic approaches in information retrieval. For example,
Fang and Zhai [15] proposed a set of constraints for weighting terms
in documents based on document length and term statistics. The
same authors later generalized term weighting models to incorporate
the semantic similarity of terms [16]. Gollapudi and Sharma [18]
discussed a set of axioms for balancing novelty and relevance in di-
versification and showed that no diversity function can satisfy them
all. We develop an axiomatic approach for personalization where
interaction feedback is combined with non-personalized relevance.

Click Modeling. Clicks capture a user’s implicit feedback about
documents and have been shown to provide effective ranking fea-
tures [1] and large-scale pseudo-relevance labels [22]. Consequently,
much attention has been devoted to click modeling and interpret-
ing clicks in search logs. Joachims [21] pioneered the application
of clicks as labels for optimizing rankers. In a follow up study,
Joachims et al. [22] showed that clicks are subject to various pre-
sentation biases and proposed a set of rules for inferring pairwise
preferences based on clicks. In another work, Agichtein et al. [2]
reported similar biases and showed accounting for these biases can
significantly improve retrieval effectiveness. Agichtein et al. [1]
incorporated features based on click data in training rankers and
proposed a set of features for predicting relevance preferences from
clicks. We leverage these earlier insights to establish axioms for
constraining the strength a preference should have; by comparing to
an adaptation of the constrained preference ranking of Radlinski and
Joachims [24], we demonstrate that which preferences are included
for learning are key in controlling the risk of personalization.
Several studies have attempted to model user search behavior for
better interpretation of clicks and separating out the relevance aspect
from position bias [11, 14, 19]. In one of the earliest work in this
area, Craswell et al. [11] suggested a cascade model in which users
browse results from top to bottom and leave as soon as they find a
document that satisfies their intent. The dynamic Bayesian network
model (DBN) of Chapelle and Zhang [7] explains the clicks on doc-
uments based on their perceived and actual relevance. The former
factor is determined according to the probability of click based on
the URL, while the latter measures the probability of satisfaction
given that the document is clicked. A recent work by Chuklin et al.
[8] presents a comparative analysis over several state-of-the-art click
models. When learning from clicks, Ustinovskiy and Serdyukov
[35] investigate a simple fusion method of the scores of the personal-
ized and non-personalized ranker to avoid over-personalizing. This
is like our naive baseline (see Section 3.2) although their method
is targeted at increasing the correlation of the personalized ranking
with the non-personalized ranking and not at optimizing the trade-
off between the percentage of queries personalized and total gain.
We demonstrate both increased correlation and a reduction in the
percentage of queries personalized. Very recently, Ustinovskiy et al.
[36] learned the weights to give to URLs during training by using

interaction signals only available at training time. However, they do
not demonstrate a reduction in risk and show a very marginal gain
in relevance. Whether their method of using training time signals to
learn weights can be incorporated with our approach is an interesting
avenue for future work. In contrast to previous click modeling work,
our focus is not only on predicting what will be clicked by the user,
but we also enforce constraints during learning that ensure relevant
documents are at the top while documents deemed non-relevant
remain in their most conservative order.

Online Learning. Several recent approaches to online learning
from interaction data are also related. In particular, Shivaswamy and
Joachims [28] present and Raman et al. [26] later extend a coactive
learning method for personalizing rankings from implicit feedback
by using online learning to incrementally update a trained model
from user click data. In their approach, the user feedback is in the
form of clicks that are used to perform an online update to the model
in order to improve the search results for the following searches.
Perhaps the main limitation of the coactive learning method is the
dependence on a linear weight vector over features; often complex
non-linear models such as boosting [38] perform substantially better
than linear models, and it is not clear how to extend the Coactive
learning method to non-linear models that do not depend on linear
weight vectors. In contrast, our method can be used by a variety of
learning algorithms including gradient-boosted decision trees. Also,
in order to make coactive learning robust to imperfect feedback, the
rankings presented to users must be slightly perturbed to promote
unbiased exploration [26]. In contrast, the method we propose in
this paper avoids the problem of oscillation by learning personal-
ized rankings that are consistent with the original pre-personalized
ranking over all the data instead of in an online fashion — thus
preventing the large changes in ranking that can occur with coactive
learning in the presence of noisy user feedback.

In contrast to previous work, we demonstrate that click-based
approaches to evaluating personalization do not capture all aspects
of the risk of decreasing relevance by personalizing results when not
appropriate. In particular, we focus on what axioms must be satisfied
in determining the strengths of preferences to provide both a person-
alized signal of relevance while maintaining an overall conservative
approach. We develop a framework that can be flexibly used to
set gains for learning personalized models with a wide variety of
learning methods including both linear models and gradient-boosted
decision tree approaches. Empirically, we demonstrate that risk can
be managed in personalization by incorporating information from
the non-personalized ranking while still maintaining the constraint
that clicked or satisfied clicked results are ranked highest.

7. FUTURE WORK & CONCLUSIONS

This work has many potential future extensions of interest. In
particular, the strength of preference functions we give here are only
one way to satisfy the axioms. There are other ways that would yield
a weight on the non-personalized ranker preference () less than («).
This includes but is not limited to making () query-specific where
the number of past impressions might differentially weight updates
to head or tail queries, dealing with query result churn by using the
number of times a pair is displayed rather than the query, and using
a Bayesian approach that models the strength as a probability and
performs a Bayesian update depending on other factors (e.g., eye and
or cursor tracking). Likewise, considering how to integrate explicit
preference judgments or multiple grades of relevance from either the
user or an annotator are interesting extensions and might be used as
the basis of considering other weightings on the unexamined results



after the lowest click. These extensions result directly from casting
the problem as a preference assignment problem — while directly
defining the target ranking given interaction feedback may be hard,
it is both more principled and easier to define how to update pairwise
preferences based on those interactions and how to aggregate the
preferences to define a target ranking.

In summary, we identified a problem previously unappreciated in
the literature. Namely, treating implicit data as relevance judgments
leads to often re-ranking queries when there is no demonstrable
gain. After identifying this problem, we formulated two simple
axioms that lead to global constraints on a target ranking which
has the relevant results always on top and then orders results within
type consistent with the original ranking results after that. In three
real-word commercial search engine logs, learning using this target
ranking leads to a substantial reduction in the number of queries re-
ranked of 2x-7x fewer queries re-ranked while maintaining 85-95%
of the total gain achieved by the standard approach.

References

[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search
ranking by incorporating user behavior information. In Proc.
SIGIR, 2006.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno. Learning
user interaction models for predicting web search result
preferences. In Proc. SIGIR, 2006.

[3] P. Bennett et al. Modeling the impact of short- and long-term
behavior on search personalization. In Proc. SIGIR, 2012.

[4] P. N. Bennett, E. Radlinski, R. W. White, and E. Yilmaz.
Inferring and using location metadata to personalize web
search. In Proc. SIGIR, 2011.

[5] C. Burges, R. Ragno, and Q. Le. Learning to rank with
non-smooth cost functions. In Proc. NIPS, 2006.

[6] C.J.C. Burges, K. M. Svore, P. N. Bennett, A. Pastusiak, and
Q. Wu. Learning to rank using an ensemble of
lambda-gradient models. JMLR, 14, 2011.

[7] O. Chapelle and Y. Zhang. A dynamic bayesian network click
model for web search ranking. In Proc. WWW, 2009.

[8] A. Chuklin, P. Serdyukov, and M. de Rijke. Click
model-based information retrieval metrics. In Proc. SIGIR,
2013.

[9] K. Collins-Thompson. Reducing the risk of query expansion
via robust constrained optimization. In Proc. CIKM, 2009.

[10] K. Collins-Thompson, P. N. Bennett, F. Diaz, C. Clarke, and
E. M. Voorhees. Trec 2013 web track overview. In TREC ’13,
2013.

[11] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
Proc. WSDM, 2008.

[12] B. T. Dinger, C. Macdonald, and I. Ounis. Hypothesis testing
for the risk-sensitive evaluation of retrieval systems. In Proc.
SIGIR, 2014.

[13] A.Dong et al. Time is of the essence: Improving recency
ranking using twitter data. In Proc. WWW, 2010.

[14] G.E. Dupret and B. Piwowarski. A user browsing model to
predict search engine click data from past observations. In
Proc. SIGIR, 2008.

[15] H. Fang and C. Zhai. An exploration of axiomatic approaches
to information retrieval. In Proc. SIGIR, 2005.

[16] H. Fang and C. Zhai. Semantic term matching in axiomatic
approaches to information retrieval. In Proc. SIGIR, 2006.

[17] S. Fox et al. Evaluating implicit measures to improve web
search. ACM Trans. Inf. Syst., 23(2), Apr. 2005.

[18] S. Gollapudi and A. Sharma. An axiomatic approach for
result diversification. In Proc. WWW, 2009.

[19] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y.-M. Wang,
and C. Faloutsos. Click chain model in web search. In Proc.
WWW, 2009.

[20] K. Jdrvelin and J. Kekéldinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4), Oct.
2002.

[21] T. Joachims. Optimizing search engines using clickthrough
data. In Proc. SIGKDD, 2002.

[22] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski,
and G. Gay. Evaluating the accuracy of implicit feedback
from clicks and query reformulations in web search. ACM
Trans. Inf. Syst., 25(2), Apr. 2007.

[23] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval, 3(3), 2009.

[24] F. Radlinski and T. Joachims. Query chains: Learning to rank
from implicit feedback. In Proc. SIGKDD, 2005.

[25] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality. In CIKM ‘08, 2008.

[26] K.Raman, T. Joachims, P. Shivaswamy, and T. Shnabel.
Stable coactive learning via perturbation. In Proc. ICML,
2013.

[27] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. In Proc. SIGIR, 2005.

[28] P. Shivaswamy and T. Joachims. Online structured prediction
via coactive learning. In Proc. ICML, 2012.

[29] M. Shokouhi. Learning to personalize query auto-completion.
In Proc. SIGIR, 2013.

[30] M. Shokouhi, R. W. White, P. Bennett, and F. Radlinski.
Fighting search engine amnesia: Reranking repeated results.
In Proc. SIGIR, 2013.

[31] A. Sieg, B. Mobasher, and R. Burke. Web search
personalization with ontological user profiles. In Proc. CIKM,
2007.

[32] K. M. Svore, M. N. Volkovs, and C. J. Burges. Learning to
rank with multiple objective functions. In Proc. WWW, 2011.

[33] J. Teevan, S. T. Dumais, and D. J. Liebling. To personalize or
not to personalize: modeling queries with variation in user
intent. In Proc. SIGIR, 2008.

[34] J. Teevan, D. J. Liebling, and G. Ravichandran Geetha.
Understanding and predicting personal navigation. In Proc.
WSDM, 2011.

[35] Y. Ustinovskiy and P. Serdyukov. Personalization of
web-search using short-term browsing context. In Proc.
CIKM, 2013.

[36] Y. Ustinovskiy, G. Guseyv, and P. Serdyukov. An optimization
framework for weighting implicit relevance labels for
personalized web search. In Proc. WWW, 2015.

[37] L. Wang, P. N. Bennett, and K. Collins-Thompson. Robust
ranking models via risk-sensitive optimization. In Proc.
SIGIR, 2012.

[38] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting boosting
for information retrieval measures. Journal of Information
Retrieval, 2009.

[39] B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and H. Li.
Context-aware ranking in web search. In Proc. SIGIR, 2010.



	1 Introduction
	2 Problem Approach
	2.1 Axioms for Stable, Personalized Ranking
	2.2 Extension to Unexamined Results

	3 Empirical Methodology
	3.1 Performance Measures
	3.2 Baselines

	4 Data & Features 
	5 Results and Discussion
	6 Related Work
	7 Future Work & Conclusions


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150812063807
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20150812063807
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

 HistoryList_V1
 qi2base



