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Abstract

We propose a novel approach to addressing the adaptation effec-
tiveness issue in parameter adaptation for deep neural network
(DNN) based acoustic models for automatic speech recognition
by adding one or more small auxiliary output layers modeling
broad acoustic units, such as mono-phones or tied-state (often
called senone) clusters. In scenarios with a limited amount of
available adaptation data, most senones are usually rarely seen
or not observed, and consequently the ability to model them in
a new condition is often not fully exploited. With the original
senone classification task as the primary task, and adding auxil-
iary mono-phone/senone-cluster classification as the secondary
tasks, multi-task learning (MTL) is employed to adapt the DNN
parameters. With the proposed MTL adaptation framework,
we improve the learning ability of the original DNN structure,
then enlarge the coverage of the acoustic space to deal with the
unseen senone problem, and thus enhance the discrimination
power of the adapted DNN models. Experimental results on
the 20,000-word open vocabulary WSJ task demonstrate that
the proposed framework consistently outperforms the conven-
tional linear hidden layer adaptation schemes without MTL by
providing 3.2% relative word error rate reduction (WERR) with
only 1 single adaptation utterance, and 10.7% WERR with 40
adaptation utterances against the un-adapted DNN models.
Index Terms: deep neural networks, speaker adaptation, multi-
task learning, CD-DNN-HMM

1. Introduction

Context-dependent deep neural network hidden Markov models
(CD-DNN-HMMs) have outperformed conventional context-
dependent Gaussian mixture hidden Markov models (CD-
GMM-HMMs) [1] in various tasks and data sets [2]. Un-
fortunately, CD-DNN-HMMs also suffer from the same per-
formance degradations as CD-GMM-HMMs due to potential
acoustic mismatches between the training and testing condi-
tions. In recent years, several adaptation approaches have been
proposed to address this mismatch issue, such as regulariza-
tion based [3, 4], subspace based [5, 6], transformation based
[7, 8,9, 10], i-Vector based [11], native neural network adapta-
tion [12, 13, 14], factorized adaptation [15] and speaker code
based [16, 13, 17, 18] techniques. Nonetheless, with CD-
DNN-HMM adaptation, the key issue is the large number of
DNN parameters employed in order to properly model the tied
context-dependent triphone HMM states, sometimes referred to
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as senones [19]. This often implies that a huge number of output
branch parameters connected to the output senone nodes need
to be adjusted with but only a small amount of adaptation data is
available to be able to cover all senones well. Hence the poste-
rior probabilities of both unseen and scarcely observed senones
are be pushed towards zero during adaptation. In addition, DNN
parameters are updated all together by each training example,
which makes it very difficult to modify parameters only for a set
of particular senones. As a result, the ability to model scarcely
observed or unseen senones is not as well balanced with that for
the observed senones, reducing the adaptation effectiveness in
improving the overall ASR performance.

The issues related to scarcely observed or unseen senones
could be better contrasted by focusing on the output layer. In-
deed, the authors in [20] proposed to directly modify the neu-
ral structure at the output layer. Specifically, an additional out-
put layer mapping the original set of DNN output classes to
a smaller set of phonetic classes was appended to the original
senone output layer, and adaptation was carried out by back-
propagation of errors from the new output layer. By appending
the new output layer to a set of broad acoustic units, this ap-
proach successfully reduces the occurrences of unseen senones
in the adaptation data. During recognition, the small output
layer is removed, and the senone output layer is actually used.
For the sake of completeness, it should be remarked that both
the hierarchical MAP approach [21] and the KLD-based regu-
larization technique [4] focus on the output layer but in an in-
directed way since the actual structure of the output layer is not
modified.

Inspired by [20], we propose a novel approach to address-
ing the data sparsity issue by adding to the original DNN struc-
ture one or more small auxiliary output layers to model broad
acoustic units, such as mono-phones, or senone clusters. With
learning the original senone output layer as the primary task
and learning the auxiliary output layers as the secondary tasks,
DNN is then adapted through multi-task learning (MTL), a ma-
chine learning scheme letting a classifier learn related tasks
at the same time [22]. When the tasks are properly chosen,
what is learned from one task may be usefully for the other
tasks. MLT has been proposed for improving the generaliza-
tion capability of classifiers, and it has been adopted in vari-
ous speech recognition tasks, such as isolated digit recognition
[23, 24] and phoneme recognition [25], and in speech enhance-
ment tasks [26]. By adding the auxiliary architecture to the
original DNN, and performing MTL with the secondary task
for recognizing broader sense acoustic units than senones, we
improve the learning ability of the original DNN structure, en-



larging the coverage of acoustic space to better deal with the
unseen senone problem and thus enhancing the discrimination
power of the adapted DNN models with limited adaptation data.
In this framework, the secondary mono-phone/senone-cluster
classification task serves as an auxiliary information source for
the primary senone classification task. This way we can control
the influence of the auxiliary information by choosing proper
weights for the objective function of the secondary tasks.

Experimental results of supervised adaptation on the
20,000-word open vocabulary WSJ task demonstrate that the
proposed approach consistently outperforms the conventional
linear hidden layer adaptation schemes without MTL by pro-
viding 3.2% relative word error rate reduction (WERR) with
only 1 single adaptation utterance, and 10.7% WERR with up
to 40 adaptation utterances against un-adapted DNN models.

2. Training of Deep Models

In DNNSs, hidden layers are usually constructed by sigmoid
units, and the output layer is a softmax layer. The values of
the nodes can therefore be expressed as:
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where W1, and W are the weight matrices, b1, and b; are the
bias vectors, o' is the input frame at time ¢, L is the total num-
ber of the hidden layers, and both sigmoid and softmax func-
tions are element-wise operations. The vector x; corresponds
to pre-nonlinearity activations, and y; and y, are the vectors of
neuron outputs at the " hidden layer and the output layer, re-
spectively. The softmax outputs were considered as an estimate
of the senone posterior probability:

p(Cslo") = y4(j) = % 3

where C'; represents the 4*™ senone and yr, (7) is the 50 ele-
mentof yr.

The DNN is trained by maximizing the log posterior proba-
bility over the training frames. This is equivalent to minimizing
the cross-entropy objective function. Let X’ be the whole train-
ing set, which contains 7" frames, i.e. 01.7 € X, then the loss
with respect to X is given by
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where p(C;|o") is defined in Eq. (3) and p* is the target prob-
ability of frame ¢. In real practices of DNN systems, the target
probability ' is often obtained by a forced alignment by with
an existing system resulting in only the target entry that is equal
to 1.

The objective function is minimized by using error back-
propagation [27] which is a gradient-descent based optimiza-
tion method developed for neural networks. Specifically, taking
partial derivatives of the objective function with respect to the
pre-nonlinearity activations of output layer xr, , the error vector
to be backpropagated to the previous hidden layers is generated:

0L. -
€ = 81‘T =yL - b, Q)
XL

the backpropagated error vector at previous hidden layer is,
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where W7, is the transpose of W1, andx denotes element-
wise multiplication.

Mini-batch stochastic gradient descent (SGD) [28], with a
reasonable size of mini-batches to make all matrices fit into the
GPU memory, was used to update all neural network parameters
during training. Pre-training methods was used for the initiali-
sation of the DNN parameters [29].

3. DNN adaptation with auxiliary output
layers through MTL

A well trained DNN usually employs a large output layer di-
rectly modeling senones. As mentioned in Section 1, there are
various approaches to perform adaptation for DNN models. But
none of these approaches really look into the problem that for
some adaptation scenarios the available adaptation data is often
very limited, so that the adaptation data might not be able to
cover all the senones. In this paper, we address this problem
by adding one or more smaller auxiliary output layers to the
original DNN architecture.

Y1 y2
o—O
O O
w, . Ow, O ) ITask k
Input ——» 2 as
O © )
O O
Oo—O

Figure 1: Basic neural architecture for adaptation of
HMM/ANN models based on LHN through MTL. The output
layers are associated with different tasks. In adaptation, the pa-
rameters (weights) of the LHN associated to the links in the
dashed rectangle are estimated while all other weights remain
unchanged. The activation function of each LHN units (green
nodes) is a linear function.

3.1. Multi-task Learning

By adding the auxiliary architecture, the new DNN will have
more than one output layers. This kind of multi-output-layer
DNN can be trained using the MTL scheme. MTL is a ma-
chine learning scheme letting a classifier learn more than one
related tasks at a time [22]. As in Figure 1, there are multiple
output layers corresponding to different tasks, and the error vec-
tor from each output layer will be backpropagated to the same
last hidden layer, then the vector will be combined together in a
weighted sum fashion as in

K
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where €, is the error vector from the kth output layer and wy
is the weight for the corresponding task. The combined error
vector €7y, is then backpropagated to previous hidden layers.

When the tasks are properly chosen, what is learned from
one task will help the other tasks and usually there will be a pri-
mary task and several secondary tasks to aid the primary one.
In this paper, the primary task is classification of senones and
the secondary tasks are set to classify broader sense acoustic
units such as mono-phones or senone-clusters. By doing so,
the broader sense acoustic units in the added output layers help
improve the learning ability of the original DNN structure, en-
large the coverage of acoustic space to better deal with the un-
seen senone problem and thus enhance discrimination power of
adapted DNN models with limited adaptation data.

The secondary tasks in this paper for limited resource adap-
tation need broader sense acoustic units than senones as classi-
fication targets. Obviously mono-phones suits such purpose be-
cause a mono-phone is usually corresponds to tens or hundreds
of senones. To some extent, a mono-phone can be deemed as a
rule-driven cluster of senones.

It is shown in [30], that a log-linear model is equivalent to
a Gaussian model. The general form of a log-linear model is

PO = oA, ®)

where f;(z) is the i, feature function for input x, \j; is the
weight for the jy, class and iy, feature, and Z(x) is for nor-
malization. The mapping from a log-linear model to a Gaussian
model N (x|u;, 3;) is
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where A? and A are the second- and first-order weights, AX?
is a constant to make 3 ; positive definite.

The softmax function used in the DNNs’ output layer can
be considered as a log linear model. From the practice of [31],
we know that every senone can be represented by a Gaussian
distribution with

%, =3, p;=3X[W; b (10)
where W, b, are the weights and bias for senone j and 3
can be an arbitrary positive definite matrix, so for any pair of
senones, the symmetric KL divergence could be used as their
distance measure. With the distance measure, the large set of
senones can be clustered into a small set by various clustering
technologies. We use the method in [31] to generate senone
clusters, which are data-driven acoustic units.

3.2. Linear Hidden Network Adaptation

Nearly all of the adaptation technologies for DNN model men-
tion in Section 1 will fit the proposed MTL adaptation frame-
work. In this paper, we choose the very commonly used
method, linear hidden network (LHN), as the basic adaptation
approach to demonstrate effectiveness of the proposed MTL
adaptation framework. The LHN adaptation is performed by
adding an affine transformation network between the last hid-
den layer and the output layer, and adapting only the augmented
LHN’s parameters while keeping fixed all of the other DNN pa-
rameters [8]. In order to reduce the amount of parameters to
adapt, usually the last hidden layer is designed to be a bottle-
neck (less neurons), and superior results were obtained by this
kind of LHN formulation [32, 33]. The LHN adaptation struc-
ture can be found in Figure 1. If we deem the hidden layers

as a feature extractor and the output layer as the discriminative
model, the LHN formulation is quite similar to maximum like-
lihood linear regression (MLLR) [34]. The difference is that
in MLLR the model parameters are Gaussian mean and vari-
ance while here the model parameters are the log-linear model’s
transformation matrix weights.

4. Experiments
4.1. Baseline DNN Setup

This study is concerned with supervised speaker adaptation.
Experiments are reported on the 20K-word open vocabulary
Wall Street Journal task [35] using the Kaldi toolkit [36].

The baseline CD-DNN-HMM system for was trained us-
ing the WSJO material (SI-84). The standard adaptation set
of WSJO (si_et_ad, 8 speakers, 40 sentences per speaker) was
used to perform adaptation of the affine transformation added
to the speaker-independent DNN. The standard open vocab-
ulary 20,000-word (20K) read NVP Senneheiser microphone
(si_et_20, 8 speakers x 40 sentences) data were used for evalua-
tion. Training was stopped using an held-out set comprising the
si_dt_20 WSJO data. A standard trigram language model was
adopted during decoding. The ASR system performance was
given in terms of the word error rate (WER).

The DNN has six hidden layers. The first five hidden lay-
ers have 2048 units, whereas the last hidden layer has 216
units. The output layer has 2022 softmax units correspond-
ing to the senones generated using a CD-GMM-HMM base-
line. This DNN architecture follows conventional configura-
tions used in the speech community except for the last hid-
den layer, which acts as a bottleneck layer. This configura-
tion was chosen, because a too large dimension of the last non-
linear hidden layer might have been harmful to LHN adaptation.
The bottleneck based low rank methods has been widely used
to achieve more compact DNN models with equivalent perfor-
mance [37, 38]. The number 216 was chosen to simulate a sort
of three-state phone layer thereby obtaining a kind of hierar-
chical structure between mono-phones in the hidden layer and
senones at the output layer. The input feature vector is a 23-
dimension mean-normalized log-filter bank feature with up to
second-order derivatives and a context window of 11 frames,
forming a vector of 759-dimension (69 x 11) input. The DNN
was trained with an initial learning rate of 0.008 using the cross-
entropy objective function. It was initialised with the stacked
restricted Boltzmann machines (RBMs) by using layer by layer
generative pre-training.

4.2. Adaptation Setup

In order to perform MTL adaptation, the auxiliary output layers
should first be prepared. For each auxiliary task, we first ran-
domly initialised the additional output layer’s affine transfor-
mation matrix and then use the training data to fine-tune them
while keeping all other parameters in the DNN fixed. Fine-
tuning used an initial learning rate of 0.0005 with the cross-
entropy based objective function. In this 20K-word open vo-
cabulary WSJ task, the mono-phone output layer has 42 units
and so is the senone-cluster output layer.

After we obtained the auxiliary output layers, an LHN was
inserted between the last hidden (bottleneck) layer and the out-
put layers’ affine transform matrix. The 216 x 216 LHN is
initialized to an identity matrix with zero bias, which gave a
starting point equivalent to the unadapted model. Supervised
adaptation is then performed updating only the LHN parame-
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Figure 2: Percentage of the target units (senones/mono-
phones/senone-clusters) visited and adapted, with respect to the
number of adaptation utterances

ters. In decoding, only the original senone based outputs were
used while the auxiliary architecture was discarded at this stage.

4.3. Adaptation Results

Table 1 shows the adaptation results of MTL adaptation in the
20K-word open vocabulary WSJ experiments. All the results
were obtained by adding only one single auxiliary task, ei-
ther mono-phone or senone-cluster classification, to the original
senone classification task. We tried to include both of the two
auxiliary tasks, but the results are similar to those by just adding
a single task. The w in the tables means the weight of the ob-
jective function for the auxiliary task when combined with the
original one. As there were only two tasks during each adapta-
tion process, the original senone classification task’s weight is
therefore 1 —w. w = 0 means plain LHN adaptation without the
auxiliary task and w = 1 means there is only the auxiliary task
being performed. The word “phone” means the mono-phone
task and word “cluster” means the senone-cluster task.

From Table 1, it is demonstrated that the proposed MTL
adaptation consistently outperforms plain LHN adaptation
without MTL, especially in the case of limited adaptation data.
3.2% WERR is gained from speaker independent DNN with
only 1 single adaptation utterance and 10.7% WERR with up to
40 utterances in the WSJ experiments.

4.4. Result Analysis and Discussions

Figure 2 shows the percentage of visited targets (senones/mono-
phones/senone-clusters) with respect to the number of adapta-
tion utterances. It can be observed that the coverage of the
acoustic space reaches about 100% with only 5 utterances by
using senone-cluster target units. The mono-phones units also
shows a good characteristic by covering more than 90% the
acoustic space with only 10 utterances. However, even with the
complete adaptation set, i.e. 40 utterances, the adaptation data
covers far below 90% of the targets when the senone is used.
From Table 1, the best results for the extreme resource-
limited cases, i.e., 1 or 2 utterances, is obtained by using
senone-clusters as the auxiliary task’s classification targets.
This phenomenon is consistent with what is shown in Figure 2,
i.e., a high coverage (80%) of the acoustic space can be reached

Table 1: WER obtained by MTL adaptation through mono-
phone/senone-cluster auxiliary task with different weight and
different amounts of adaptation data in the 20K-word open vo-
cabulary WSJ experiments experiments

# Adaptation w=0 w=0.75 w=1
Sentences | no MTL | phone | cluster | phone | cluster
BASELINE 8.84%
1 879% | 8.56% | 8.36% | 8.65% | 8.58%
2 858% | 8.42% | 8.42% | 8.54% | 8.52%
5 859% | 8.38% | 8.68% | 8.44% | 8.67%
10 852% | 8.33% | 8.47% | 8.45% | 8.42%
20 831% | 8.01% | 822% | 8.45% | 8.47%
40 822% | 7.89% | 8.17% | 8.28% | 8.58%

with only 2 utterances by using senone-clusters. When the
adaptation utterances increase, the coverage gap between mono-
phone and senone-cluster decreases, and mono-phone MTL be-
comes slightly better possibly due to good linguistic knowledge
in contrast with the data-driven senone-cluster.

One important point needed to be mentioned is that in de-
coding only the original senone based output layer is used. The
auxiliary architecture was discarded at this stage. But there is
an interesting phenomenon that even we adapted the DNN only
using the auxiliary task associated with mono-phone/senone-
cluster (w = 1 case in the tables), there is still an improvement
from the baseline DNN, and sometimes even better than using
the original primary task in some data-limited cases. This phe-
nomenon further demonstrates that the information introduced
by the auxiliary tasks can be quite effective in the limited re-
source scenarios.

5. Conclusions

We propose a novel approach to addressing the data sparsity
problem in CD-DNN-HMM adaptation by adding one or more
small auxiliary output layers modeling broad acoustic units,
such as mono-phones or senone-clusters, to the original DNN
structure, and update the DNN parameters through MTL. By
doing so, we improve the learning ability of the original DNN
structure, enlarge the coverage of the acoustic space to better
deal with the unseen senone problem, and thus enhance the
discrimination power of the adapted DNN models with lim-
ited adaptation data. We show the effectiveness of the proposed
framework in the 20K-word open vocabulary WSJ task. Exper-
imental results shows the proposed method consistently outper-
forms the conventional linear hidden layer adaptation schemes
without MTL. With only 1 single adaptation utterance, a WER
reduction of 3.2% is obtained from the speaker independent
DNN models and a 10.7% WERR can be achieved by using
40 utterances.

In the future, a combination of the Bayesian adaptation
framework [21] and the proposed MTL scheme can be ex-
ploited. Other kind of auxiliary tasks such as speech enhance-
ment and speaker verification could be investigated. Another
interesting direction is to automatically choose the sizes of the
secondary output layers and the weights to combine primary
and secondary objective functions according to the data amount,
task characteristics and other side information related to ASR.
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