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ABSTRACT

Search engines derive revenue by displaying sponsored results
along with organic results in response to user queries. In general,
search engines run a per-query, on-line auction amongst interested
advertisers to select sponsored results to display. In doing so, they
must carefully balance the revenue derived from sponsored results
against potential degradation in user experience due to less-relevant
results. Hence, major search engines attempt to analyze the rele-
vance of potential sponsored results to the user’s query using super-
vised learning algorithms. Past work has employed a bag-of-words
approach using features extracted from both the query and potential
sponsored result to train the ranker.

We show that using features that capture the advertiser’s intent
can significantly improve the performance of relevance ranking. In
particular, we consider the ad keyword the advertiser submits as
part of the auction process as a direct expression of intent. We
leverage the search engine itself to interpret the ad keyword by sub-
mitting the ad keyword as an independent query and incorporating
the results as features when determining the relevance of the ad-
vertiser’s sponsored result to the user’s original query. We achieve
43.2% improvement in precision-recall AUC over the best previ-
ously published baseline and 2.7% improvement in the production
system of a large search engine.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Relevance feedback;
L.5.4 [Applications]: Text processing
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1. INTRODUCTION

Search engines deliver two types of results in response to a user
query: organic and sponsored search results. Organic results are
identified from around the web based on their relevance to the
query. Sponsored results—i.e., advertisements—on the other hand,
are selected from submissions made by advertisers interested in at-
tracting the user. These additional results are chosen based on a
combination of relevance of the ad to the query and the expected
revenue the search engine will derive from displaying the ad [22].

When providing advertisements to the search engine, an adver-
tiser specifies for which user queries, e.g., “shirts”, “polos”, “jer-
sey”, etc. it would like to show each ad. These words, referred
to as ad keywords, are the basic mechanism through which adver-
tisers can target their ads. Often ads are shown to users when the
ad keyword matches the query—resulting in what is known as an
exact match. But, it is challenging for an advertiser to enumer-
ate all the queries for which they would like to advertise. Hence,
many search engines provide an option of matching the ad key-
words with a broader range of relevant user queries, e.g., alternative
spellings, synonyms, etc., potentially resulting in what we term a
broad match. Typically, when an ad is chosen and displayed to the
user, the advertiser only pays the search engine if the user clicks on
the ad, incentivizing the search engine to keep even broad matches
relevant to the user’s query.

Yet sponsored results are generally perceived to degrade user ex-
perience on search engines [23]. An aggressive pursuit to maximize
revenue from each search impression could therefore hurt the user
experience—and, in the long run, the search engine’s popularity
and profitability. Thus, in some cases, it may be desirable to show
few or even no ads if they do not meet some minimum relevance
threshold [9]. For example, if the query is “weather”, an ad for
“cold weather jackets” might occasionally generate revenue, it is
not likely if the user is simply seeking the current temperature—
and especially if the temperature is currently warm. In this case not
showing the ad would be the prudent choice. Another canonical
example where sponsored results are frequently ill advised is a so-
called navigational query like “Macys”, where ads other than those
from the retail chain Macy’s could elicit a negative user response.

Hence, one of the key challenges for search engines is to quan-
tify the relevance of ads to a user’s query. Our partner search engine
considers an ad relevant to the query if the following four compo-
nents are aligned [5]: i) query; i.e., what the user is looking for,
ii) ad creative; what is being promised to the user, iii) ad landing
page; the web page actually delivered to the user if the ad is clicked,
and iv) ad keyword; which indicates the type of traffic the advertiser
seeks to attract.

Interpreting a user’s query is hard mainly because it is very short:
2.5-words long on average [33]. Over time search engines have in-
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Figure 1: Abstract pipeline for selecting search ads. In this paper we focus on the relevance stage.

corporated large amounts of associated metadata such as the user’s
search pattern within a session [6] and click-through data [21], as
well as employed various other query augmentation techniques [7,
25, 26, 28, 37] in attempts to accurately interpret user queries.

Similarly, various techniques have been used to understand the
creative and landing page to improve ad selection [14]. Such ap-
proaches are effective because the creative is often a good reflection
of what is being advertised and the landing page offers a rich set of
features. However, the creative itself offers very little information
(a typical creative is a few tens of characters, see Figure 2) and
landing pages are known to be noisy [14]. These approaches are
even more challenging to apply in the case of broad match since the
query and advertisement may not be textually similar. For example,
an ad bidding on “sneakers” might be quite relevant for the query
“shoes” but there may be little textual similarity between them.

In this work, we complement prior approaches by interpreting
the ad keyword as well. Unlike the creative and landing page, both
of which are to be displayed to the end user, the ad keyword rep-
resents an unconstrained opportunity for the advertiser to be direct
about their desires without concern of offending or dissuading the
user. Hence, we argue that it represents a very strong signal that
should be mined to the fullest extent. We build on the fact that—as
discussed above—search engines are good at interpreting a query.
In particular, we determine advertiser intent by submitting the ad
keyword to the search engine and use organic results that the search
engine returns to provide additional context with which to interpret
the ad keyword. Specifically, given an advertisement to be scored
for relevance against a particular query—we denote this as a (query,
ad) pair in the remainder of the paper—-we send the ad keyword
associated with the ad to the search engine and use the top organic
results returned to get additional information about the ad keyword.
We then use features extracted from both these results and the or-
ganic results for query itself to measure the similarity between the
advertiser’s and user’s intents.

We consider introducing two complimentary sets of features: 54
features that can be generated using just the query issued by the user
and another 21 that require information capturing user intent, which
we get by using organic results generated for the user query. We
evaluate the benefits of adding each of these feature sets by com-
paring the performance of the resulting ranker to the best previously
published baseline [29] and the production system at a large search
engine. We achieve a 43.2% improvement in precision-recall area
under the curve (AUC) over the baseline and 2.7% improvement
over the highly engineered production system.

2. BACKGROUND

In the sponsored search model advertisers provide an ad com-
prising of i) the creative, a short textual ad that is shown to the user,
see Figure 2, ii) ad keyword, user queries the advertiser would like
to target, iii) match type, how the search engine is allowed to match
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Figure 2: Creative has a title, description and display URL.

the ad keyword to user queries, iv) destination URL, the web page
to which the user should be redirected upon clicking the ad, and
v) bid value, the cost that advertiser is willing to pay for a click.

2.1 Ads pipeline

When the user makes a query, the search engine has to decide
which ads (if any) should be displayed along with the organic re-
sults. While the production pipeline has many stages, in this pa-
per we abstract it into three stages as shown in Figure 1 with our
primary contribution being to the relevance stage. Before the rele-
vance stage, the query (q) is expanded to create expanded queries
which are related to the original query depending on the match type
indicated by the advertiser [10]. Each expanded query is then used
to select candidate ads (ad;, ads, . ..) to be further evaluated. The
goal at this stage is to identify all ads that are potentially related to
the set of expanded queries.

In the relevance stage each ad picked thus far in the pipeline
is evaluated for relevance to the original query. While the previous
stages choose ads that are related to the expanded queries, this stage
performs deeper inspection of the relevance of each ad (ad;, ads,
...) to query. The output of this stage is a score for each ad (ad,
ads, ...) on how relevant it is to query (i.e., generate 11, r2,...).
For example, an ad for “nike shirts” would be scored higher for
the query “shirts” than would an ad for “jackets”. To do so, the
relevance stage trains a learning ranker [35] using a labeled training
set of (query, ad) pairs and features computed for each (query, ad)
pair. The trained ranker is then deployed to measure the relevance
of an ad to the query. In this work we study features that can be
used to improve the performance of the ranker.

After the relevance stage, the ads pipeline involves estimating
the probability (click-through rate) that an ad would be clicked and
conducting the second-price auction. The relevance of ad to query
is a factor when estimating the click probability [1]. The prob-
ability estimate allows the search engine to calculate the expected
revenue to be derived by showing a particular ad. These predictions
are made using information about the ad from previous impressions
of the ad [31]. For rare or new ads where such information is not
available, information from semantically similar ads is used [16].
In both the cases, the relevance of ad to query can be used as one
of the features to predict the click-through-rates. So, while click-
through-rate estimates do filter out ads, accurate relevance scores
complement these efforts. Subsequently, most search engines rank



ads by the product of click probability and advertiser bid value in
an attempt to maximize expected revenue for the second-price auc-
tion [10, 20].

In this paper we evaluate the gains that can be achieved using two
different sets of features. The first set of features use just the query
that has been submitted by the user and advertiser intent captured
using the ad keyword associated with the ad. The second set of
features capture the similarity between user and advertiser intent by
further considering the organic results the search engine generates
in response to the user query, leading to additional improvements
in relevance ranking.

2.2 Performance metrics

Search engines use metrics like share of queries with ads, ads
per query, clicks per search impression, and clicks per ad [20] to
evaluate the performance of the overall ads pipeline. A range of
factors including user click probability and bid values play a role
in the final decision to show an ad. Because we are focused exclu-
sively on changes to the relevance stage—and, more to the point,
do not have access to the various additional inputs used in latter
stages of the pipeline—we instead measure the performance of the
ranker and its feature set in terms of precision-recall values on a
hold out validation set.

3. RELATED WORK

As discussed above, a lot of work has been done to interpret
and expand the user query [10, 21]. User click behavior [15, 21,
32] and electronic dictionaries [34] have been used to enhance the
query and expand it. The expanded queries are then used to retrieve
relevant ads from the corpus of ads. These techniques rely on the
fact that relevance of words to a particular query is correlated to the
user click behavior or the semantic similarity between words.

Query expansion techniques have also used categorization of the
query and topical information to achieve improvements [11, 24,
32] in ranking documents. These approaches use human-judged
datasets to classify web pages into hierarchical categories. These
categories are then used to find ads that may not be textually simi-
lar but belong to same category as the query. Bennett et al. [8] use
documents classified under the Open Directory Project (ODP) [2]
to train a classifier and show that using such techniques can im-
prove ranking of relevant documents. Broder et al. [10] use search
engine results to create an augmented query and then select ads
using the augmented query.

Blind relevance feedback techniques have also been used to
expand the query and retrieve relevant documents. These tech-
niques [10, 18, 26, 36], like ours, assume that the top results re-
turned by search engine are relevant to the query issued. Such
cross-corpus learning techniques have been used to transfer knowl-
edge from one task to another [17, 30].

The most relevant and related work is by Hillard et al. [20], ad-
dressing the problem of relevance using human-judged datasets.
The authors use translation models to predict click-through rates
from click logs. The predicted click-through rates are then used
along with baseline features, to train a classifier to predict ad rel-
evance. They also highlight challenges in predicting relevance of
an ad to a query given the relatively short nature of queries and
creatives.

Other work [20, 35] has explored the use of different supervised
learning algorithms to improve the accuracy and performance of the
relevance rankers. In this paper, we work with the ranker used by
a large search engine and explore the advantages of using new fea-
tures. As He et al. [19] point out, identifying the right features for
the ranker is important. The focus of our work, then, is to illustrate

the advantages of using features extracted from the ad keyword as-
sociated with an ad.

4. MOTIVATION

The goal of the relevance stage is to compute the relevance of
the ad to query in each (query, ad) pair that has been selected by
the previous stages. While the stages prior to the relevance stage
focus on casting a wide net to rapidly identify as many related ads
as possible, the relevance stage uses a broader range of features to
measure the relevance of ad to the query.

4.1 Capturing advertiser intent

The learning ranker used to compute a score measuring the rel-
evance of ad to query in a (query, ad) pair is trained using a set of
features computed for each pair. For the task of feature computa-
tion, the key fields available in the ad are: i) creative (Figure 2),
ii) ad keyword and iii) landing page. Features that are currently
used by the production system include text similarity features be-
tween query and these fields along with other external sources of
information — including the click-through rate of the ad from past
impressions [5].

We expand the ad keyword and use the resulting features to mea-
sure relevance of ad to query. Our key insight here is that the ad
keyword captures advertiser intent more accurately than the cre-
ative itself. The ad keyword is the only field in the entire ads
pipeline through which an advertiser can explicitly express the type
of traffic that they would like to attract. Other attributes of the ad,
like the creative and landing page, are seen by the user which could
prevent the advertiser from freely expressing their intent. Hillard et
al. [20] observe that, for example, an ad for “limo rentals” would
be quite relevant to a user query for “prom dresses”. An advertiser
might, thus, list an advertisement for “limo rentals” and bid for the
keyword “prom dresses”. In the absence of an understanding of the
ad keyword, such an ad would be considered completely irrelevant
to the user query “prom dresses”. If one had a way to identify that
that prom dresses and limos are frequently used together, however,
better relevance scores could be computed improving the quality of
ads delivered.

We choose to solve this problem at the relevance stage because
it is expensive to perform a deep evaluation of all possible vari-
ations of the query computed by the query expansion algorithms
employed in the stages prior to the relevance stage. However, ad
keywords associated with the ads provide us with a defined set of
keywords on which deeper analysis can be performed.

4.2 Broad match opportunity

The importance of understanding the ad keyword is highlighted
in the case of broad match when the query is expanded before be-
ing matched against the ad keyword, increasing the likelihood that
the user’s original intent may not align with the advertiser’s. To
illustrate this, we compare the performance of a previously pub-
lished baseline relevance ranker on (query, ad) pairs matched using
exact match to those matched using broad match. The performance
of the relevance ranker is evaluated using precision/recall values
over a hold out validation set. This approach allows for evaluation
of the ranker independent of other factors like click probability and
bid values which play a significant role in the final decision to show
an ad to the user.

Figure 3 plots the precision/recall curve obtained by scoring
(query, ad) pairs in the validation set using a relevance ranker
trained on baseline features [29] (detailed in Section 5.3). High pre-
cision values indicate that a large fraction of the ads being selected
are relevant — enhancing the user experience. Whereas, high recall
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values indicate that a greater number of relevant ads are being se-
lected — improving revenue opportunity for the search engine. Un-
surprisingly, the baseline features that measure similarity between
only the query and the ad to determine relevance do not work as
well in the case of broad match.

S. METHODOLOGY

In this section we present our methodology for using the capabil-
ities of the search engine to create features that represent the adver-
tiser intent. Using the search engine to interpret a query, which is
usually short, allows us to leverage years of research. Using the or-
ganic web search results corresponding to the ad keyword provides
us with detailed information about advertiser intent. We use these
features to improve the performance of a learning ranker used to
measure the relevance of an ad to a query. For comparison purposes
we build upon a baseline ranker using the 19 features described by
Hillard et al. [29].

This section starts with a description of the datasets, learning
ranker, and baseline features that we use. We then introduce our ad-
ditional features, starting with features that can be extracted using
just the user query along with organic results for the ad keyword.
‘We then explore features of the organic results for the query which

act as a proxy for user intent information allowing us to capture the
overlap between advertiser and user intent.

5.1 Data overview

The key datasets in our system are the training and validation sets
comprising of (query, ad) pairs. Each ad described in Section 2 has
an associated ad keyword indicating the type of queries from which
the advertiser would like to attract traffic. As shown in Figure 4, in
the first phase, we obtain the top 40 organic results associated with
the query and the ad keyword in an approach similar to the one
taken by Hillard et al. [10].

Each of the 40 organic results returned for a query submitted to
the search engine has the following fields associated with it: i) title
of the web page as shown in the web results, ii) snippet, a small
piece of text displayed on the results page providing a view into
the result page itself, iii) description, a small piece of text from the
web page which most accurately describes the web page, iv) ODP
category, the ODP [2] category to which the result belongs, and
v) URL of the result.

To clean up these fields, we remove stop words [3] and stem the
title, snippet, and description of each result using the Porter stem-
mer [27]. We then concatenate all the titles, snippets, descriptions
of results associated with each query to create a bag-of-words rep-
resentation.

5.2 Ranker

For each (query, ad) pair in the training and validation sets, we
compute features as described in the following sections. We train
the LambdaMART learning ranker [12] on the features obtained
over the training dataset. LambdaMART has been shown to be very
effective in solving real-world ranking problems [8, 13]. Lamb-
daMART is known to be robust to features that take a range of val-
ues and produces a tree-based model. In our evaluation, the algo-
rithm is trained at a learning rate of 0.12, with 120 leaves and 2,000
trees. The model produced by the ranker can be used to determine
a ranked list of the features on which the ranker was trained. We
use this attribute of LambdaMART to identify the importance of
features we discuss in this paper.

5.3 Baseline features

We use the features described by Hillard et al. [29] as a baseline
against which to compare the gains offered by the additional fea-
tures. Hillard proposes 19 features: query length and 6 x 3 features
obtained by computing the following: i) word unigram overlap,
ii) word bigram overlap, iii) character unigram overlap, iv) charac-
ter bigram overlap, v) ordered word bigram overlap, and vi) cosine
similarity between the query and each of the title, description, and
display URL of the creative.

Each of the overlap features is the overlap coefficient of the cor-
responding sets, computed as:

XY

()Verl.':lp()(7 Y) = WH}/D

For example, the word unigram overlap coefficient between “black
shoes” and “shoes at contoso inc” would be 0.5.

5.4 Query features

The first set of features that we introduce rely on using only the
information that can be computed based upon the ad and the query
in each (query, ad) pair. In the next section we discuss more ad-
vanced features that can be computed using organic results for the
query which allows us to better measure the similarity between user
and advertiser intent.



| Feature Type Details Count |
ad title N bk. titles 6
Creative ad text N bk. desc. 6
ad text N bk. snip. 6
title N bk. titles 6
Landing Page snippet N bk. desc. 6
snippet N bk. snip. 6
query N bk. titles 6
Query query N bk. desc. 6
query M bk. snip. 6

| Total 54 |

Table 1: Query features computed using organic results for the ad
keyword.

For each ad, we compute features to determine whether the ad
creative and landing page are consistent with the ad keyword the
advertiser supplies. Specifically, we compute the same six simi-
larity features as Hillard et al. [29], but between the organic results
returned for the ad keyword and aspects of the ad creative and land-
ing page. For the creative, we compare the ad title to the search
result titles, and the ad text to both the search result description and
snippets. For the landing page, we compare its title to the search
result titles, and the snippet to both result descriptions and snippets.

We further compute features that measure the similarity of query
to the results of searching for the ad keyword. For this, we compute
the same six similarity features, but this time between the query and
the titles, snippets and descriptions associated with the ad keyword
search results, respectively. These features are easy to implement
because organic results for ad keyword can be precomputed, and
when the query is received in the online system, feature construc-
tion is a matter of computing overlap features. While in each case
we use the same overlap and cosine similarity features as in Sec-
tion 5.3, there is no limitation against using other similarity mea-
sures like Jacquard index or edit distance. In total, we add the 54
features shown Table 1. We call these query features.

5.5 Query search features

We also consider features that can be computed if the ads
pipeline can interpret user intent in the same way the search en-
gine does to generate organic results for query. We use the or-
ganic results generated for query as a proxy to capture user intent
in much the same way as we use organic results for the ad key-
word to capture advertiser intent. Once we have the organic results
for the query, we compute six overlap features for each pair of ti-
tles, snippets and descriptions obtained from results of query and
ad keyword.

5.5.1 Category feature

Each web page in the search index is classified using ODP
data [2] into categories by an internal classification engine at in-
dexing time as described by Bennett et al. [8]. Each organic result
(which is chosen from the index) is thus classified into one of the
219 categories at the top two levels of the hierarchy. For the query
and ad keyword, we obtain the categories to which the correspond-
ing organic results belong. We then compute the cosine similarity
between the categories of the two organic results:
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| Feature Type Details Count |
query titles M bk. titles 6
Query Search query desc. N bk. desc. 6
query snip. N bk. snip. 6
Category overlap query N bk. categories 1
Domain count doma%n in query results 1
domain in bk. results 1

| Total 21 |

Table 2: Query search features constructed using organic results
for query and ad keyword.

where, ng. and ny. are the number of times a result belonging to
category c is present in organic results for the query and ad keyword
respectively.

As has been argued by Broder et al. [10], this feature allows us to
identify scenarios when the query and ad keyword might not have
a strong overlap but are relevant to each other because they belong
to the same category. For example, for the query “shoes”, the ad
keyword “sneakers” does not result in a text overlap, but is very
relevant.

5.5.2  Domain features

The last set of features that we introduce captures the presence
of the ad domain (e.g., contoso. com) in the organic results for
query and ad keyword. The ad domain of an ad is determined to
be relevant to a query if the ad domain is present in the organic
results for the query. Similarly, the the presence of the ad domain
in organic results for the ad keyword associated with the ad indi-
cates that the ad domain is relevant to the type of traffic the ad-
vertiser wants to attract by bidding on the particular ad keyword.
We introduce two features to capture the relevance of ad domain to
query and the ad keyword. Specifically, the features are computed
as number of times the ad domain is present in organic results for
both the query and ad keyword.

In sum, we call these additional 18 + 1 4 2 = 21 features query
search features and summarize them in Table 2. Together with the
54 features computed in Section 5.4 they form a total of 75 features
that we consider.

6. EVALUATION

In this section we quantify the improvements in relevance rank-
ing obtained by incorporating advertiser intent. We present the
gains in precision and recall over both a published baseline [29]
and the production system for a large search engine.

The baseline system [29] is rudimentary and captures only the
similarity between query and the ad creative for each (query, ad)
pair. However, as far as we are aware this is the best-performing
published system in this space. The features that we introduce use
much richer information from the organic results to capture adver-
tiser and user intent. As a result, we achieve extraordinary gains
over the baseline. Our benefits over the production system—which
uses hundreds of features—are less dramatic, but still significant in
practice.

6.1 Datasets

The learning ranker that we use is trained using a sample of 1.28
million hand-scored (query, ad) pairs drawn from the ground-truth
the production system uses. The scores ranges between one and five
with five representing high relevance between the query and the ad.
For offline testing of the model, the holdout validation dataset has
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Figure 5: Improvement in precision for different recall values us-
ing the new ranker.

Ground-Truth Scores

All 3+ 4+ 5

Al 775 703 601 216

Query  pract 166 37.6 357 115
Featwres  p 04 322 90.3 8.6 588
Query Al 32 1035 1227 796
Search Exact 22.7 50.0 67.9 522
Features Broad 55.7 165.3 228.6 145.8

Table 3: Relative (%) improvement in precision-recall AUC over
baseline for different types of ads.

320,000 similarly sampled (query, ad) pair scores. The training
and validation datasets are retrieved from the ad corpus using in-
formation retrieval methods used by the selection stage [10]. They
contain queries from all search frequency deciles.

We obtain the organic results corresponding to the query and the
ad keyword by submitting each of them to the search engine. We
also use the ODP [2] categorization of the organic results returned
for query and ad keyword.

6.2 Baseline comparison

We start by evaluating the gains that the new features provide
over the baseline [29]. For now, we consider an ad to be not relevant
to the query if the (query, ad) pair is judged to be a one. We return
to consider more stringent cutoffs in Section 6.2.3.

6.2.1 Query features

As discussed in Section 5, for each (query, ad) pair in the training
and the validation sets, we add 54 new features. Among these,
18 features compute the similarity of query to the title, snippets
and descriptions associated with organic results for the ad keyword.
Similarity between creative, landing page and ad keyword organic
results is captured in another 36 of these features. We compare
the performance of a ranker trained with these features to a ranker
trained using only the 19 baseline features.

The “Query Exact” and “Query Broad” lines in Figure 5 show
the relative improvement in precision at different recall values over
the baseline obtained by using the ranker trained on query features
over (query, ad) pairs matched through exact and broad match,

respectively. The relative change in the area under curve for the
precision-recall curves is presented in the All column of Table 3.

The results show that adding information from organic results for
the ad keyword provides a large improvement in precision over the
baseline. Also, note that the improvement is higher for (query, ad)
pairs matched through broad match. Intuitively, the improvement
is because information from organic results for the ad keyword in-
creases the possibility of a match between the query and ad when
the ad is relevant to the query. In the case of exact match, the
baseline features already capture the overlap between the ad and
the query because the creative likely contains the ad keyword and
hence contains the query.

6.2.2 Query search features

In this section, we measure the benefit of adding new features
which capture the similarity between user and advertiser intent by
using organic results for the query and ad keyword. We introduce a
total of 21 features which capture the similarity between user intent
and the advertiser intent along with 54 features introduced in the
previous section.

As described in Section 5 we use query organic results as a proxy
for interpreting the user intent. Note that in an online system gen-
erating both organic and sponsored results, the results for query
themselves may not be needed, instead techniques used to process
the query and identify organic results would be enough to interpret
the query.

The organic results of a query give us titles, snippets and the
descriptions associated with the query. For each of these fields we
compute six features which measure similarity to the corresponding
field from organic results for ad keyword. This gives us a total of
6 x 3 new features. In addition to this, we also add one feature
which captures the similarity between the categories of results for
the query and ad keyword. Two additional features use organic
results to capture how relevant the ad domain itself is to the query
and ad keyword.

The “QS Exact” and “QS Broad” lines in Figure 5 show the im-
provement in precision at different recall values using the model
obtained by training the ranker with query search features for exact
and broad match types, respectively. These results show that using
search results for the ad keyword to interpret advertiser intent pro-
vides a large improvement in the accuracy of the relevance ranker
over using just the baseline features. Again, the relative change in
precision-recall AUC is presented in the All column of Table 3.

6.2.3 Identifying good ads

While achieving high overall precision-recall numbers is impor-
tant to distinguish between relevant and irrelevant ads, a good rele-
vance ranker should be especially adept at identifying high-quality
ads accurately. So, techniques which lead to gains in overall pre-
cision should not negatively impact the ability of the search engine
to identify ads scored three or higher. The ability to identify good
ads accurately is a desirable feature for the model used by search
engines because it allows search engine to show good ads to the
users and not just suppress bad ads. While suppressing bad ads is
good for user experience, a ranking model which does not identify
good ads would lead to lower revenue.

We measure the ability of the new features to distinguish be-
tween ads scored three or higher and ads scored lower than three.
‘We consider ad scored one or two as irrelevant to the correspond-
ing query in the (query, ad) pairs. The relative improvement in
precision-recall AUC over the baseline model is shown by the 3+
column in Table 3. We perform a similar analysis for ads scored



All 3+ 4+ 5

All 0.5 1.0 0.8 0.6

F(ezaltltirr}(;s Exact 0.4 0.6 0.1 0.1
Broad 0.6 1.8 2.7 1.9

Query All 2.7 3.7 5.7 8.9
Search Exact 0.7 1.6 2.6 54
Features Broad 3.9 7.3 12.3 13.2

Table 4: Relative (%) improvement in precision-recall AUC over
the production ranker for different types of ads.
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Figure 6: Gains in precision with the introduction of features cap-
turing advertiser intent.

four or higher, and five by considering the remaining ads to be ir-
relevant respectively.

We see that the understanding of advertiser intent works espe-
cially well for identifying high-quality ads. Ads scored four or bet-
ter and those scored three or better see greater improvement than
the overall pool of ads. This behavior is expected because the ad
keyword organic results of good ads are more likely to have pattern
overlap with the query organic results.

6.3 Production comparison

The results in the previous sections demonstrate that the new fea-
tures provide significant gains over a published baseline proposed
by Hillard et al. [29]. It stands to reason, however, that highly
engineered production systems employed by major search engines
exhibit better performance and may, in fact, already consider many
of the features we suggest. In this section, we consider the gains
our new features bring to the production pipeline of a large search
engine. We add the above mentioned features to the existing pro-
duction features and train the production ranker on the combined
feature set. The production features capture a variety of attributes
about the query and ad, including quality of the ad domain, histor-
ical click-through-rates of the ad and landing page attributes [5].

Precision gain over the production system at different recall val-
ues with the introduction of query features for exact and broad
match are shown using “Query Exact” and “Query Broad” lines
in Figure 6. The results show that there is a small improvement
in precision-recall curves due to the introduction of query features.
The relative change in the precision-recall AUC is presented in the
All column of Table 4. The gains are smaller than those over base-
line but are nevertheless significant in a production system. As be-

Ranker Precision Recall Max F-Score
Query -1% +2.3% +0.3%
Query Search +1.7% +2.9% +2.2%

Table 5: Gains achieved in precision, recall and max F-Score com-
pared to the production system of a large search engine.

fore, the new features perform best for highly-relevant ads in broad
searches.

Moreover, we find that the production ranker improves signif-
icantly with the addition of query search features. The improve-
ment in precision at different recall values is shown in Figure 6 by
the lines labeled “QS Exact” and “QS Broad”. The relative im-
provement in AUC is presented in the All column of Table 4. As
before, the new features work even better for high-quality ads.

To capture improvement in the accuracy of the ranker, we mea-
sure precision-recall values at max F-score. Table 5 shows the pre-
cision and recall values for the production ranker and the ranker
trained using query search features at max F-score.

6.4 Feature importance

The value of the features we introduce can also be seen in the
importance given to them by the LambdaMART ranker. The tree
based model that is produced after training the ranker allows us
to determine the ranked list of features. The importance of query
search features is very clear in the ranking of the features. We find
that the tree created by training the ranker on a combination of ex-
isting features and query search features ranks the following as the
top three features: i) ad domain count in query organic results,
ii) ordered bigram overlap between snippets of organic results for
query and ad keyword and iii) ad domain count in ad keyword or-
ganic results. These features rank higher than many other highly
engineered features.

The benefits of adding query features are smaller than those
when compared to the baseline as we in Section 6. But, the value
of interpreting the ad keyword is reflected in the ranking of the new
features. Two of the 54 features are among the top 30 features in
the final tree produced by the ranker. These are: i) word unigram
overlap between query and snippets in organic results for ad key-
word and ii) order word bigrams between query and titles of the
organic results for ad keyword.

7. DISCUSSION

The gains we see over the production system are naturally lower
than the gains over the baseline. However, they are significant in
production [4]. Moreover, the features that we propose can be ob-
tained using the datasets and learning experience already at the dis-
posal of the search engine.

Quantifying the impact of these improvements on the revenue
of the search engine and user experience is complicated. We see
significant improvements in ranking accuracy. However, it may be
possible that the ads which have been more accurately scored will
not be shown to the user for a host of other reasons including low
click probability, low bid values by the advertiser, and so on. In
this case, improvements to the relevance ranker would not enhance
the user experience. Increase in recall values, however, would lead
to the identification of more ads that are truly relevant to the user
query, leading to greater competition in the auction—and higher
revenue for the search engine.

An immediate extension of our work is to study the benefits of
incorporating these features over a slice of live traffic handled by
the production system. Such a study would allow us to measure the



impact of new features on metrics (e.g., share of queries with ads,
ads per query, clicks per search impression and CTR) that have a
direct bearing on user experience and search engine revenue.

8. CONCLUSION

The ad keyword is the only field in a sponsored search ad that
allows an advertiser to express the type of traffic that they would
like to attract. At the same time the ad keyword, like the user query,
is very short which makes the task of interpreting advertiser intent
hard. In this work, we leverage the ability of modern search engines
to interpret the intent behind a user’s query to similarly understand
the advertiser’s intent as conveyed in the ad keyword.

We make three main contributions in this paper. First, we show
that using organic engine results to expand the ad keyword provides
us with a rich source of information from which we can interpret
advertiser intent. Second, we identify the features to be extracted
from these organic results which can be used to improve the rele-
vance ranker. Among these, 54 features can be implemented with
few changes to the existing system and another 21 features would
require user intent information as well. Finally, we evaluate the
benefits of these features using training and validation datasets of
1.28M and 320,000 samples sampled from a corpus of ground-truth
(query, ad) pair scores respectively. We show that using features
which capture user and advertiser intent leads to 43.2% improve-
ment in precision-recall AUC over the baseline and a 2.7% im-
provement over the production ranker for a large search engine.
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