
Towards Situated Activity Management:

Representation, Inference and Decision Making

Dan Bohus, Ece Kamar and Eric Horvitz

One Microsoft Way

Redmond, WA, 98052

 {dbohus,eckamar,horvitz}@microsoft.com

Abstract

We introduce and discuss the problem of

situated activity management, and present an

approach for guiding and coordinating an

agent’s speech and activities amidst the

dynamics of evolving settings. Specifically, we

couple a hierarchical representation of

activities with a novel state tracking approach

based on conditional Markov Networks. We

show how the approach can enable an agent to

reason jointly about parallel coordinated

actions and the changing situational context.

The hierarchical structure and joint inference

allows for a modular authoring of rules used for

making in-stream decisions. We have

implemented a proof-of-concept for this

approach and illustrate its functionality with a

simulated dialog trace.

1 Introduction

Recent research on developing physically situated

interactive systems highlight spoken dialog as only

one component of the larger challenge of managing

parallel, coordinated actions amidst a dynamically

changing world. As an example, consider a robot in

charge of greeting, interacting with, and escorting

visitors in a building. To plan and generate

appropriate utterances and actions, such physically

situated agents need to reason continuously about

the situational context, e.g. people, objects, events

in the environment, as well as their relationships and

temporal dynamics. The context often evolves

asynchronously with respect to the utterances

spoken and the actions executed, and therefore

interaction planning must be done continuously, in

stream, rather than on a per-turn basis. Managing

interaction in these settings requires reasoning

about complex patterns of coordination between

parallel actions (linguistic and non-linguistic)

produced by multiple participants.

We introduce and discuss the problem of

situated activity management, and argue for

broadening the scope of work in dialog management

along the lines described above. Second, we

introduce a candidate representation and associated

inferential methodology for situated activity

management. Specifically, we couple a hierarchical

representation of activities and actions with a novel

approach to situated state tracking based on

conditional Markov Networks and a tractable

mechanism for action selection. The approach

allows a modular authoring process and enables an

agent to reason about the situated state, and to make

in-stream decisions about actions. The methodology

builds upon and extends several strands of research

on hierarchical representations for multi-agent

planning and belief tracking under uncertainty.

While an extensive comparison with existing

dialog management techniques (e.g., Allen et. al,

2001; Churcher et al., 1997; McTear, 2002, Traum

and Larsson, 2003) falls beyond the scope of this

paper, we begin by discussing relationships with the

most relevant prior work, and framing the novelty

of the proposed approach. We then formally

introduce the broader problem of situated activity

management in Section 3 and present the

methodology in detail in Section 4. In Section 5, we

illustrate the proposed approach with a simulated

trace, and in Section 6 we conclude and present

directions for future work.

2 Related Work

Hierarchical representations are a natural choice for

modeling the structure of human activities and

interactions. Previous work (Grosz, 1974; Grosz

and Sidner, 1986) demonstrated that task-oriented

dialog has a nested structure that often mirrors the

hierarchical structure of the task at hand. Subseque-

ntly, several hierarchical formalizations have been

proposed for modeling collaboration and discourse

(Grosz and Kraus, 1996; Lochbaum, 1994) and have

been brought into practical use in dialog mana-

gement, e.g,, in Collagen (Rich and Sidner, 1997)

and RavenClaw (Bohus and Rudnicky, 2009).

Hierarchical representations have useful properties,

such as modularity, scalability, transparency, and

ease of authoring. They also provide a natural basis

for handling discourse phenomena like shifts of

focus and nested sub-dialogs. However, methods

based on hierarchical representations have not

generally addressed the uncertainty that

characterizes real-world systems equipped with

noisy sensors and recognizers.

The problem of managing uncertainty is of great

practical importance, and as such has received a

great deal of attention in the spoken dialog

community. Significant research efforts have been

targeted at modeling dialog as a partially observable

Markov decision process (POMDP) (i.a., Williams

and Young, 2007), and at learning optimal policies

from data. While advances have been made in

increasing the scalability of these approaches

(Williams and Young, 2005; Williams, 2010), real-

world applica-tion of reinforcement learning and

POMDP techniques has been limited. The

approaches do not inherently make use of the

hierarchical nature of dialog and, even with factored

representations, state inference and action selection

can become in-tractable. Practical dialog

applications using POMDPs have been limited

because of challenges with transparency, maintain-

nability, and definitions of reward function and

optimization criteria (Paek and Pieraccini, 2008).

We seek to bridge the gap between hierarchical

representations and probabilistic methods for dialog

by integrating belief tracking and decision making

under uncertainty into a hierarchical formalization

of situated activities. Our goal is to retain the

modularity, ease-of-authoring, scalability, and

maintainability properties that hierarchical repre-

sentations confer, and combine them with an

efficient mechanism for reasoning and decision

making. Moreover, the proposed methodology

targets a challenge broader than traditional dialog

management, and enables reasoning about parallel

coordinated actions and making decisions in-

stream, rather than on a per-turn basis.

3 Situated Activity Management

We begin by defining the problem of situated

activity management and discussing a set of core

competencies required for managing situated

activities under uncertainty.

By activity we denote a set of atomic actions that

are executed in the world by the participants of the

activity. Actions have a start and an end time, and a

set of property values. In the case of spoken dialog,

utterances are modeled as actions and discourse

segments are modeled as activities. For instance, in

the robot example, the utterance “My name is Paul”

can be modeled as an action: IAm(Name=Paul). The

sub-dialog for getting directions can be modeled as

an activity. Actions can extend however beyond the

linguistic domain, and may correspond to any

atomic action performed in the world, e.g., opening

a door, pointing, or asking a question. The actions

that form an activity are generally coordinated: their

content and timing depends on the actions previou-

sly executed by all participants. Multiple actions

may be executed in parallel, and may overlap each

other. In Figure 1, the joint set of actions being

executed at time 𝑡 are represented by 𝐴𝑡.
By situated we refer to the fact that the activity

occurs in a broader situational context, which also

influences the execution of actions. The situational

context is the state of the world that is relevant to

the ongoing activity. The situational context may

evolve asynchronously with respect to the actions

being performed. Its dynamics may depend on the

actions executed, but also on other external factors

that are outside the control of the participants

involved in the activity. In the robot domain, the

context may include static variables such as the

identity of the user and dynamic variables such as

the current location of the robot, etc. In Figure 1, the

situational context at time 𝑡 is represented by 𝐶𝑡.
A situated activity management model enables

an agent to engage in and contribute to a situated

activity with other agents. We seek to construct such

a model and take the decision-theoretic perspective

of an agent acting under uncertainty: we assume the

agent does not have access to the ground truth about

the actions executed or about the context. Instead,

the agent has to reason from noisy, streaming

observations about the context and actions being

produced (denoted by 𝑂𝑡 in Figure 1). For instance,

in our example, the robot might have access to

location sensors, face recognition sensors, etc.

Two core competencies are required for

managing situated activities under uncertainty.

First, the agent must be able to track the situated

state, based on incomplete and potentially noisy

observations (𝑜𝑡). This includes recognizing the

actions and activities being executed (𝐴𝑡), and

tracking the situational context (𝐶𝑡). Second, the

agent must be able to reason under uncertainty about

which actions, if any, to execute, so as to maximize

the utility of the activity at hand.

4 Approach

The methodology we propose is centered on a

hierarchical representation which encodes how

activities can be decomposed hierarchically into

sub-activities and actions, and captures the variables

relevant for making decisions in each activity. We

couple this representation with an inference

mechanism that jointly tracks the situated state

based on an undirected graphical model. The

representation and inference mechanism enable a

tractable, modular approach to decision making. In

the following subsections, we discuss the

representation, inference, and decision making

components in more detail.

We begin by introducing a simplified example

problem, inspired by an embodied conversational

agent that serves as a personal assistant outside the

office door of an employee at our organization

(Bohus and Horvitz, 2009). The Assistant, has

access to streaming information and predictions

about the owner’s location, calendar, and proximity,

and uses this data along with evidence gleaned from

multimodal scene analysis to schedule meetings on

behalf of the owner with people that stop by when

the owner is not present. To do so, the Assistant first

has to identify the user, by relying on a face

recognition algorithm, or by asking the user who

they are. Alternatively, it might ask the user to

swipe their badge on an RFID badge scanner. Once

the user has been identified, depending on the

owner’s availability, the Assistant either suggests a

meeting right away or tries to schedule one for a

later time appropriate for the user and the owner.

4.1 Representation

The building block of the hierarchical represent-

tation is the activity model. Activity models are

authored by system developers and define how an

activity decomposes into sub-activities and actions.

At runtime, they are automatically combined into an

activity tree, which acts as a backbone for inference

and decision making. Non-terminal nodes in the

activity tree represent activities, while leaves

represent actions. Figure 2 illustrates the activity

tree for the Assistant, formed by combining six

activity models. At the top-level, AssistGuest
decomposes into the IdentifyGuest, ScheduleMeeting

and MeetNow activities. Below, IdentifyGuest
decomposes into GetName and GetId, and so on.

Each activity model defines a set of state

variables and observations that are relevant for

making decisions about that activity. State variables

model the information that is not directly observable

to the agent, and must be inferred based on available

observations. For each activity we introduce a state

variable to capture whether and how that activity is

being executed at the current moment. For instance,

the GetName, WhoAreYou, IAm variables capture

the execution of the corresponding activities in the

GetName model – see also Figure 3. For actions or

activities that have parameters, e.g. IAm(name=x), the

corresponding variable, e.g. IAm, spans the set of

possible action instantiations, e.g. IAm(name=Eve),
IAm(name=Paul), etc., plus a value ∅ indicating that

the activity is not currently being executed.

Each activity model may also define variables

that capture contextual information that is relevant

for performing the activity. For instance, the name

variable in the GetName model captures the user’s

name, which is relevant to how the user will perform

the IAm action: a user named Paul is likely to

perform IAm(name=Paul) rather than IAm(name=Eve).
While the name is static, other context variables

might be dynamic and evolve asynchronously with

respect to the interaction. For example, a proximity

variable in the AssistGuest activity captures whether

the owner is close by or far away, and is relevant for

the agent’s choice between suggesting an immediate

meeting or scheduling one for later.

actions

context

time 𝑜𝑡

 𝐶𝑡

𝐴𝑡

WORLD

Figure 1. Ground truth and observations for actions

and context during a situated collaborative activity

AGENT’S
OBSERVATIONS

Finally, observations defined in each activity

model capture the evidence about action execution

and the situational context, and they are used to infer

the current state. In our example, a faceid

observation in the GetName model arrives from a

visual face recognition component and can be used

to make inferences about the user’s name. In the

same model, 𝑜𝐼𝐴 observation is obtained from the

speech recognizer and can be used to make

inferences about the IAm action.

The activity models specify the variables that are

relevant for each activity and therefore enable

modular authoring. Independently authored models

are combined together through the variables that are

shared by neighboring models to facilitate

reasoning over the entire activity tree. When non-

neighboring models share a variable, the variable is

replicated in the models connecting them with

identity relationships to enable joint inference (see

name variable in Figure 3).

4.2 Inference

The goal of the inference mechanism is to jointly

track the action execution and context variables

through time, based on the observations collected so

far (see Figure 1). We accomplish this with a

conditional Markov Network (Koller and Friedman,

2008) induced over the activity tree. Markov

Networks have become a popular choice for solving

real-world joint inference problems in areas such as

vision, bioinformatics, natural language processing.

A Markov network (also referred to as a Markov

field, undirected graphical model, or factor graph),

is a model for a joint probability distribution over a

set of random variables 𝑋 = {𝑋𝑖}. The graph for a

Markov network consists of a set of nodes, one for

each variable of interest 𝑋𝑖 and a set of potentials

𝜙𝑘(𝑉𝑘) that capture probabilistic relationships

among subsets of variables 𝑉𝑘 ⊂ 𝑋. Specifically, a

potential 𝜙𝑘 over a set of variables 𝑉𝑘 =
{𝑋1. . 𝑋𝑝} ⊂ 𝑋 is a function 𝜙𝑘:𝒟(𝑉𝑘) → 𝑅

+ that,

for any joint assignment of the variables in 𝑉𝑘

outputs a positive real number capturing the relative

strength of that assignment. The joint distribution of

the variables in a Markov network is expressed as

the normalized product of potentials:

𝑃(𝑋) =
1

𝑍
∏𝜙𝑘(𝑉𝑘)

𝑘

where Z is a normalization constant, also referred to

as the partition function. When a subset 𝑂 of the

variables in 𝑋 are observed, we have a conditional

Markov network, which models the conditional

distribution 𝑃(𝑋|𝑂). In this case, the partition

function is conditioned on the observations.

As we have already seen, the activity models

define the set of state variables and observations

relevant for performing an activity. In addition, they

also define the set of potentials that capture the

relationships among these variables. Potentials may

be represented in parametric form or in full tabular

format, may be manually authored or learned from

data, and can capture various types of stochastic or

deterministic relationships between variables and

observations. Two types of potentials may be

defined by each activity model: time-slice potentials

and transition potentials.

Time-slice potentials capture relationships

between variables and observations within a given

time step. Figure 3 illustrates some of the time-slice

potentials from our example. For instance, the

potential 𝜙1(𝑛𝑎𝑚𝑒) is defined exclusively over the

name context variable and captures a prior over it.

The 𝜙2(𝑛𝑎𝑚𝑒, 𝑓𝑎𝑐𝑒𝑖𝑑) potential links the name

variable with a corresponding faceid observation.

𝜙3(𝑛𝑎𝑚𝑒, 𝐼𝐴𝑚) models the relationship between

name to the IAm action execution variable: it

indicates that the instantiation of the IAm action will

correspond to the name, or will be ∅, i.e., not-

executed. 𝜙4(𝐺𝑒𝑡𝑁𝑎𝑚𝑒,𝑊ℎ𝑜𝐴𝑟𝑒𝑌𝑜𝑢, 𝐼𝐴𝑚) is a

three-way deterministic potential that links the

action execution variables in the GetName model

and indicates that GetName is being executed when

either WhoAreYou or IAm is being executed.

 Transition potentials model the temporal

dependencies between variables and enable tracking

of the situated state over time. For instance, in the

example, a transition potential is defined over the

Figure 2. Multiple activity models comprise

an activity tree

AssistGuest

WhoAreYou IAm

(MyName)

Please

Swipe

Swipe

(MyID)

GetName

IdentifyGuest

MeetNow
Schedule
Meeting

LetMeCheck

Calendar

InformTime

(MeetingTime)

Suggest

MeetingNow

Respond

(Reponse)

GetID

∅

name variable. As the name is static, this potential

encodes an identity relationship.

At runtime, the variables, observations and

potentials of different models are assembled to form

a dynamic conditional Markov Network, which is

used to track the situated state over time (see Figure

3). At each new time step 𝑡, the network is extended

by coupling a new instantiation of the network

induced by the activity tree for the next time step.

The inference performed over the network is joint:

it combines observations collected about actions

and context throughout time, and from different

parts of the activity tree, to compute the most

informed beliefs about the current situated state. For

instance, as we shall illustrate in Section 5, an

observation of the Swipe action in the GetId model

can combine with the noisy observation of a parallel

IAm action in the GetName model, and with the face

recognition observation of the IdentifyGuest model to

infer the value of the name variable, and resolve

which instance of the IAm action is being performed.

Inference algorithm

Inference in dynamic conditional Markov Networks

is a challenging task: in the worst case, exact

inference is exponential in the number of variables

in an activity tree (Koller and Friedman, 2008). We

can exploit however the hierarchical, structured

nature of the proposed representation to provide a

customized, more scalable approach.

For simplicity of presentation, we begin by

considering inference within a single time slice and

later extend to temporal inference. Except for very

small size networks, exact inference is not feasible

in general Markov networks that may have large

cliques (loops or potentials connecting many

variables). Approximate inference techniques like

loopy belief propagation or sampling approaches

would be required, which may introduce unbounded

errors. The conditional Markov Network induced by

the composition of activity models at a single time-

step has however a special, hierarchical, tree-like

structure, in which cliques are contained within

individual activity models and the size of each

clique is limited by the number of variables in the

corresponding activity model rather than the size of

the entire tree. This structure can be leveraged to

speed up inference. Here, we take an approach

where we collapse the variables within an activity

decomposition model into a single joint variable.

With the new structure, the network becomes a tree,

and exact inference can be performed using belief

propagation in time exponential in the number of

variables in the largest activity model, rather than in

the total number of variables in the activity tree.

This novel approach results in exponential savings

in the complexity of inference over an activity tree

composed of a large number of activity models.

Temporal inference raises additional significant

challenges as the inference at time 𝑡 must be

conditioned on the full joint of the variables at the

previous time step, which is again exponential in the

number of variables in the activity tree. In most

cases, only a subset of variables, 𝑆 ⊂ 𝑋, has

transition potentials. In addition, collected

observations may render only a small subset of joint

configurations of transition variables likely. Based

on these observations, we couple our within time-

slice belief propagation approach with a particle-

based approach to address the intractability of

Figure 3. Left: Markov network corresponding to a portion of the AssistGuest activity tree.

Right: Three example potentials.

GetName name

WhoAreYou IAm

IdentifyGuest name

faceid

GetId

id

calendar

SwipePleaseSwipe

name

OWAY
OIA OPS OS

 Paul Eve John

Paul 1 0 0 1

Eve 0 1 0 1

John 0 0 1 1

∅

Paul 2

Eve 10

John 15

 Paul Eve John

true 0 0 0 0

 0 0 0 1

 GetName=true

n
a

m
e

n
a

m
e

W
h

o
A

re
Y

o
u

 Paul Eve John

true 0 0 0 1

 1 1 1 0

GetName=

∅

IAm

∅ ∅

name

IAm

∅

∅

temporal inference. Specifically, we represent the

joint over the situated state at time 𝑡 1, with a set

of 𝑛𝑡−1 particles {𝑠𝑖
𝑡−1}, and their corresponding

weights {𝑤𝑖
𝑡−1}. Each particle 𝑠𝑖

𝑡−1 represents a

particular assignment of the state transition

variables at 𝑡 1, and 𝑤𝑡−1
𝑖 captures the probability

of this assignment, 𝑤𝑖
𝑡−1 = 𝑃(𝑠𝑖

𝑡−1|𝑜1:𝑡−1).
To infer the state at the time step 𝑡, we project

each particle 𝑠𝑖
𝑡−1 forward through the transition

potentials and run a separate time-slice belief

propagation inference on the activity tree for each

incoming particle. In each of these inferences, the

previous time-step variables on the transition

potentials become observations, and are assigned to

the values dictated by the incoming particle 𝑠𝑖
𝑡−1.

The belief-propagation based approach for time

slice inference is then applied on each instantiated

graph. The approach computes the marginal of the

each situated state variable 𝑋𝑗 at time 𝑡, conditioned

on the incoming particle and current observations

𝑃(𝑋𝑗
𝑡|𝑠𝑖

𝑡−1, 𝑜𝑡). In addition the belief propagation

algorithm on the tree structure allows us to

efficiently compute the partition function

corresponding to each particle – 𝑍𝑖
𝑡(𝑠𝑖

𝑡−1, 𝑜𝑡). The

overall marginal probability of each state variable

𝑋𝑗 at time 𝑡, conditioned on all observations up to

time 𝑡 can then be computed by combining the

inference results for each individual particle with

the weight of that particle:

𝑃(𝑋𝑗
𝑡|𝑜1:𝑡) =

∑ 𝑃(𝑋𝑗
𝑡|𝑠𝑖

𝑡−1, 𝑜𝑡) ⋅ 𝑤𝑖
𝑡−1 ⋅ 𝑍𝑖

𝑡(𝑠𝑖
𝑡−1, 𝑜𝑡)𝑖

∑ 𝑤𝑖
𝑡−1 ⋅ 𝑍𝑖

𝑡(𝑠𝑖
𝑡−1, 𝑜𝑡)𝑖

Finally, transition particles for the next time step,

representing the joint probability distribution at

time 𝑡 are generated by sampling values for each

variable in the network. If the total number of

particles capturing the joint distribution is small,

this sampling can be exhaustive and the entire

distribution will be covered. Alternatively,

sampling can be guided to select high-likelihood

particles according to the computed marginal and

can be run until a large percentage of the total mass

has been covered. In the former case, the inference

is exact, while in the latter it is approximate.

The approach we have sketched above performs

filtering in the dynamic Markov network: it

computes the marginal of state variables at time 𝑡
based on accumulated observations, i.e. 𝑃(𝑋𝑗

𝑡|𝑜1:𝑡).

When most transition potentials in a network

encode deterministic relationships between

variables, full inference over the interaction history,

i.e. 𝑃(𝑋1:𝑡|𝑜1:𝑡) may become feasible. Particles can

be extended to represent each possible interaction

history. The representation also offers an important

tool for writing decision rules easily by querying the

entire interaction histories.

4.3 Decision making

The decision-making mechanism in the proposed

model also leverages the hierarchical nature of the

activity tree. The set of activities and actions to be

performed by the agent are computed hierarchically,

in a top-down manner. Each activity model defines

an action selection function that computes the

intentions to execute each of the sub-activities or

actions in the activity model. These functions are

designed by the system author and the decisions are

conditioned on the inferred state. Decision rules are

often conditioned on the marginal of a single

variable of the activity. When a rule needs to be

conditioned on the joint of all variables in an

activity, this joint is already provided by our

inference approach that collapses the variables in

each activity model. Finally, when action histories

can be efficiently represented with transition

particles as discussed above, action selection can

also be conditioned on the distribution over the

possible discourse histories for ease of authoring.

The hierarchical decomposition of activities

allows for authoring decisions in a modular fashion,

and enables hybrid action selection approaches,

where different mechanisms are used in different

activities in the tree. For instance, in certain cases

simple rules may suffice, e.g. “keep executing

IdentifyName until the probability of name exceeds a

threshold, then move on to ScheduleMeeting if the

owner is far away or MeetNow now if the owner is

close by”. Another functionality supported by the

formalization for action selection is allowing

authors to design a function which quantifies

utilities for executing a subset of sub-activities or

actions, conditioned on a complete assignment of

variables of an activity. To perform action selection,

the system computes the expected utility of

executing any subset of sub-activities and/or actions

under the inferred distribution of variables, and

chooses the subset that maximizes this expectation.

The proposed model thus combines knowledge

that can most often be easily expressed by system

authors (decision rules given beliefs over the

situated state and relationships between key

variables) with computational machinery for joint

inference within the hierarchical representation of

activity trees.

5 An Example Trace

As a proof of concept, we have constructed an initial

MATLAB implementation of the methodology

including the inference approach described above.

We have authored activity models and

experimented with several interaction scenarios.

The goal at this stage is to validate the proposed

approach, investigate its feasibility, and study and

demonstrate some of the functionalities it enables.

We generated traces by providing simulated

observations and logging the results of the inference

and decision making mechanisms at each time step.

As an example, in Figure 4, we show a trace

based on the previously introduced assistant

domain. In this scenario, the agent engages with a

visitor, by activating the intention to AssistGuest at

time 3. The agent then computes its intentions

hierarchically, in a top-down fashion using the

action selection function in each activity. Here,

since the top hypothesis for name is not known with

high enough confidence (see Figure 4 at time 3), the

implemented functions drive the AssistGuest model

to select IdentifyGuest, which in turn selects

GetName, which in turn selects WhoAreYou.

Between times 3 and 8 the agent maintains this

intention to execute WhoAreYou. As the action is

being produced in the world, the corresponding

observation 𝑜𝑊𝐴𝑌 allows the system to infer that this

action is in progress. In the example, the agent can

perfectly execute its intentions. We note however

that, with the proposed model, the agent computes

its intentions, and then observes the actual execution

of its actions. Therefore, the formalism can also

support reasoning about cases where the system

execution does not perfectly correspond to its

intentions (e.g., because of failures in action

execution), and enable the agent to act accordingly

in such cases.

Throughout this time, the model continuously

infers the visitor’s name by fusing evidence from

multiple sources: the prior 𝜙1 which captures

historical statistics, the calendar observations 𝜙6

(guests with scheduled meetings are more likely to

show up), and streaming faceid observations 𝜙2.

AssistGuest

IdentifyGuest

GetName

Let me check the calendar.
Oh, would you like to meet now?

Figure 4. A simulated interaction trace

I’m Paul Yes.

A
ct

iv
iti

es

A
ct

io
ns

 S:

U:

ScheduleMeeting

GetName

Swipe

User swipes badge

29 30 31 32 17 18 19 20 13 14 15 16 21 22 23 24 25 26 27 28 33 34 35 36 37 38 39 5 6 7 8 1 2 3 4 9 10 11 12

Who are you?

The faceid observations, and the inferred marginal

over name throughout time are shown in Figure 4.

Between times 13 and 16 the visitor says “I’m

Paul” and the system receives corresponding partial

hypotheses from the speech recognizer. At times 13

and 14, the partial recognition hypotheses are used

in conjunction with the previous knowledge sources

to update in-stream the inference on name. In

parallel with speaking, the visitor swipes his badge

at time 15. At this time, the observation from the

badge swipe also contributes to inference and

perfectly determines the id variable. As a result of

joint inference, this observation also identifies the

name, and the instance of the IAm action being

performed. At shown in see Figure 4 at time 16,

while the faceid observations and the speech

recognition observation 𝑜𝐼𝐴 for the IAm action are

still unconfident, but because of the badge swipe,

the marginal over name and IAm action execution

identifies that the person is Paul and the action

performed is IAm(name=Paul).
At time 17, the visitor is not speaking and the

system is confident about his identity. Conseque-

ntly, the decision rule of the AssistGuest model

identifies the ScheduleMeeting activity to perform

next since the inference over the proximity of the

owner indicates that the owner is not close by at the

moment. The system launches the LetMetCheck-
Calendar action at time 17. Moments later, at time

21, the inference over proximity is updated with new

observations, and the decision rule in the AssistGuest
model initiates a focus shift to MeetNow, suggesting

that the guest meets with the owner immediately as

the owner is about to arrive. When computing the

intentions to execute within the MeetNow activity,

the agent has access to the particle representation of

the discourse history. As such, since it knows the

ScheduleMeeting activity had already started the

agent prepares the visitor for the shift to MeetNow by

customizing the action and saying “Oh, would you

like to meet now instead?” The visitor accepts

meeting now and the interaction finishes.

While small, the example we have described

illustrates several of the benefits and promise of the

proposed model, such as joint inference and

reasoning about parallel actions, as well as decisions

driven by streaming observations. We are

continuing to study other dialog and interaction

phenomena in this formalism, such as focus shifts,

disambiguation, action failures and repeated

actions, etc.

6 Conclusion and Future Work

Motivated by some of the key challenges faced by

physically situated interactive systems, we have

articulated the problem of situated activity

management. We have introduced a hierarchical

representation of situated activities and an

associated inference and decision making model.

The proposed model aims to bridge the gap between

hierarchical formalizations of collaborative

activities and reasoning under uncertainty. It

enables reasoning and making in-stream decisions

about parallel, coordinated actions, and introduces

the use of conditional Markov Networks as a novel

tool for state tracking in dialog systems.

The model we have introduced is a first step in a

larger endeavor. We believe that the approach lays

a foundation for exploring in-stream interaction

management in physically situated settings. Several

research questions arise on the path towards the

application of this methodology to large, real-world

dialog settings. As stated earlier, joint temporal

inference of the situated state is a challenging task.

In addition to gains in efficiency afforded by the

hierarchical representation, further research is

needed on exploiting additional structure for

tractability in problems that have variables with

large domains and that do not compartmentalize

variables to individual activity models (i.e., share a

lot of variables across many activity models). We

are investigating compression-based approaches to

efficiently represent large variable domains and

approximate approaches for inference and for

representing transition particles succinctly when

they become very numerous.

In addition, we believe there are opportunities

for automation in the authoring of potentials and

decision rules that layer-in domain-independent

models of engagement, turn-taking, focus-of-

attention, and multiparty collaboration, over the

manually authored domain-specific constraints and

logic. Finally, we are experimenting with different

dialog examples to investigate the generality of our

representation and the limits of the inference and

decision-making algorithms that we have outlined.

We believe continued research efforts on the

situated activity management problem and

representation and methodology introduced here

will lead to systems with rich interaction

capabilities in physically situated settings.

Acknowledgments
We would like to thank Barbara Grosz and Ashish

Kapoor for their suggestions and feedback in the

development of this work.

References
Allen, J.F., Byron, D.K., Dzikovska, M., Ferguson, G.,

Galescu, L., and Stent, A. 2001. Towards

Conversational Human-Computer Interaction, AI

Magazine, 22(3)

Bohus, D., and Rudnicky, A. 2009. The Ravenclaw

dialog management framework: Architecture and

systems, in Computer, Speech and Language, 23(3).

Bohus, D., and Horvitz, E. 2009. Dialog in the Open-

World: Platform and Applications, in Proc of.

ICMI’09, Boston, MA

Churcher, G. E., Atwell, E.S, and Souter, C. 1997

Dialogue Management Systems: a Survey and

Overview, Technical Report, University of Leeds,

Leeds, UK.

Grosz, B., 1974. The Structure of Task Oriented Dialogs,

in Proc of IEEE Speech Symposium, Carnegie-Mellon

University, Pittsburgh, PA, 1974.

Grosz, B.J., and Sidner, C.L. 1986. Attention, Intention

and the Structure of Discourse, Computational

Linguistics, 12(3), 1986

Grosz, B.J., and Kraus, S., 1996. Collaborative Plans for

Complex Group Action. Artificial Intelligence 86(2),

269-357.

Koller D., and Friedman, N. 2010. Probabilistic

Graphical Models: Principles and Techniques, ISBN

978-0-262-01319-2

Lochbaum, K.E., 1994. Using Collaborative Plans to

Model the Intentional Structure of Discourse,

Technical Report TR-25-94, Harvard University, Ctr.

for Res. in Computing Tech. PhD Thesis.

McTear, M.F. 2002. Spoken dialogue technology:

enabling the conversational user interface, ACM

Computing Surveys, 34(1):90-169.

Paek, T., and Pierracini, R. 2008. Automating Spoken

Dialogue Management design using machine

learning: An industry perspective, Speech

Communication, 50(8-9):716-729.

Rich, C., and Sidner, C.L. 1998. Collagen: A

Collaboration Manager for a Collaborative Interface

Agent, User Modeling and User Assisted Interaction,

7(3-4):315-350, Kluwer Academic Publishers.

Traum, D., and Larsson, S. 2003. The Information State

Approach to Dialogue Management. Current and New

Directions in Discourse and Dialogue, Text Speech

and Language Technology, 22:325-353.

Williams, J., and Young, S., 2005. Scaling up POMDPs

for Dialog Management: The “Summary POMDP”

Method, ASRU’05.

Williams, J., and Young, S., 2007. Partially Observable

Markov Decisions Processes for Spoken Dialog

Systems, Computer, Speech and Language, 21(2).

Williams, J., 2010. Incremental Partition Recombination

for Efficient Tracking of Multiple Dialog States, in

Proc. of ICASSP, Dallas, Texas, USA.

Young, S. 2006. Using POMDPs for Dialog

Management, in Proc. of SLT-2006, Palm Beach,

Aruba.

