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Abstract 

We introduce and discuss the problem of 

situated activity management, and present an 

approach for guiding and coordinating an 

agent’s speech and activities amidst the 

dynamics of evolving settings. Specifically, we 

couple a hierarchical representation of 

activities with a novel state tracking approach 

based on conditional Markov Networks. We 

show how the approach can enable an agent to 

reason jointly about parallel coordinated 

actions and the changing situational context. 

The hierarchical structure and joint inference 

allows for a modular authoring of rules used for 

making in-stream decisions. We have 

implemented a proof-of-concept for this 

approach and illustrate its functionality with a 

simulated dialog trace.  

1 Introduction 

Recent research on developing physically situated 

interactive systems highlight spoken dialog as only 

one component of the larger challenge of managing 

parallel, coordinated actions amidst a dynamically 

changing world. As an example, consider a robot in 

charge of greeting, interacting with, and escorting 

visitors in a building. To plan and generate 

appropriate utterances and actions, such physically 

situated agents need to reason continuously about 

the situational context, e.g. people, objects, events 

in the environment, as well as their relationships and 

temporal dynamics. The context often evolves 

asynchronously with respect to the utterances 

spoken and the actions executed, and therefore 

interaction planning must be done continuously, in 

stream, rather than on a per-turn basis. Managing 

interaction in these settings requires reasoning 

about complex patterns of coordination between 

parallel actions (linguistic and non-linguistic) 

produced by multiple participants. 

We introduce and discuss the problem of 

situated activity management, and argue for 

broadening the scope of work in dialog management 

along the lines described above. Second, we 

introduce a candidate representation and associated 

inferential methodology for situated activity 

management. Specifically, we couple a hierarchical 

representation of activities and actions with a novel 

approach to situated state tracking based on 

conditional Markov Networks and a tractable 

mechanism for action selection. The approach 

allows a modular authoring process and enables an 

agent to reason about the situated state, and to make 

in-stream decisions about actions. The methodology 

builds upon and extends several strands of research 

on hierarchical representations for multi-agent 

planning and belief tracking under uncertainty. 

While an extensive comparison with existing 

dialog management techniques (e.g., Allen et. al, 

2001; Churcher et al., 1997; McTear, 2002, Traum 

and Larsson, 2003) falls beyond the scope of this 

paper, we begin by discussing relationships with the 

most relevant prior work, and framing the novelty 

of the proposed approach. We then formally 

introduce the broader problem of situated activity 

management in Section 3 and present the 

methodology in detail in Section 4. In Section 5, we 

illustrate the proposed approach with a simulated 

trace, and in Section 6 we conclude and present 

directions for future work. 

2 Related Work  

Hierarchical representations are a natural choice for 

modeling the structure of human activities and 

interactions. Previous work (Grosz, 1974; Grosz 

and Sidner, 1986) demonstrated that task-oriented 



dialog has a nested structure that often mirrors the 

hierarchical structure of the task at hand. Subseque-

ntly, several hierarchical formalizations have been 

proposed for modeling collaboration and discourse 

(Grosz and Kraus, 1996; Lochbaum, 1994) and have 

been brought into practical use in dialog mana-

gement, e.g,, in Collagen (Rich and Sidner, 1997) 

and RavenClaw (Bohus and Rudnicky, 2009). 

Hierarchical representations have useful properties, 

such as modularity, scalability, transparency, and 

ease of authoring. They also provide a natural basis 

for handling discourse phenomena like shifts of 

focus and nested sub-dialogs. However, methods 

based on hierarchical representations have not 

generally addressed the uncertainty that 

characterizes real-world systems equipped with 

noisy sensors and recognizers. 

The problem of managing uncertainty is of great 

practical importance, and as such has received a 

great deal of attention in the spoken dialog 

community. Significant research efforts have been 

targeted at modeling dialog as a partially observable 

Markov decision process (POMDP) (i.a., Williams 

and Young, 2007), and at learning optimal policies 

from data. While advances have been made in 

increasing the scalability of these approaches 

(Williams and Young, 2005; Williams, 2010), real-

world applica-tion of reinforcement learning and 

POMDP techniques has been limited. The 

approaches do not inherently make use of the 

hierarchical nature of dialog and, even with factored 

representations, state inference and action selection 

can become in-tractable. Practical dialog 

applications using POMDPs have been limited 

because of challenges with transparency, maintain-

nability, and definitions of reward function and 

optimization criteria (Paek and Pieraccini, 2008). 

We seek to bridge the gap between hierarchical 

representations and probabilistic methods for dialog 

by integrating belief tracking and decision making 

under uncertainty into a hierarchical formalization 

of situated activities. Our goal is to retain the 

modularity, ease-of-authoring, scalability, and 

maintainability properties that hierarchical repre-

sentations confer, and combine them with an 

efficient mechanism for reasoning and decision 

making. Moreover, the proposed methodology 

targets a challenge broader than traditional dialog 

management, and enables reasoning about parallel 

coordinated actions and making decisions in-

stream, rather than on a per-turn basis. 

3 Situated Activity Management 

We begin by defining the problem of situated 

activity management and discussing a set of core 

competencies required for managing situated 

activities under uncertainty. 

By activity we denote a set of atomic actions that 

are executed in the world by the participants of the 

activity. Actions have a start and an end time, and a 

set of property values. In the case of spoken dialog, 

utterances are modeled as actions and discourse 

segments are modeled as activities. For instance, in 

the robot example, the utterance “My name is Paul” 

can be modeled as an action: IAm(Name=Paul). The 

sub-dialog for getting directions can be modeled as 

an activity. Actions can extend however beyond the 

linguistic domain, and may correspond to any 

atomic action performed in the world, e.g., opening 

a door, pointing, or asking a question. The actions 

that form an activity are generally coordinated: their 

content and timing depends on the actions previou-

sly executed by all participants. Multiple actions 

may be executed in parallel, and may overlap each 

other. In Figure 1, the joint set of actions being 

executed at time 𝑡 are represented by 𝐴𝑡. 
By situated we refer to the fact that the activity 

occurs in a broader situational context, which also 

influences the execution of actions. The situational 

context is the state of the world that is relevant to 

the ongoing activity. The situational context may 

evolve asynchronously with respect to the actions 

being performed. Its dynamics may depend on the 

actions executed, but also on other external factors 

that are outside the control of the participants 

involved in the activity. In the robot domain, the 

context may include static variables such as the 

identity of the user and dynamic variables such as 

the current location of the robot, etc. In Figure 1, the 

situational context at time 𝑡 is represented by 𝐶𝑡. 
A situated activity management model enables 

an agent to engage in and contribute to a situated 

activity with other agents. We seek to construct such 

a model and take the decision-theoretic perspective 

of an agent acting under uncertainty: we assume the 

agent does not have access to the ground truth about 

the actions executed or about the context. Instead, 

the agent has to reason from noisy, streaming 

observations about the context and actions being 

produced (denoted by 𝑂𝑡 in Figure 1). For instance, 

in our example, the robot might have access to 

location sensors, face recognition sensors, etc. 



Two core competencies are required for 

managing situated activities under uncertainty. 

First, the agent must be able to track the situated 

state, based on incomplete and potentially noisy 

observations (𝑜𝑡). This includes recognizing the 

actions and activities being executed (𝐴𝑡), and 

tracking the situational context (𝐶𝑡). Second, the 

agent must be able to reason under uncertainty about 

which actions, if any, to execute, so as to maximize 

the utility of the activity at hand. 

4 Approach 

The methodology we propose is centered on a 

hierarchical representation which encodes how 

activities can be decomposed hierarchically into 

sub-activities and actions, and captures the variables 

relevant for making decisions in each activity. We 

couple this representation with an inference 

mechanism that jointly tracks the situated state 

based on an undirected graphical model. The 

representation and inference mechanism enable a 

tractable, modular approach to decision making. In 

the following subsections, we discuss the 

representation, inference, and decision making 

components in more detail. 

We begin by introducing a simplified example 

problem, inspired by an embodied conversational 

agent that serves as a personal assistant outside the 

office door of an employee at our organization 

(Bohus and Horvitz, 2009). The Assistant, has 

access to streaming information and predictions 

about the owner’s location, calendar, and proximity, 

and uses this data along with evidence gleaned from 

multimodal scene analysis to schedule meetings on 

behalf of the owner with people that stop by when 

the owner is not present. To do so, the Assistant first 

has to identify the user, by relying on a face 

recognition algorithm, or by asking the user who 

they are. Alternatively, it might ask the user to 

swipe their badge on an RFID badge scanner. Once 

the user has been identified, depending on the 

owner’s availability, the Assistant either suggests a 

meeting right away or tries to schedule one for a 

later time appropriate for the user and the owner.  

4.1 Representation 

The building block of the hierarchical represent-

tation is the activity model. Activity models are 

authored by system developers and define how an 

activity decomposes into sub-activities and actions. 

At runtime, they are automatically combined into an 

activity tree, which acts as a backbone for inference 

and decision making. Non-terminal nodes in the 

activity tree represent activities, while leaves 

represent actions. Figure 2 illustrates the activity 

tree for the Assistant, formed by combining six 

activity models. At the top-level, AssistGuest 
decomposes into the IdentifyGuest, ScheduleMeeting 

and MeetNow activities. Below, IdentifyGuest 
decomposes into GetName and GetId, and so on. 

Each activity model defines a set of state 

variables and observations that are relevant for 

making decisions about that activity. State variables 

model the information that is not directly observable 

to the agent, and must be inferred based on available 

observations. For each activity we introduce a state 

variable to capture whether and how that activity is 

being executed at the current moment. For instance, 

the GetName, WhoAreYou, IAm variables capture 

the execution of the corresponding activities in the 

GetName model – see also Figure 3. For actions or 

activities that have parameters, e.g. IAm(name=x), the 

corresponding variable, e.g. IAm, spans the set of 

possible action instantiations, e.g. IAm(name=Eve), 
IAm(name=Paul), etc., plus a value ∅ indicating that 

the activity is not currently being executed.  

Each activity model may also define variables 

that capture contextual information that is relevant 

for performing the activity. For instance, the name 

variable in the GetName model captures the user’s 

name, which is relevant to how the user will perform 

the IAm action: a user named Paul is likely to 

perform IAm(name=Paul) rather than IAm(name=Eve). 
While the name is static, other context variables 

might be dynamic and evolve asynchronously with 

respect to the interaction. For example, a proximity 

variable in the AssistGuest activity captures whether 

the owner is close by or far away, and is relevant for 

the agent’s choice between suggesting an immediate 

meeting or scheduling one for later.  

actions  

context 

time 𝑜𝑡 

 𝐶𝑡 

𝐴𝑡 

WORLD 

Figure 1. Ground truth and observations for actions 

and context during a situated collaborative activity  

AGENT’S 
OBSERVATIONS 



Finally, observations defined in each activity 

model capture the evidence about action execution 

and the situational context, and they are used to infer 

the current state. In our example, a faceid 

observation in the GetName model arrives from a 

visual face recognition component and can be used 

to make inferences about the user’s name. In the 

same model,  𝑜𝐼𝐴 observation is obtained from the 

speech recognizer and can be used to make 

inferences about the IAm action. 

The activity models specify the variables that are 

relevant for each activity and therefore enable 

modular authoring. Independently authored models 

are combined together through the variables that are 

shared by neighboring models to facilitate 

reasoning over the entire activity tree. When non-

neighboring models share a variable, the variable is 

replicated in the models connecting them with 

identity relationships to enable joint inference (see 

name variable in Figure 3).      

4.2 Inference 

The goal of the inference mechanism is to jointly 

track the action execution and context variables 

through time, based on the observations collected so 

far (see Figure 1). We accomplish this with a 

conditional Markov Network (Koller and Friedman, 

2008) induced over the activity tree. Markov 

Networks have become a popular choice for solving 

real-world joint inference problems in areas such as 

vision, bioinformatics, natural language processing.  

A Markov network (also referred to as a Markov 

field, undirected graphical model, or factor graph), 

is a model for a joint probability distribution over a 

set of random variables 𝑋 = {𝑋𝑖}. The graph for a 

Markov network consists of a set of nodes, one for 

each variable of interest 𝑋𝑖 and a set of potentials 

𝜙𝑘(𝑉𝑘) that capture probabilistic relationships 

among subsets of variables 𝑉𝑘 ⊂ 𝑋. Specifically, a 

potential 𝜙𝑘 over a set of variables 𝑉𝑘 =
{𝑋1. . 𝑋𝑝} ⊂ 𝑋 is a function 𝜙𝑘:𝒟(𝑉𝑘) → 𝑅

+ that, 

for any joint assignment of the variables in 𝑉𝑘 

outputs a positive real number capturing the relative 

strength of that assignment. The joint distribution of 

the variables in a Markov network is expressed as 

the normalized product of potentials: 

𝑃(𝑋) =
1

𝑍
∏𝜙𝑘(𝑉𝑘)

𝑘

 

where Z is a normalization constant, also referred to 

as the partition function. When a subset 𝑂 of the 

variables in 𝑋 are observed, we have a conditional 

Markov network, which models the conditional 

distribution 𝑃(𝑋|𝑂). In this case, the partition 

function is conditioned on the observations. 

As we have already seen, the activity models 

define the set of state variables and observations 

relevant for performing an activity. In addition, they 

also define the set of potentials that capture the 

relationships among these variables. Potentials may 

be represented in parametric form or in full tabular 

format, may be manually authored or learned from 

data, and can capture various types of stochastic or 

deterministic relationships between variables and 

observations. Two types of potentials may be 

defined by each activity model: time-slice potentials 

and transition potentials.  

Time-slice potentials capture relationships 

between variables and observations within a given 

time step.  Figure 3 illustrates some of the time-slice 

potentials from our example. For instance, the 

potential 𝜙1(𝑛𝑎𝑚𝑒) is defined exclusively over the 

name context variable and captures a prior over it. 

The  𝜙2(𝑛𝑎𝑚𝑒, 𝑓𝑎𝑐𝑒𝑖𝑑) potential links the name 

variable with a corresponding faceid observation. 

𝜙3(𝑛𝑎𝑚𝑒, 𝐼𝐴𝑚) models the relationship between 

name to the IAm action execution variable: it 

indicates that the instantiation of the IAm action will 

correspond to the name, or will be ∅, i.e., not-

executed. 𝜙4(𝐺𝑒𝑡𝑁𝑎𝑚𝑒,𝑊ℎ𝑜𝐴𝑟𝑒𝑌𝑜𝑢, 𝐼𝐴𝑚) is a 

three-way deterministic potential that links the 

action execution variables in the GetName model 

and indicates that GetName is being executed when 

either WhoAreYou or IAm is being executed. 

      Transition potentials model the temporal 

dependencies between variables and enable tracking 

of the situated state over time. For instance, in the 

example, a transition potential is defined over the 

Figure 2. Multiple activity models comprise  

an activity tree 
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name variable. As the name is static, this potential 

encodes an identity relationship. 

At runtime, the variables, observations and 

potentials of different models are assembled to form 

a dynamic conditional Markov Network, which is 

used to track the situated state over time (see Figure 

3). At each new time step 𝑡, the network is extended 

by coupling a new instantiation of the network 

induced by the activity tree for the next time step. 

The inference performed over the network is joint: 

it combines observations collected about actions 

and context throughout time, and from different 

parts of the activity tree, to compute the most 

informed beliefs about the current situated state. For 

instance, as we shall illustrate in Section 5, an 

observation of the Swipe action in the GetId model 

can combine with the noisy observation of a parallel 

IAm action in the GetName model, and with the face 

recognition observation of the IdentifyGuest model to 

infer the value of the name variable, and resolve 

which instance of the IAm action is being performed. 

Inference algorithm 

Inference in dynamic conditional Markov Networks 

is a challenging task: in the worst case, exact 

inference is exponential in the number of variables 

in an activity tree (Koller and Friedman, 2008). We 

can exploit however the hierarchical, structured 

nature of the proposed representation to provide a 

customized, more scalable approach.  

For simplicity of presentation, we begin by 

considering inference within a single time slice and 

later extend to temporal inference. Except for very 

small size networks, exact inference is not feasible 

in general Markov networks that may have large 

cliques (loops or potentials connecting many 

variables). Approximate inference techniques like 

loopy belief propagation or sampling approaches 

would be required, which may introduce unbounded 

errors. The conditional Markov Network induced by 

the composition of activity models at a single time-

step has however a special, hierarchical, tree-like 

structure, in which cliques are contained within 

individual activity models and the size of each 

clique is limited by the number of variables in the 

corresponding activity model rather than the size of 

the entire tree. This structure can be leveraged to 

speed up inference. Here, we take an approach 

where we collapse the variables within an activity 

decomposition model into a single joint variable. 

With the new structure, the network becomes a tree, 

and exact inference can be performed using belief 

propagation in time exponential in the number of 

variables in the largest activity model, rather than in 

the total number of variables in the activity tree. 

This novel approach results in exponential savings 

in the complexity of inference over an activity tree 

composed of a large number of activity models.  

Temporal inference raises additional significant 

challenges as the inference at time 𝑡 must be 

conditioned on the full joint of the variables at the 

previous time step, which is again exponential in the 

number of variables in the activity tree. In most 

cases, only a subset of variables, 𝑆 ⊂ 𝑋, has 

transition potentials. In addition, collected 

observations may render only a small subset of joint 

configurations of transition variables likely. Based 

on these observations, we couple our within time-

slice belief propagation approach with a particle-

based approach to address the intractability of 

Figure 3. Left: Markov network corresponding to a portion of the AssistGuest activity tree.  

Right: Three example potentials.   
 

GetName name

WhoAreYou IAm

IdentifyGuest name

faceid

GetId  

  

id

    

calendar

SwipePleaseSwipe

name

    

  

OWAY
OIA OPS OS

   Paul Eve John  

Paul 1 0 0 1 

Eve 0 1 0 1 

John 0 0 1 1 

 

∅     

Paul 2 

Eve 10 

John 15 

 

   Paul Eve John  

true 0 0 0 0 

 0 0 0 1 

 GetName=true 

n
a

m
e
 

n
a

m
e
 

W
h

o
A

re
Y

o
u
 

   Paul Eve John  

true 0 0 0 1 

 1 1 1 0 

 

 

GetName= 

∅ 

IAm 

∅ ∅ 

name 

IAm 

∅ 

∅ 



temporal inference. Specifically, we represent the 

joint over the situated state at time 𝑡  1, with a set 

of 𝑛𝑡−1 particles {𝑠𝑖
𝑡−1}, and their corresponding 

weights {𝑤𝑖
𝑡−1}. Each particle 𝑠𝑖

𝑡−1 represents a 

particular assignment of the state transition 

variables at 𝑡  1, and 𝑤𝑡−1
𝑖  captures the probability 

of this assignment, 𝑤𝑖
𝑡−1 = 𝑃(𝑠𝑖

𝑡−1|𝑜1:𝑡−1). 
To infer the state at the time step 𝑡, we project 

each particle 𝑠𝑖
𝑡−1 forward through the transition 

potentials and run a separate time-slice belief 

propagation inference on the activity tree for each 

incoming particle. In each of these inferences, the 

previous time-step variables on the transition 

potentials become observations, and are assigned to 

the values dictated by the incoming particle 𝑠𝑖
𝑡−1. 

The belief-propagation based approach for time 

slice inference is then applied on each instantiated 

graph. The approach computes the marginal of the 

each situated state variable 𝑋𝑗 at time 𝑡, conditioned 

on the incoming particle and current observations 

𝑃(𝑋𝑗
𝑡|𝑠𝑖

𝑡−1, 𝑜𝑡). In addition the belief propagation 

algorithm on the tree structure allows us to 

efficiently compute the partition function 

corresponding to each particle – 𝑍𝑖
𝑡(𝑠𝑖

𝑡−1, 𝑜𝑡). The 

overall marginal probability of each state variable 

𝑋𝑗 at time 𝑡, conditioned on all observations up to 

time 𝑡 can then be computed by combining the 

inference results for each individual particle with 

the weight of that particle: 
 

𝑃(𝑋𝑗
𝑡|𝑜1:𝑡) =

∑ 𝑃(𝑋𝑗
𝑡|𝑠𝑖

𝑡−1, 𝑜𝑡) ⋅ 𝑤𝑖
𝑡−1 ⋅ 𝑍𝑖

𝑡(𝑠𝑖
𝑡−1, 𝑜𝑡)𝑖

∑ 𝑤𝑖
𝑡−1 ⋅ 𝑍𝑖

𝑡(𝑠𝑖
𝑡−1, 𝑜𝑡)𝑖

 

 

Finally, transition particles for the next time step, 

representing the joint probability distribution at 

time 𝑡 are generated by sampling values for each 

variable in the network. If the total number of 

particles capturing the joint distribution is small, 

this sampling can be exhaustive and the entire 

distribution will be covered. Alternatively, 

sampling can be guided to select high-likelihood 

particles according to the computed marginal and 

can be run until a large percentage of the total mass 

has been covered. In the former case, the inference 

is exact, while in the latter it is approximate.  

The approach we have sketched above performs 

filtering in the dynamic Markov network: it 

computes the marginal of state variables at time 𝑡 
based on accumulated observations, i.e. 𝑃(𝑋𝑗

𝑡|𝑜1:𝑡). 

When most transition potentials in a network 

encode deterministic relationships between 

variables, full inference over the interaction history, 

i.e. 𝑃(𝑋1:𝑡|𝑜1:𝑡) may become feasible. Particles can 

be extended to represent each possible interaction 

history. The representation also offers an important 

tool for writing decision rules easily by querying the 

entire interaction histories.  

4.3 Decision making 

The decision-making mechanism in the proposed 

model also leverages the hierarchical nature of the 

activity tree. The set of activities and actions to be 

performed by the agent are computed hierarchically, 

in a top-down manner. Each activity model defines 

an action selection function that computes the 

intentions to execute each of the sub-activities or 

actions in the activity model. These functions are 

designed by the system author and the decisions are 

conditioned on the inferred state. Decision rules are 

often conditioned on the marginal of a single 

variable of the activity. When a rule needs to be 

conditioned on the joint of all variables in an 

activity, this joint is already provided by our 

inference approach that collapses the variables in 

each activity model. Finally, when action histories 

can be efficiently represented with transition 

particles as discussed above, action selection can 

also be conditioned on the distribution over the 

possible discourse histories for ease of authoring.  

The hierarchical decomposition of activities 

allows for authoring decisions in a modular fashion, 

and enables hybrid action selection approaches, 

where different mechanisms are used in different 

activities in the tree. For instance, in certain cases 

simple rules may suffice, e.g. “keep executing 

IdentifyName until the probability of name exceeds a 

threshold, then move on to ScheduleMeeting if the 

owner is far away or MeetNow now if the owner is 

close by”. Another functionality supported by the 

formalization for action selection is allowing 

authors to design a function which quantifies 

utilities for executing a subset of sub-activities or 

actions, conditioned on a complete assignment of 

variables of an activity. To perform action selection, 

the system computes the expected utility of 

executing any subset of sub-activities and/or actions 

under the inferred distribution of variables, and 

chooses the subset that maximizes this expectation.   

The proposed model thus combines knowledge 

that can most often be easily expressed by system 



authors (decision rules given beliefs over the 

situated state and relationships between key 

variables) with computational machinery for joint 

inference within the hierarchical representation of 

activity trees. 

5 An Example Trace 

As a proof of concept, we have constructed an initial 

MATLAB implementation of the methodology 

including the inference approach described above. 

We have authored activity models and 

experimented with several interaction scenarios. 

The goal at this stage is to validate the proposed 

approach, investigate its feasibility, and study and 

demonstrate some of the functionalities it enables. 

We generated traces by providing simulated 

observations and logging the results of the inference 

and decision making mechanisms at each time step. 

As an example, in Figure 4, we show a trace 

based on the previously introduced assistant 

domain. In this scenario, the agent engages with a 

visitor, by activating the intention to AssistGuest at 

time 3. The agent then computes its intentions 

hierarchically, in a top-down fashion using the 

action selection function in each activity. Here, 

since the top hypothesis for name is not known with 

high enough confidence (see Figure 4 at time 3), the 

implemented functions drive the AssistGuest model 

to select IdentifyGuest, which in turn selects 

GetName, which in turn selects WhoAreYou.  

Between times 3 and 8 the agent maintains this 

intention to execute WhoAreYou. As the action is 

being produced in the world, the corresponding 

observation 𝑜𝑊𝐴𝑌 allows the system to infer that this 

action is in progress. In the example, the agent can 

perfectly execute its intentions. We note however 

that, with the proposed model, the agent computes 

its intentions, and then observes the actual execution 

of its actions. Therefore, the formalism can also 

support reasoning about cases where the system 

execution does not perfectly correspond to its 

intentions (e.g., because of failures in action 

execution), and enable the agent to act accordingly 

in such cases. 

Throughout this time, the model continuously 

infers the visitor’s name by fusing evidence from 

multiple sources: the prior 𝜙1 which captures 

historical statistics, the calendar observations 𝜙6 

(guests with scheduled meetings are more likely to 

show up), and streaming faceid observations 𝜙2. 
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The faceid observations, and the inferred marginal 

over name throughout time are shown in Figure 4. 

Between times 13 and 16 the visitor says “I’m 

Paul” and the system receives corresponding partial 

hypotheses from the speech recognizer. At times 13 

and 14, the partial recognition hypotheses are used 

in conjunction with the previous knowledge sources 

to update in-stream the inference on name. In 

parallel with speaking, the visitor swipes his badge 

at time 15. At this time, the observation from the 

badge swipe also contributes to inference and 

perfectly determines the id variable. As a result of 

joint inference, this observation also identifies the 

name, and the instance of the IAm action being 

performed. At shown in see Figure 4 at time 16, 

while the faceid observations and the speech 

recognition observation 𝑜𝐼𝐴 for the IAm action are 

still unconfident, but because of the badge swipe, 

the marginal over name and IAm action execution 

identifies that the person is Paul and the action 

performed is IAm(name=Paul).  
At time 17, the visitor is not speaking and the 

system is confident about his identity. Conseque-

ntly, the decision rule of the AssistGuest model 

identifies the ScheduleMeeting activity to perform 

next since the inference over the proximity of the 

owner indicates that the owner is not close by at the 

moment. The system launches the LetMetCheck-
Calendar action at time 17. Moments later, at time 

21, the inference over proximity is updated with new 

observations, and the decision rule in the AssistGuest 
model initiates a focus shift to MeetNow, suggesting 

that the guest meets with the owner immediately as 

the owner is about to arrive. When computing the 

intentions to execute within the MeetNow activity, 

the agent has access to the particle representation of 

the discourse history. As such, since it knows the 

ScheduleMeeting activity had already started the 

agent prepares the visitor for the shift to MeetNow by 

customizing the action and saying “Oh, would you 

like to meet now instead?” The visitor accepts 

meeting now and the interaction finishes.  

While small, the example we have described 

illustrates several of the benefits and promise of the 

proposed model, such as joint inference and 

reasoning about parallel actions, as well as decisions 

driven by streaming observations. We are 

continuing to study other dialog and interaction 

phenomena in this formalism, such as focus shifts, 

disambiguation, action failures and repeated 

actions, etc. 

6 Conclusion and Future Work 

Motivated by some of the key challenges faced by 

physically situated interactive systems, we have 

articulated the problem of situated activity 

management. We have introduced a hierarchical 

representation of situated activities and an 

associated inference and decision making model.  

The proposed model aims to bridge the gap between 

hierarchical formalizations of collaborative 

activities and reasoning under uncertainty. It 

enables reasoning and making in-stream decisions 

about parallel, coordinated actions, and introduces 

the use of conditional Markov Networks as a novel 

tool for state tracking in dialog systems.  

The model we have introduced is a first step in a 

larger endeavor.  We believe that the approach lays 

a foundation for exploring in-stream interaction 

management in physically situated settings. Several 

research questions arise on the path towards the 

application of this methodology to large, real-world 

dialog settings. As stated earlier, joint temporal 

inference of the situated state is a challenging task. 

In addition to gains in efficiency afforded by the 

hierarchical representation, further research is 

needed on exploiting additional structure for 

tractability in problems that have variables with 

large domains and that do not compartmentalize 

variables to individual activity models (i.e., share a 

lot of variables across many activity models). We 

are investigating compression-based approaches to 

efficiently represent large variable domains and 

approximate approaches for inference and for 

representing transition particles succinctly when 

they become very numerous.  

In addition, we believe there are opportunities 

for automation in the authoring of potentials and 

decision rules that layer-in domain-independent 

models of engagement, turn-taking, focus-of-

attention, and multiparty collaboration, over the 

manually authored domain-specific constraints and 

logic. Finally, we are experimenting with different 

dialog examples to investigate the generality of our 

representation and the limits of the inference and 

decision-making algorithms that we have outlined. 

We believe continued research efforts on the 

situated activity management problem and 

representation and methodology introduced here 

will lead to systems with rich interaction 

capabilities in physically situated settings.  
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