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Abstract

DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with 

potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is 

a general strategy for implementing a broad range of nanoscale computations, including any 

computation that can be expressed as a chemical reaction network. Modelling and analysis of 

DNA strand displacement systems is an important part of the design process, prior to experimental 

realisation. As experimental techniques improve, it is important for modelling languages to keep 

pace with the complexity of structures that can be realised experimentally. In this paper we present 

a process calculus for modelling DNA strand displacement computations involving rich secondary 

structures, including DNA branches and loops. We prove that our calculus is also sufficiently 

expressive to model previous work on non-branching structures, and propose a mapping from our 

calculus to a canonical strand graph representation, in which vertices represent DNA strands, 

ordered sites represent domains, and edges between sites represent bonds between domains. We 

define interactions between strands by means of strand graph rewriting, and prove the 

correspondence between the process calculus and strand graph behaviours. Finally, we propose a 

mapping from strand graphs to an efficient implementation, which we use to perform modelling 

and simulation of DNA strand displacement systems with rich secondary structure.
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1 Introduction

Molecular computation is a powerful emerging technology for enabling programmable 

control of matter at the nanoscale. As our scientific understanding of molecular-scale 

phenomena continues to increase, new opportunities are being revealed for using nanoscale 

computation to influence macro-scale systems such as whole organisms [1]. Thanks to the 

sequence-specific chemistry of DNA interactions, DNA nanotechnology has emerged as a 
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promising technique for implementing programmable nanoscale systems, which have great 

potential for biofabrication, biosynthesis, and diagnostic and therapeutic applications.

DNA strand displacement [49] is a simple yet powerful approach for implementing 

nanoscale computing systems, and has recently been used to implement a range of nanoscale 

computations, including multi-layer logic circuits [41, 35], catalytic amplification cycles 

[26, 50], artificial neural networks [37], and distributed algorithms [4]. It has also been 

shown that the quantitative behaviour of arbitrary chemical reaction networks can be 

implemented using DNA strand displacement [42, 4]. Furthermore, DNA strand 

displacement systems have been used in practical applications such as logic-based analysis 

of cell surface markers for cell sorting [39].

Formal modelling and analysis is an important step in the design of DNA strand 

displacement systems, enabling mechanized verification of circuit behaviour [20, 47] as well 

as fitting of reaction rate parameters from experimental data [4]. Such formal analysis 

requires a means of representing a DNA strand displacement system in a formal language, 

with a well-defined semantics that accurately models the interactions between system 

components. In previous work, we developed a domain-specific DNA strand displacement 

(DSD) language for modelling, simulating and analysing DNA strand displacement systems 

[33, 24]. The language was formalised as a process calculus with a precise syntax and 

semantics, and implemented as the Visual DSD software tool [25] to enable straightforward 

use by scientists. Over time, the scope of the DSD language has been extended to increase 

the diversity of DNA structures that can be modelled. Extensions were made to include 

structures of theoretical and practical interest, such as linear heteropolymers of unbounded 

lengths [23] for modelling Turing-powerful molecular computers [34], and strand 

displacement circuits tethered to a substrate [22] for modelling localised molecular systems 

[2, 44].

As the state of the art in DNA nanotechnology continues to develop, highly sophisticated 

molecular devices are being designed and subsequently implemented in the laboratory. 

Many of these devices involve rich secondary structures such as branches and loops [45, 36], 

which cannot be represented in the current DSD language, despite the various extensions 

that have already been incorporated. Furthermore, supporting such secondary structures 

requires fundamental changes that go beyond simple extensions to the existing language. 

Instead, it is necessary to completely reformulate the syntactic and semantic basis of the 

DSD language using a more general framework, capable of encoding arbitrary secondary 

structures and their interactions.

In this paper we present a language for modelling, simulating and analysing DNA strand 

displacement systems involving rich secondary structures such as branches and loops. The 

language is defined as a process calculus (Section 2), with a simple yet expressive syntax 

and a formal semantics that precisely models the behaviour of systems over time, to enable 

formal analysis. We define a corresponding graphical representation for the calculus, which 

can be used to conveniently visualise complex models. To ensure compatibility with 

previous work [24], we show that the calculus is sufficiently expressive to model all possible 

behaviours of our previous calculus for DNA strand displacement systems (Appendix C). To 
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enable an efficient implementation of the language, we define a canonical representation 

based on a formal model of strand graphs (Section 3). This allows us to use the expressive 

power of graph theory both to represent secondary structures and to derive interactions via 

localized graph rewriting rules. Finally, we present an efficient implementation of the strand 

graph semantics (Section 4). A brief introduction to DNA strand displacement is also 

included (Appendix A).

2 Process calculus

In this section we present a language for modelling, simulating and analysing DNA strand 

displacement systems involving rich secondary structures such as branches and loops. The 

language is defined in Section 2.1 as a process calculus with a formal syntax and semantics. 

The formal syntax enables systems to be written down concisely as program code, to 

facilitate rapid construction and editing of models. The formal semantics enables the 

possible interactions between DNA strands to be computed automatically, for model 

simulation and formal analysis. In Section 2.2 we illustrate the syntax and semantics of the 

calculus through a number of examples, and present a corresponding graphical 

representation for the syntax, which can be used to conveniently visualise complex models. 

The graphical representation has a one-to-one correspondence with the textual syntax, such 

that both can be used interchangeably. To ensure compatibility with previous work, in 

Appendix C we prove that the calculus is sufficiently expressive to model all behaviours of 

our previous calculus for DNA strand displacement systems [24, 21], which we term classic 
DSD. We summarise the syntax and semantics of classic DSD in Appendix C.1, and present 

a translation from classic DSD to our calculus in Appendix C.2. We use the calculus 

semantics to prove in Appendix C.3 that our calculus is able to fully reproduce all 

behaviours of classic DSD. The proof illustrates how the calculus semantics can be used to 

perform formal analysis directly on processes of the calculus, without the need for additional 

transformations, following the approach of previous process calculi such as the pi-calculus 

[29, 30].

2.1 Syntax and semantics

The syntax of the process calculus is summarised in Definition 1. A process P is defined as a 

multiset of strands, where each strand <S> is defined as a sequence S of one or more 

domains. A domain can be either free or bound, where a free domain is represented as d and 

a bound domain is represented as d!i, following similar notation introduced in [7], where i 
represents the bond name. A domain name x represents a nucleotide sequence, while a 

complement domain name x* represents the complement of the sequence x, such that x can 

bind to x* via Watson-Crick base pairing. Finally, a domain x is defined as a toehold, written 

xˆ, if the domain is considered to be short enough that it can spontaneously unbind from its 

complement xˆ*. In the remainder of this paper, we also refer to a process P as a program.

The semantics of the process calculus is summarised in Definition 2. We note that the rules 

can be applied to a collection of sequences in a given context, as shown in Definition 2. 

Individual domains within a given sequence are separated by white space, while multiple 

sequences are separated by a comma. Each rule is labelled with the name of the rule, 
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together with the set of bonds that are modified by the rule. The semantic rules rely on a 

number of auxiliary functions in order to determine whether a give rule can be applied. 

Specifically, the function adjacent(i, P) returns the set of bonds that are adjacent to bond i in 

program P. The function hidden(i, P) returns true if one end of bond i occurs within a closed 

loop, and hence is prevented from efficiently binding to its complement. The function 

anchored(i, P) returns true if both ends of bond i are held “close” to each other, meaning that 

bond i is part of a stable junction. We note that, although these functions take an arbitrary 

process P as argument, they only examine a part of the context surrounding the bond i, as 

illustrated graphically in Definition 2. An alternative version of Definition 2 is presented in 

Appendix B, which allows multiple consecutive domains to be migrated simultaneously, in a 

single merged reaction. We illustrate the various reduction rules through a collection of 

example programs, described below.

Definition 1. Syntax of processes, in terms of domain names x, y, z and bonds i, j, k. We 

assume that all processes P are well-formed in that each bond i in P appears exactly twice 

and is shared between complementary domains. We consider processes equal up to re-

ordering of strands. The function toehold(x) returns true if x is a toehold domain. For 

convenience, we also write xˆ if toehold(x).

Domain d ∷ = x Domain name

| x* Complementary domain name

Possibly bound domain o ∷ = d Free domain

| d!i Bound domain

Sequence S ∷ = o1 … oN Sequence of domains, N ≥ 1

Process P ∷ = <S1> |…| <SN> Multiset of strands, N ≥ 0

2.2 Examples

2.2.1 Hairpin toehold exchange—The first example (Fig. 1A) illustrates a hairpin 

toehold exchange, in which an invader strand opens up a hairpin formed by a template 

strand. For convenience, we assign names to the strands and provide a corresponding 

graphical representation, which shows bound domains connected by their bond names. We 

note that there is a one-to-one correspondence between the graphical representation and the 

program code.

invader = <tˆ x> | template = <x!j uˆ!k y uˆ*!k x*!j tˆ*>

We can first apply rule (RB), which allows the domain t on the invader to bind to the 

complementary domain t* on the template. The program matches the context C(t, t*), which 

means that both the domain t and its complement t* are not already bound. We now check 

whether a bond i can be formed between these two domains, written P′ = C(t!i, t*!i), by 

ensuring that this bond is not hidden, written ¬hidden(i, P′). Currently a bond is defined as 

hidden if one end of the bond is inside a closed loop that does not contain the other end of 

the bond, which is not the case here. Note that this definition could be generalised to check 

for the presence of additional secondary structures that may prevent the bond from forming. 
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Since all of the conditions of rule (RB) are satisfied, we can form the new bond i between 

the invader and the template to produce the program P′:

        <tˆ x>   | <x!j uˆ!k y uˆ*!k x*!j tˆ*>

->(RB) <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

We can now apply rule (RU), which allows the invader to unbind from the template by 

breaking the bond between domains t and t*. The program matches the context P = C(t!i, t*!

i), which means that there is a bond i between domains t and t*. Furthermore, domain t 
represents a toehold since it is annotated with the toehold symbol (ˆ), which means that the 

domain is short enough that it is able to unbind spontaneously. We also check that the bond i 
is not anchored in the program, written ¬anchored(i, P). We define a bond as “anchored” if it 

is part of a junction that holds both ends of the bond close to each other, which is not the 

case here. Note that this definition could be generalised to check for the presence of other 

structures that may stabilise the bond. Since all of the conditions of rule (RU) are satisfied, 

we can break the bond i between the invader and the template to produce the program C(t, 
t*):

        <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

->(RU) <tˆ x>   | <x!j uˆ!k y uˆ*!k x*!j tˆ*>

Definition 2. Reduction semantics of processes, with graphical representations to clarify the 

exposition. We define a context C(S1, …, SN) as a process P containing sequences S1, …, 

SN, where permute(S1,…, SN) denotes any possible permutation of sequences S1,…, SN:

R ∷ = o1 … oN N ≥ 0

C(S1, …, SN) ∷ = split(permute(S1, …, SN)) |P N ≥ 1

split(S1, …, SN) ∷ = <R S1 R1 … SN RN>

| split (S1, …, Si) | split(Si+1, …, SN) i ∈{1, …, N − 1}

The function comp(d) returns the complement of domain d, where comp(x) = x* and 

comp(x*) = x. The function adjacent(j, P) returns the set of bonds that are adjacent to j in P. 

The function hidden(i, P) returns true if one end of bond i is hidden within a closed loop. 

The function anchored(i, P) returns true if both ends of bond i are held close to each other, 

such that bond i is part of a junction.
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To enable 3-way branch migration leaks, we relax the constraints on rule (R3) by replacing 

anchored(j, P′) with |adjacent(j, P)| ≤ 1, which simply checks whether domain j has at most 

one adjacent bond in P, where |B| denotes the number of elements in set B. Note that we use 

P rather than P′ to check for adjacent bonds, to ensure that the strand being displaced has at 

least one end free. Therefore we also require P = C(d′, d′!j, d!j) in this version of the rule 

and have no requirement on P′. We refer to this generalised version of rule (R3) as rule (RL). 

Similarly, to enable hairpin binding leaks we relax the constraints on rule (RB) by removing 

the condition ¬hidden(i, P′). We refer to this generalised version of rule (RB) as rule (RH).

This takes us back to our initial state, which means that we can re-apply rule (RB) to 

produce the program C(t!i, t*!i):

        <tˆ x>   | <x!j uˆ!k y uˆ*!k x* !j tˆ*>

->(RB) <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

Now, instead of applying rule (RU) we can apply rule (R3), which allows the domain x of 

the invader to displace the domain x of the template, by a process of branch migration. The 

program matches the context C(x, x!j, x*!j), which means that there is a bond j between a 

domain x and its complement x*, together with a third domain x that is not bound. We now 

check whether one end of the bond can be moved from the template to the invader, written P′ 

= C(x!j, x, x*!j), such that the resulting bond is anchored. This is indeed the case, since there 

is a bond i that is immediately adjacent to j in P′, holding both ends of bond j close to each 

other. Since all of the conditions of rule (R3) are satisfied, we can move one end of bond j 
from the template to the invader, to produce the program P′:

        <tˆ!i x>   | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

->(R3) <tˆ!i x!j> | <x uˆ!k y uˆ*!k x*!j tˆ*!i>

We can now apply rule (RU) again, which allows the hairpin to open. Unlike the previous 

unbinding reaction, this one results in a hairpin opening rather than in two strands separating 

completely from each other. The program matches the context C(u!k, u*!k), the bond k is 
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not anchored and the domain u is a toehold. Therefore, we can break the bond k and open up 

the hairpin to produce the program C(u, u*):

        <tˆ!i x!j> | x < uˆ!k y uˆ*!k x*!j tˆ*!i>

->(RU) <tˆ! x!j x> | <x uˆ y uˆ* x*!j tˆ*!i>

We can now apply rule (RB) again, which closes the hairpin. Unlike the previous binding 

interaction, this one involves two domains that are on the same strand, rather than two 

domains on two different strands. As before, the program matches the context C(u, u*) and 

the bond k that we wish to form is not hidden in P′ = C(u!k, u*!k), so the bond can form to 

close the hairpin and produce the program P′:

        <tˆ!i x!j> | <x uˆ y uˆ* x*!j tˆ*!i>

->(RB) <tˆ!i x!j> | <x uˆ!k y uˆ*!k x*!j tˆ*!i>

2.2.2 Branch migration leak—The second example (Fig. 1B) illustrates a branch 

migration leak, in which an invader strand opens up a hairpin formed by a template strand, 

in the absence of an exposed toehold. To enable branch migration leaks, we relax the 

constraints on rule (R3) so that the condition anchored(j, P′) is replaced with the condition |

adjacent(j, P)| ≤ 1, which simply checks that there is at most one bond adjacent to the bond j 
that we wish to move, as described in Definition 2. We refer to this generalised version of 

rule (R3) as rule (RL).

invader = <x> | template = <x!j y x*!j>

We can apply rule (RL), which allows the domain x of the invader to displace the domain x 
of the template and open the hairpin, by a process of branch migration leak. The program 

matches the context C(x, x!j, x*!j) and we now check that there is at most one bond adjacent 

to the bond j that we wish to move. This ensures that at least one end of the bound strand is 

able to fray, allowing the invader strand to initiate a migration in the absence of a toehold. 

This is indeed the case, since there are no bonds adjacent to the bond j that we wish to move. 

Since all of the conditions of rule (R3) are satisfied, we can move one end of bond j from the 

template to the invader, to produce the program C(x!j, x, x*!j):

        <x>   | <x!j y x*!j>

->(RL) <x!j> | <x y x*!j>

We can now apply rule (RL) again to close the hairpin. Unlike the previous branch migration 

leak, this one involves two domains that are on the same strand. As before, the program 

matches the context C(x, x!j, x*!j) and there are no bonds adjacent to the bond j that we 

wish to move. Therefore, we can perform the branch migration leak and close the hairpin, to 

produce the program C(x!j, x, x*!j):

       <x!j>|<x y x*!j>
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->(RL) <x>   | <x!j y x*!j>

2.2.3 Four-way branch migration—The third example illustrates a 4-way branch 

migration (Fig. 1C), in which two bonds are exchanged between two pairs of 

complementary domains.

<x!i y*!j1> | <y!j1 z*!k> | <z!k y*!j2> | <y!j2 x*!i>

The program matches the context C(y!j1, y*!j1, y!j2, y*!j2), which means that there are two 

pairs of complementary domains y and y*, with the first pair joined by bond j1 and the 

second pair joined by bond j2. Note that this matches rule (RM) for N = 2, where N denotes 

the number of pairs of complementary domains. We now check whether the bonds j1 and j2 

can be moved so that they are between complementary domains from different pairs, written 

P′ = C(y!j1, y*! j2, y!j2, y*!j1), by checking that the bonds we wish to form are both 

anchored in P′. This is indeed the case, since there is a bond i that is adjacent to bond j2 and 

a bond k that is adjacent to bond j1 in P′. Since all of the conditions of rule (RM) are 

satisfied, we can simultaneously exchange one end of bond j2 with one end of bond j1, to 

produce the program P′:

       <x!i y*!j1> | <y!j1 z*!k> | <z!k y*!j2> | <y!j2 x*!i>

->(RM) <x!i y*!j2> | <y!j1 z*!k> | <z!k y*!j1> | <y!j2 x*!i>

2.2.4 Three-way initiated four-way branch migration—The final example illustrates 

a 3-way initiated 4-way branch migration (Fig. 1D), as described in [36]. The transitions 

between the first and second states are standard toehold binding and unbinding reductions, 

according to rules (RB) and (RU). Once the T1ˆ toehold has bound, rule (R3) can be used to 

derive a branch migration across the A domain. This reduction illustrates the use of the 

anchored predicate to deduce that the bonds i1, i2, j1, j2 together form a junction that anchors 

the j2 bond in place after the strand displacement reduction has occurred. Note that this 

reduction could not be derived using the previously published DSD semantics, which 

required the T1ˆ and A domains to be on the same invader strand. Once the four-way 

junction has formed, neither the i3 bond nor the j2 bond can spontaneously unbind according 

to rule (RU), since each of the bonds is anchored in place by the rest of the junction 

consisting of i1, i2, j1, j2. Hence, the only possible reduction is the four-way branch 

migration that exchanges bonds j1 and i2 between the two pairs of bound domains X and X*. 

This reduction is derived using rule (RM), where the newly formed bond j1 is anchored by 

the adjacent bond i3, and the newly formed bond i1 is anchored by the adjacent bond j2. This 

reduction could also not be derived using the previously published DSD semantics, that do 

not allow four-way junctions or four-way branch migration reactions. Finally, the only 

remaining reductions are the reversible toehold unbinding and binding reductions on the T2ˆ 

domain, according to rules (RU) and (RB).
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2.3 Chemical reaction network encoding

The reduction semantics of the previous section considers which reductions are possible. 

This enables qualitative analysis such as computing the state space or state reachability of a 

system, verifying input/output behaviour, or checking for behavioural equivalence. However, 

for quantitative analysis such as stochastic and deterministic simulation or probabilistic 

model checking, we must also consider the rate of each reduction. This requires quantifying 

all of the possible ways in which a given reduction can take place. To achieve this, we follow 

the approach of [21], by translating processes of the calculus to chemical reaction networks 

that can then be simulated.

Briefly, a chemical reaction network (CRN) is defined as a pair (X, R), where X is a finite 

set whose elements are referred to as species, and R is a finite set of reactions of the form 

(R, r, P), with R, P ∈ ℕX and r ∈ ℝ. We let ℕX denote the set of multisets of X and ℝ 

denote the set of real numbers, and we use bold font to denote a multiset. For a reaction (R, 

r, P) the multiset R denotes the reactants, the multiset P denotes the products and the 

constant r denotes the rate at which the reaction takes place. This can also be written as 

. We write a multiset of species as [I1, …, IN], where Ii is a species. This can also be 

written as I1 + … + IN. We also define a state as a multiset of species, where a reaction is 

applied to a state by removing the reactants from the state and adding the products. An 

example CRN is the following, which corresponds to Fig. 2A:

The first three reactions are bimolecular in that they each have two reactants, while the 

fourth reaction is unimolecular, with a single reactant. The rate of a bimolecular reaction 

scales with the product of the populations of the two species, since the species are assumed 

to interact when they encounter each other by a process of diffusion.

Definition 3. Encoding a calculus process to a chemical reaction network. We define a 

species as a process that is a connected component, such that any two strands in the process 

are connected to each other by a path of shared bonds. The function complex(P) returns true 

if P is a connected component. The function species (P) returns the multiset of species in P. 

To enable a concise representation of species, the function populations([I1, …, IN]) converts 

a multiset of species expressed as a list, to an equivalent multiset expressed as a list of pairs, 

where the first element of the pair denotes the species and the second element denotes its 

population. For this we use a notion of process equivalence (≡) to equate species, where 

processes are equivalent up to global renaming of bonds. The functions rateB (R, B, P, P′) 

and rateU (R, B, P, P′) compute the bimolecular and unimolecular rate constants of a 

reaction, respectively. The function freshen(P) produces a process P′ ≡ P in which all bonds 

are renamed using globally unique names.
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In contrast, the rate of a unimolecular reaction scales with the population of the single 

species. This distinction is essential when computing a CRN from a DSD process, and is 

achieved by checking whether or not two interacting strands belong to the same connected 

component.

Definition 3 presents an encoding from the DSD calculus to a chemical reaction network. 

The function species(P) computes the multiset of species in process P, while the function 

reactions(I, X) computes the set of reactions between the species I and each of the species in 

X. As in [24, 21], we only consider unimolecular and bimolecular reactions, defined by rules 

(UR) and (BR), respectively. Note that we need to compute the multiset of species after each 

reduction, since the connected components may change as a result of new bonds being 

formed or broken. As in [21], the reactions function can be used to generate a CRN in 

saturating or just-in-time modes. In saturating mode, we assume a fixed set of species X and 

we compute reactions(I, (X\I)) for all I ∈ X, where X \ I denotes the set X with the element I 
removed. Thus, the entire set of possible reactions is computed in one go. In just-in-time 

mode, the possible reactions involving only the initial species are computed, and then the 

remaining reactions are computed dynamically during a stochastic simulation, by expanding 

the reaction set whenever a new species is formed as the result of executing a reaction. This 

allows simulation of systems with potentially unbounded numbers of species, such as 

polymer chains, and in general can allow more efficient simulation of systems with large but 

bounded numbers of species. We refer the reader to [21] for additional details of just-in-time 

simulation.

The functions rateB (R, B,P1, P2, P′) and rateU(R,B, P, P′) in Definition 3 compute the 

bimolecular and unimolecular rate constants of a reaction, respectively. The specific 

definitions of these functions will depend on the choice of a suitable rate model. The 

complexity of the rate model is likely to depend on the modelling problem at hand. Rate 

models may range from a collection of default rates, to an approach in which all rates are 

expressed as free parameters and fitted from experimental data, to a biophysics-based 

approach for estimating rate constants. Here we propose an interim rate model, in which the 

functions rateB(R, B, P1, P2, P′) and rateU(R, B, P, P′) use the domain d on which the bonds 

B are formed or broken, together with the type of reduction R, to determine a rate constant 

given by rate(R, d), similar to the approach of [24]. Specifically, rate(RB, d) and rate(RU, d) 

return the rates of binding and unbinding, respectively, involving a domain d and its 
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complement, while rate(R3, d), rate(RM, d) and rate(RL, d) return the rates of branch 

migration, n-way branch migration, and leakage, respectively, involving a domain d and its 

complement. The function rateB directly returns the bimolecular rate constant based on the 

type of interaction and the domain sequences, while the function rateU computes the 

unimolecular rate constant of two interacting strands that are part of the same molecular 

complex, by following the approach of [12, 22]. Briefly, for interacting strands that are part 

of the same complex, this scales all bimolecular rates by the local concentration of the 

interacting domains, given by conc(B,P,P′), to yield a unimolecular rate. We note that the set 

of bonds B is used to pinpoint a specific interaction, which is required in cases where more 

than one interaction on a given domain is possible. In our current approach, a default local 

concentration is used. However, this approach can be generalised to make use of biophysical 

models based on both the sequence and structure of the interacting DNA complexes, such as 

those proposed by [12], for accurately computing the local concentration.

We consider the reductions in Fig. 1A to illustrate our interim rate model. The first binding 

reduction (RB) denotes a bimolecular reaction of the invader binding to the template, which 

takes place at rate rate(RB, t). However, the second binding reduction (RB) denotes a 

unimolecular reaction, which takes place at rate rate(RB, u) × c, where c is the local 

concentration of the interacting domains u and u*. This can be computed using a biophysical 

model such as in [12]. For the reductions in Fig. 1B, the first leak reduction (RL) denotes a 

bimolecular reaction of the invader binding to the template in the absence of a toehold, 

which takes place at rate rate(RL, x). This rate is typically 1M−1s−1. However, the second 

leak reduction (RL) denotes a unimolecular remote toehold leak reaction between the 

template and the bound invader, which takes place at rate(RL, x) × c, where c is the local 

concentration of the interacting domains. As the local concentration approaches 1M, or 

about 1 molecule per nm3, the leak reaction rate is scaled to about 1s−1, which approaches 

the rate of a normal branch migration reaction when the migrating bond is anchored.

We now make use of the CRN semantics to generate the chemical reaction networks for a 

number of example systems based on programmed assembly of metastable hairpins to form 

a variety of structures [45]. Note that in the experimental sequences that were used to 

implement these systems, almost all individual domains were 6 nucleotides in length, which 

corresponds to a toehold domain. Therefore, to reduce the notational burden associated with 

explicitly labelling almost all domains as toeholds, we employ the notational convention that 

domains with lower-case names are toeholds whereas domains with upper-case names are 

long domains.

Our first example is the catalytic self-assembly of a three-arm branched junction, as 

illustrated in Figure 2 of [45], where the computed reactions are summarized in Fig. 2A. Our 

second example is the cross-catalytic signal amplification circuit from Figure 3 of [45], 

where the computed reactions are summarized in Fig. 2B. Our third example is the 

stochastic bipedal walker example from Figure 5 of [45], where the computed reactions are 

summarized in Fig. 3. Note that for this example we have merged some of the reactions for 

conciseness, and have also omitted the reverse reactions. Code in the process calculus syntax 

for the initial species involved in these examples is presented below the corresponding 

graphical representation.
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3 Strand graphs

The process calculus defined in the previous section represents a formal programming 

abstraction for strand displacement systems with complex secondary structures. While the 

syntax of the calculus provides a convenient way of writing down arbitrary secondary 

structures composed of DNA strands, in practice the semantic rules would be challenging to 

implement directly, because of the complexity of pattern-matching on arbitrary process 

contexts that is required by the rules. In this section we provide a mapping from the process 

calculus to a canonical representation based on strand graphs. This enables us to leverage the 

expressive power of graph theory both to represent secondary structures and to derive 

reactions via localized graph rewriting rules. Our rewrite rules are local in the sense that they 

only have to consider a bounded number of connected components.

3.1 Notation

We summarise the definition for strand graphs in Definition 4. Each vertex v of the graph 

represents a strand, and each site s at a vertex represents a domain. The sites at a given 

vertex are ordered according to the sequence of domains in the strand, given the strand's 

innate directionality. This vertex-specific ordering on sites is a key difference between strand 

graphs and site graphs. An edge e between two sites represents a bond between two 

domains. We can record the fact that certain domains are complementary and thus able to 

bind to each other by a set of admissible edges (A); all edges that appear throughout the 

execution of the program will be drawn from this set. Some of these edges denote bindings 

between toeholds, while the remainder denote bindings between long domains. This 

information (recorded by the function toehold) is needed in order to determine whether 

edges can be removed by spontaneous unbinding of domains, which can only happen if the 

bound domains are toeholds. At this point, we can omit information about the specific 

domains on the strands. All of the information needed to manipulate connectivity is 

available from the placement of sites on nodes, the set of admissible edges and the 

annotation of toehold edges. The set E models the current edges in the program and is the 

only non-static information. The reduction rules change one strand graph into another by 

changing only this set of current edges. We therefore consider the rest of the information 

static and only describe the transformations of E. In order to report which nodes correspond 

to which strands to the user, we assign a colour to each vertex (via the function colour). 
Thus, different copies of the same strand are modelled by different vertices with the same 

colour. The domains can of course also be included on the strands for display purposes. The 

colour information also simplifies the definitions and is helpful when introducing the CRN 

semantics in Section 3.4.

We may draw a strand graph as in Fig. 4B. Each strand type is assigned a colour, for 

instance the strand type <L T2ˆ X* T1ˆ> has been assigned the colour green (represented 

by the number 1). The sites are marked as small black circles. To illustrate the sequence of 

the sites, the nodes have been drawn as circular arrows (with the arrowhead at the 3′ end) 

rather than circles. Thus, on the green node (node 1), the first site L is the lower left one. We 

have drawn all the admissible edges; the current edges are drawn in black while the rest are 

drawn in blue. Further, toehold edges are drawn as dashed.
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We define an encoding from a process to a strand graph in Definition 5. The assignment of 

colours to strand types is made arbitrarily, which means that this assignment should be fixed 

if different programs are to interact. For the moment we only consider the case where the 

entire system is described by a single program. Note that toehold only has to look at one end 

of the edge, since its domain, A, is constructed such that edges will either have short 

domains at both ends or at neither end.

Definition 4. Strand graphs. For V ⊆ ℕ and length : V → ℕ, we define the following helper 

functions:

legalS(V, length) = {(v, n) ∈ ℕ2 | v ∈ V ⋀ n ≤ length(v)} to be the set of legal sites, where a 

site s = (v, n) is a pair of natural numbers such that v is a vertex and n is a position on that 

vertex.

legalE(V, length) = {S ⊆ legalS(V, length) | |S| = 2} is the set of legal edges, where an edge e 
= {s1, s2} is a set containing two sites, such that s1 ≠ s2.

We define a strand graph G = (V, length, colour, A, toehold, E), where:

V = {1, …, N} is the set of vertices; each vertex is a natural number.

colour : V → ℕ is a function assigning a colour to each vertex, colours are also natural 

numbers.

length : V → ℕ is a function assigning a length to each vertex, such that colour(v1) = 

colour(v2) ⇒ length(v1) = length(v2). That is, the length is really a function of the colour.

A ⊆ legalE(V, length) is a set of admissible edges, such that colour(e1) = colour(e2) ⇒ (e1 ∈ 

A ⇔ e2 ∈ A) and (legalS(V, length), A) forms a bipartite graph, which ensures that 

admissible edges connect complementary domains. For an edge e = {(v1, n1), (v2, n2)} we 

define colour(e) = {(colour(v1), n1), (colour(v2), n2)}.

toehold : A →  is a function that returns true on all admissible edges between toehold 

domains and false on admissible edges between long domains, such that colour(a1) = 

colour(a2) ⇒ toehold(a1) = toehold(a2).

E = {e1, …, eM} ⊆ A is a set of current edges, such that (i ≠ j) ⇒ ei ⋂ ej = ∅. That is, at any 

given instant there can be at most one edge connected to any given site.

Definition 5. Given a program P = <S1> | … | <SN>, we will define a corresponding strand 

graph S = (V, length, colour, A, toehold, E). For a domain o, we define its type tp(o) by tp(d) 

= d and tp(d!i) = d, that is tp erases all bonds. Given a strand S = o1 … on, we define the 

type to be tp(S) = tp(o1) … tp(on) and the length to be len(S) = n. We now number the strand 

types in order of appearance in the program, obtaining a list t1 … tT, from which we can 

define the colour function. We also define domain functions dom and ndom and a toehold 

predicate toe, all specific to P, such that dom(i, j) is the jth domain in Si, ndom(i, j) is the 

name of dom(i, j) (i.e. with any bindings removed) and toe(i, j) is true exactly if ndom(i, j) is 

a toehold domain. We are now ready to define the strand graph S:
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3.2 Reduction semantics

The reduction semantics of strand graphs is given in Definition 6. We briefly provide some 

intuition for the reduction rules below. The rules can then be seen to simply change the 

colour of the edges. Rule (GB) states that if there is an edge that is admissible but not 

current, with both end sites unoccupied and not hidden from each other, then this edge can 

be added to the current set. This reflects that the two domains at the end sites are able to 

bind. Rule (GU) states that if there is a current edge that denotes a toehold and is not 

anchored, then it can be removed from the current set. This is because the toehold is free to 

unbind. To describe rules (G3) and (GM) we introduce the concept of a displacing path. In 

particular, an admissible edge can become a current edge even if one of the end sites is 

taken, by removing the edge that is in the way. That is we will make the following 

transformation:

Definition 6. Semantics of strand graphs, assuming a global finite set V of vertices and a 

global set A of admissible edges. The function sites(E) = {s | ∃ e ∈E. s ∈ e} returns the set 

of sites in E. The function adjacent(e, E) returns the set of edges in E that are adjacent to 

edge e. Two edges are adjacent if they occur between the same pair of vertices and each site 

in one edge is adjacent to a site in the other edge. Since paired strands run in opposite 

directions, the end sites are shifted in opposite directions. The function hidden(e, E) returns 

true if one end of edge e is hidden within a closed loop. The predicate anchored(e, E) holds 

only if edge e occurs between two sites that are held close together, such that e is part of a 

junction. The reactions are annotated with the set of bonds they form or break.

As in Definition 2, to enable 3-way branch migration leaks, we relax the constraints on rule 

(G3) by replacing anchored(a, E) with |adjacent(e, E) | ≤ 1, which simply checks whether 

domain e has at most one adjacent edge in E. We refer to this generalised version of rule 

(G3) as rule (GL). Similarly, to enable hairpin binding leaks we relax the constraints on rule 
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(GB) by removing the condition ¬hidden(a, E). We refer to this generalised version of rule 

(GB) as rule (GH).

However the transformation will only occur if the anchored predicate is true. In that case, we 

may depict the situation as follows:

This illustrates that the bond can be seen to swing, rather than one edge disappearing and 

another appearing. We can then imagine that if the site to which the bond would swing is 

already occupied then another bond swing would need to happen first. This could form a 

long chain as follows:

The red arrows then form what we term a displacing path. If such a path forms a loop, it 

denotes the simultaneous swapping of a list of bonds. If it does not form a loop, it can be 

unravelled from the end into a series of single bond swaps. The latter situation is captured by 
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rule (G3) and the former by rule (GM). We can summarize the four main rules graphically as 

follows (also set next to the rules in Definition 6):

We can also illustrate the example of Fig. 1D as follows:

3.3 Correspondence with process calculus semantics

In this section we sketch a proof that the operational semantics of the process calculus and 

strand graph representations coincide. We will write EP for the edge graph that was derived 

from the process P. We begin by stating some lemmas that are straightforward to prove, 

hence their proofs are omitted.

Lemma 7. adjacent(i, P) = adjacent({(v, n),(v′, n′)}, Ep), where there exists d such that 

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 8. hidden(i, P) ⇔ hidden({(v, n),(v′, n′)}, EP), where there exists d such that 

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 9. anchored(i, P) ⇔ anchored({(v, n), (v′, n′)}, EP), where there exists d such that 

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 10. anchored (a, E) ⇔ anchored(a, E \ {e}) ⇔ anchored(a, E ⋃ {e′}), provided e 
and e′ are not among the bonds forming the anchor.

We can now present a proof of the main correspondence theorem.

Theorem 11. There exist R and B such that  iff there exists G and E such that 

.

Proof. We first note that the effects of the rules are disjoint, that is for given P, P′ only one 

rule could apply to tranform P into P′, likewise for given EP and EP′. This can be seen by 

observing the changes of bonds: For X ∈ R, G, rules XU will remove one bond, rules XB 
will add one bond, rules X3 will move a single bond and rules XM will move more than one 

bond. (Rule GM cannot be instantiated with N = 1 as this would make e1 = a1, contradicting 

that e1 ∈ E and a1 ∈ A\ E). It follows that the theorem can be strengthened to conclude that 

R = RY and G = GY, for some Y ∈ U, B, 3, M. We will proceed by cases on Y.

• Case RB,GB. There exists an i such that P = C(x, x*) and P′ = C(x!i, x*! i) iff there 

exists an a ∈ A \ EP such that a ⋂ sites (EP) = ∅ and EP′ = Ep ⋃ {a}. In that case, a 
= {s, s′}, where dom(s) = x!i and dom(s′) = x*!i, and by Lemma 8 we get that 
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hidden(i, P′) ⇔ hidden(a, EP′), i.e., that ¬hidden(i, P′) ⇔ ¬hidden(a, EP′). Thus, 

for B = {i} and E = {a}, we get that .

• Case RU,GU. There exists an i such that P = C(x!i, x*!i) and P′ = C(x, x*) iff there 

exists an e ∈ EP such that EP′ = EP \ {e}. In that case, e = {s, s′}, where dom(s) = x!

i and dom(s′) = x*!i, and soby Lemma 9 we get that ¬anchored(i, P) ⇔ 

¬anchored(e, EP), and by definition we get that toehold(x) ⇔ toehold(e). Thus, for 

B = {i} and E = {e}, we get that .

• Case R3,G3. There exists j such that P = C(d′, d′!j, d!j) and P′ = C(d′!j, d′, d!j) iff 
there exists e ∈ EP and a ∈ A \ EP such that e = {s, s′} and a = {s, s″} and s″ ∉ 

sites(EP) and EP′ = (EP \ {e}) ⋃ {a}. In that case, dom(s) = d!j and dom(s′) = d′!j, 
and so by Lemmas 9 and 10 we get that anchored(j, P) ⇔ anchored (a, EP′) ⇔ 

anchored (a, EP). Thus, for B = {j} and E = {a}, we get that 

.

• Case RM,GM. There exists j, …, jN such that P = C(d!j1, d′!j1,…, d!jN, d′!jN) and 

P′ = C(d!j1, d′!j2, …, d!jN, d′!jN+1) iff there exists e1, …, eN ∈ EP and a1,…, aN ∈ 

A\EP such that for all k ∈ {1, …, N},  and , with 

and such that EP′ = (EP \ {e1, …, eN}) ⋃ {a1, …, aN}. It is then the case that, for all 

k ∈ {1, …, N}, dom(sk) = d*!jk and . By Lemmas 9 and 10 we get 

that anchored(jk, P′) ⇔ anchored(ak, EP′) ⇔ anchored(ak, EP) for all k ∈ {1, …, 

N}. Thus, for B = {j1, …, jN} and E = {a1, …, aN}, we get that 

.

• Case leaks. The cases for the leak reaction rules are similar to those above, with 

the only extra requirement being that we must use Lemma 7 to show that |

adjacent(j, P)| = |adjacent(e, EP)|, where e is defined as in the case for rule R3 

above. From this, it is trivial to see that |adjacent(j, P)| ≤ 1 ⇔ |adjacent(e, EP)| ≤ 1, 

as required.

This covered all cases, and therefore completes the proof of Theorem 11.

3.4 CRN semantics

The semantics of Definition 6 can be used to derive the behaviour of a full system, but 

represents each copy of a species explicitly. We would like to represent each species only 

once and record its multiplicity during simulation or state space exploration. A species in a 

strand graph is defined as a connected component, that is, a maximal connected sub graph. It 

is therefore tempting to define a species simply to be a connected strand graph. However, the 

interaction of species relies on them sharing the notions of admissible edges as well as 

toeholds, so we shall define species relative to this data structure. First we note that both 

notions factor through the colour map, meaning that to determine if an edge is admissible or 

is a toehold, it is enough to know the colour of the vertices at the endpoints (and the sites). 

Thus, we shall define the notion of an environment ξ = (C, length, A, toehold) to be a tuple 

where C = {1, …, K} is a set of colours, length : C → ℕ, A ⊆ legalE(C, length), and 
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toehold : A → . This is much like for strand graphs, except that everything is now given in 

colour space. Given an environment ξ, a species on ξ, T = (V, colour, E) is then a tuple 

where V = {1, …, N}, colour : V → C, colour(E) ⊆ A, such that sg(ξ, T) is a connected 

strand graph. So to decide admissibility of an edge, we first translate it into colour space and 

then ask the environment. The map sg turns an environment and a species on that 

environment into a strand graph, and is given by sg(ξ, S) = (V′, length′, colour′, A′, toehold′, 

E′), where

We will write admξ(T) to denote A′. We say that two species, T1 and T2, on the same 

environment ξ are isomorphic if sg(ξ, T1) ∼ sg(ξ, T2), that is they are isomorphic as strand 

graphs as per Definition 13. We will write this as T1 ∼ξ T2.

We need one more thing for our species semantics, namely the ability to put two species next 

to each other and consider the resulting strand graph to determine reactions. Since all species 

have vertices numbered from 1, we need to renumber one of the species. Thus we define a 

binary operator |ξ on species by

where

and E = E1 ⋃ (E2 + N). Here E2 + N means the set of edges obtained by adding N to all 

vertices of all the sites in E2. Note that we allow sg to be applied to a graph which is not 

connected. Finally, we need a function species in the other direction, taking a strand graph 

and returning the connected components restructured into species via a similar renumbering. 

This will be a multiset rather than a set, since different connected components might be 

isomorphic. We can now define a CRN semantics, as shown in Definition 12. As with 

Definition 3, this semantics is parametrised by a rate model, which is used to compute 

unimolecular and bimolecular rate constants. We adopt a similar interim rate model to the 

one proposed for the process calculus in Section 2.
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4 Implementation

Our implementation takes a given program, transforms it into a strand graph, splits this into 

connected components, brings each connected component into a canonical form, and then 

proceeds to enumerate reactions, compute the state space and/or do a just-in-time simulation 

of the system. We will describe the canonical form below, but first we describe the data 

structures for representing strand graphs.

4.1 Data structures

Since the vertices in a species are numbered 1 through N, and the colour function maps 

vertices to natural numbers, both of these data can be stored as a single array of length N of 

integers (in the implementation, we note that everything is numbered from 0 rather than 

from 1). The edges of a strand graph are stored as a set of pairs of sites. To avoid 

complications with storing the same edge in two different ways, these pairs are always 

stored in canonical form, such that the smallest site (by the lexicographic order on integers) 

is stored in the first component. Similar conventions are used to store the environment. As an 

optimisation, additional data structures are computed once during species normalisation. 

These include data structures for storing the anchored bonds, the set of bound ports and the 

admissible edges (not in colour space).

4.2 Species isomorphisms

Given the split of information into global and local, a permutation on a strand graph can be 

described as a permutation of the vertices which preserves the colours and does not change 

the set of edges. In fact, this is enough to determine isomorphism. That is, we have the 

following lemma:

Lemma 14. For a connected strand graph S = sg(ξ, T), where T = (V, colour, E), π is a 

strand graph automorphism on S iff π is a permutation of V such that colour ∘ π = colour and 

∀v1, n1, v2, n2. .

Definition 12. CRN semantics of strand graphs. The function species(S) returns the multiset 

{(T1, m1), …, (TN, mN)} of components in S, where mi denotes the multiplicity of 

component Ti in S. Importantly, we use a notion of strand graph isomorphism (∼) to 

compare components, as shown in Definition 13. As in Definition 3, the functions 

rateU(R,E,C) and rateB(R,E,C) compute the unimolecular and bimolecular rate constants, 

respectively, associated with the reduction of type R involving edges E of the multiset C.

Definition 13. Strand graph isomorphisms. Given a strand graph S = (V, length, colour, A, 
toehold, E), an automorphism π : V → V is a permutation of the vertices such that
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That is, π is colour- (and therefore length-) preserving and is also permuting E and A in a 

coherent manner. Since this defines how π permutes edges, we allow ourselves to write π e 
for e ∈ A in the last constraint saying that π preserves toeholds. Given two strand graphs S 
and S′, we say that S is isomorphic to S′, written S ∼ S′, if there exists an automorphism π 

on S such that S′ = π S. Note that this definition relies on the assignment of colours to be 

coherent across strand graphs.

Proof. Left to right is trivial given that sg preserves V, colour, and E. Right to left follows 

from the fact that, since it preserves colour, ξ is a valid environment for π(T) and sg(ξ,π(T)) 

will produce the same length and toehold functions and the same set of admissible edges.

This means that the local information is enough to establish isomorphism or, as we do in the 

implementation, to compute a canonical representation.

4.3 Canonical representations of species

During reaction enumeration, just-in-time simulations [21] and state space exploration, all 

species are kept in canonical form to enable quick equality checking. The canonical form is 

obtained by finding a canonical labelling of the nodes. In [32] a series of worst-case 

quadratic algorithms for finding a canonical labelling of site graphs is presented. There, a 

site graph is first transformed into a graph with coloured edges and then the ordering of the 

colours is used to define edge enumeration. Here, we already have coloured edges, by lifting 

the colour of nodes. Because the sites are ordered, we do not need to sort edges by colour 

during edge enumeration, we can simply order them by outgoing site. A much bigger gain in 

practice comes from the fact that a canonical labelling is determined as soon as we have 

decided on a starting vertex. This means that we can restrict ourselves to vertices of a single 

colour. We can, for instance, choose the lowest colour with a minimal set of nodes. Thus, if 

there is only a single strand type with only one instance in the species, we can immediately 

obtain a canonical labelling by enumerating from the lowest such, and no second phase to 

compare enumerations is necessary.

The worst-case complexity is still quadratic, which occurs when all strands have the same 

colour but none of them are isomorphic. This would occur, for instance, in a linear polymer. 

It is an interesting problem to speed up such cases; one solution might be to perform some 

abstraction, such as forgetting the length, similarly to how list predicates are handled in 

static analyses. Finally, even when systems grow very large, in many cases the connected 

components stay small, meaning that even quadratic complexity is tolerable.

Petersen et al. Page 20

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.4 Three-way initiated four-way branch migration example

We have run the implementation on all the examples presented in Section 2. The output 

graphs that are automatically generated by the implementation are substantial, therefore we 

have omitted them from the paper. The CRN generated for the example of Fig. 1D is 

presented in Fig. 5. The rounded boxes represent species and the square boxes represent 

reactions, each box being labelled by the reaction rate. Bold lines are inputs to reactions and 

thin arrows are outputs. The bold rounded boxes denote initial species in the system. These 

species can react via external binding to form a single complex. This complex can either 

perform a toehold unbind to reverse the reaction or a displacement to kick off the strand A, 

resulting in four strands that can perform a four-way branch migration followed by a 

reversible toehold unbinding. We have used the default rates from Visual DSD for binding, 

unbinding, and migration.

The state space produces analogous behaviour, as shown in Figure 6. The initial state is 

marked in bold, where we have specified one of each initial molecule. The implementation 

automatically detects the individual species as connected components of the strand graph 

corresponding to each state. Both the CRN and the state space were computed from the 

following program, as described in Fig. 1D.

<tether T2ˆ!a X*!b T1ˆ> | <A X!b T2ˆ*!a> | <T1ˆ* X!c RA> | <X* !c A*!d> 

| <A!d>

We have also performed a stochastic simulation of the system, starting with 1000 molecules 

of the initial tethered species (Species 1, purple) and 1200 molecules of the other initial 

species (Species 4, light blue). The time course is presented in Figure 7. We observe the 

binding of the two initial species form the light green Species 5, which rapidly produces 

strand “A” (Species 0, dark blue) and another transient product (Species 7, dark brown, 

mostly covered by light green) which then performs the four-way branch migration followed 

by a toehold unbinding. This means that the final species enter into a stochastic equilibrium 

(the large Species 6 in red and one of the products is in dark green with the other product 

directly underneath). This simulation was run using the following program, where the 

components are given explicitly in order to assign multiplicities.

  1000 * ( <tether T2ˆ!a X*!b T1ˆ> | <A X!b T2ˆ*!a> )

| 1200 * ( <T1ˆ* X!c RA> | <X* !c A*!d> | <A!d> )

Note that if one of the explicit components were not connected, it would be split into 

separate species that would each be assigned the same multiplicity. For comparison, we note 

that all models tested so far that are compatible with both the new implementation and the 

most recent release of Visual DSD [25] are faster in the new implementation.
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5 Discussion

In this paper we have presented a formal language for modelling domain-level interactions 

between nucleic acid complexes with arbitrary secondary structures. We have defined our 

language as a process calculus and have proposed a mapping to a canonical representation 

based on strand graphs, which is derived from site graphs by imposing an ordering on the 

sites in each vertex. This is necessary because vertices represent individual strands and sites 

represent domains that appear in a particular order on the strand. Edges between sites encode 

the bonds that exist between various domains. By defining local strand graph rewrite rules 

we have presented an operational semantics for deriving reactions between DNA structures. 

This significantly extends our previous work on the DSD programming language, by 

enabling additional classes of structures and interactions to be derived, such as dendritic 

structures and n-way branch migration reactions with n ≥ 4. More generally, the approach 

can handle arbitrary DNA secondary structures. We have also defined an encoding to 

chemical reaction networks, which allows strand graph systems to be simulated using 

stochastic simulators based on the Gillespie algorithm [13] or ordinary differential equation 

solvers. This required computing the connected components of a strand graph, which 

correspond to the individual chemical species. We have also derived the state space of strand 

graph systems, which can be analysed by probabilistic model checking [20, 47] using tools 

such as PRISM [15]. We have used our language to model several systems that were beyond 

the scope of previous implementations such as [25]. These include programmable 

biomolecular self-assembly pathways based on hairpin opening [45], and a recently-

proposed three-way initiated four-way branch migration reaction scheme, which is the 

foundation for surface-based molecular Turing machines and reusable digital logic circuits 

[36]. Finally, we have shown that our language is capable of expressing all of the behaviours 

of previously published DSD semantics [21].

5.1 Related Work

The inspiration for a strand graph approach to modelling nucleic acid secondary structures 

came from kappa [7], a language for formally modelling interactions between agents via 

named sites, based on site graphs. Following the approach of kappa, we defined a formal 

syntax with an accompanying reduction semantics. Unlike kappa, however, our reduction 

rules were fixed to reflect existing knowledge of DNA chemistry, DNA strand displacement 

and hybridization interactions. Future work could investigate encodings of these rules 

directly in kappa, however this presents a number of challenges. First, the strand 

displacement rules rely on a notion of ordering between sites, which is currently not directly 

supported in kappa. More importantly, kappa rules allow site-specific interactions to be 

described, whereas here we wish to describe rules that are independent of the specific sites 

involved, but rely instead on notions of domain complementarity and relative positioning of 

sites. Another challenge is the ability to express primitives that require enumeration over an 

unspecified number of bonds, such as the anchored primitive. This requires checking the 

existence of a path of connected bonds within a junction that may contain an arbitrary 

numbers of branches. In kappa, a separate primitive would need to be defined for each 

junction with a specific number of branches. Although the current DSD language cannot be 

encoded in kappa directly, it would be interesting to consider extensions to kappa that would 
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facilitate such encodings. This would enable DSD to be implemented directly in kappa, 

without requiring a custom implementation. A more detailed comparison with kappa is 

provided in Appendix D.

Ours is not the first attempt to model nucleic acid structures with graphs. In [28], a 

formalism where subgraphs are replaced by other subgraphs as a result of enzymatic 

reactions is presented. In [16, 17], a set of rewrite rules specifically targeting strand 

displacement systems is given. These rules correspond to GB, GU and G3, and the paper 

further treats the problem of efficient enumeration of reactions by computing the possible 

states of local connectivity of strands. These two formalisms both model backbones 

explicitly as a series of bonds, whereas here we have an implicit representation given by the 

ordering of sites. In [14] an approach similar to ours is presented, though not formalised as 

strand graphs. Rather, the reaction semantics is defined in terms of pseudocode algorithms. 

Furthermore, instead of deriving branch migration reactions based on displacing paths, a 

fixed set of rules is defined, including a rule corresponding to branch migration with N fixed 

at 4. An approach to efficient computation is also presented, based on simplifying the 

reaction graphs using assumptions of time scale separation. In [31] the backbone is again 

modelled explicitly, but here with the intention of expressing base stacking. This is currently 

not expressible in our formalism and represents an interesting opportunity for detailed 

system modelling, in particular for the derivation of leak reactions that occur via blunt-end 

stacking and subsequent strand displacement, as discussed in [35]. That work also includes 

enzymatic reactions such as restriction enzyme digest and ligation, which we have 

previously only been able to model by manually augmenting a DSD program with explicit 

chemical reactions [46]. However, our formalism does enable the derivation of more general 

strand displacement reactions, such as three-way initiated four-way branch migration.

A somewhat less related development is found in [19] and [18], where the expressivity of 

graph rewriting is explored. There, the relation between subgraphs and species is not as 

direct. Rather, the question is investigated of whether rewrite rules exist, even for 

unconstrained systems, that give desired behaviour, along with the question of synthesis of 

such rules. The intention is that nodes represent programmable particles and that the right 

programs will then realise the synthesised rules. As the computational power of nucleic acid 

systems is progressively tamed in laboratories, in particular with regard to the programmable 

manipulation of matter at the mesoscale using nanoscale interactions, it is possible that these 

two lines of research could be unified in the future.

In this paper, we have defined a process calculus based on explicitly-named bonds to provide 

a text-based front-end language for declaring arbitrary strand graph structures. A domain-

level “dot-paren”-style language such as that used by NUPACK [48] could be used as an 

alternative. However, it is worth noting that, while our strand graph-based approach can 

encode any secondary structure directly, the dot-paren syntax approach requires an 

unbounded number of different kinds of parentheses to encode all possible secondary 

structures: for any fixed number of kinds of parentheses, there exist pseudoknotted structures 

that cannot be expressed. Pseudoknots are structures in which loops are formed by strands 

folding back on themselves in such a way that the loops are not well-nested within larger 

loops. A simple example would be <x!i a y!j b x*!i c y*!j>. An alternative could 
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be to adopt a numeric approach to specifying nucleic acid secondary structure [9] that, like 

our process calculus syntax, can also encode arbitrary nucleic acid structures.

5.2 Future Work

In this paper we have expanded the set of reactions that we can derive by introducing the 

concept of “anchored” bonds. This generalizes the 3-way branch migration rules from 

previously published DSD semantics, which only allowed branch migration to occur when 

the “anchor” domain and the “displacing” domain were adjacent single-stranded domains on 

the same invader strand. This generalization is required to handle the three-way initiated 

four-way branch migration example [36], because the three-way migration involves a 

toehold and a migration domain that are on different strands but are connected by a double-

stranded domain, following the associative toehold scheme [3]. It is also required to derive 

the final step of the three-way junction assembly example from [45]. Making this 

generalization raises interesting questions regarding the appropriate level of modelling detail 

concerning such intramolecular binding reactions. For example, in rule GU, bound 

complementary toeholds are only allowed to spontaneously unbind as long as the bond is not 

anchored. In particular, in the three-way initiated four-way branch migration example, this 

means that the initial toehold  cannot unbind between the completion of the three-way 

migration step and initiation of the four-way migration step. Although the complementary 

toehold domains may unbind, in practice they will rebind quickly as their effective local 

concentration is very high compared to diffusion-limited binding with another species. 

Making this simplification prevents the strand graph model from deriving highly unlikely 

polymerization reactions between multiple structures that have reached this point in the 

reaction pathway, i.e., whose t1 and  toeholds are also exposed. The concept of “anchored” 

bonds is also used in rule G3: the requirement that the newly formed bond a be anchored 

requires that the migration reaction must produce a junction. These definitions also allow us 

to express leak reactions concisely: The leaky version of rule G3 does not require that the 

bond a being formed is anchored. Instead it states that the bond e being broken can have at 

most one adjacent domain. This relaxation means that rule GL can be used to initiate a 

displacement reaction without an anchored toehold binding event.

Previous work [24] presented a method for converting a detailed semantics into a hierarchy 

of more abstract semantics, by merging reactions that occur on relatively fast timescales, 

such as multiple strand displacement reactions triggered by a single invader strand [42]. This 

enabled more tractable models to be generated automatically for high-level analysis. In 

principle, this approach can also be directly applied to the strand graph systems presented 

here. Interestingly, three-way initiated four-way migration raises further questions regarding 

this merging of reactions. Merging multiple strand displacement steps is relatively 

straightforward when they occur sequentially and on a fast timescale. However, in three-way 

initiated four-way migration it is not in fact the case that the three-way strand displacement 

reaction must completely finish before the four-way migration can take place. Indeed, in 

practice they will most likely occur concurrently to some extent, in the sense that the four-

way migration may proceed as far as the three-way migration has completed, and progress 

on the four-way migration may act as a brake on backward steps of the three-way migration. 

Thus it may make sense to merge such “concurrent” reactions.
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The reduction semantics presented in this paper provides a novel formalism of branch 

migration reactions in terms of a displacing path. This allows the GM rule to derive four-

way branch migration reactions as well as similar reactions involving more branches, such 

as 6- or 8-way branch migration. The concept of displacing paths allows us to derive such 

reactions without a special-case reaction rule, by requiring that bonds are swapped between 

neighbouring domains in a sequence that eventually terminates by reaching the first domain. 

Although this reasoning process is expressed in terms of sequential bond-passing, the bond-

swapping reactions occur concurrently in practice. The requirement that anchored(ai, E) 

holds in rule GM requires that all of the branches involved in the migration need to have an 

anchor point. One could relax this constraint such that not all new bonds along a displacing 

path need to be anchored, and estimate the number of anchors by experiments or biophysical 

modelling.

The strand graph approach provides considerable expressiveness for defining secondary 

structures, and for deriving structures via dynamic interactions between existing species. In 

principle, one may define essentially arbitrary secondary structures without any 

consideration of their biophysical plausibility. For instance, a strand graph such as the 

following

<a!i b!j0 c!j1 d!j2 a*!i> | <d*!j2 c*!j1 b*!j0>

can be defined in the syntax, however the bond between a and a* is not biophysically 

plausible unless the combined length of the domains in the duplex (b, c and d) is 

considerably longer than the persistence length of double-stranded DNA. Such bindings are 

currently not prevented in our syntax, however they could be disallowed in the reduction 

rules by augmenting the hidden predicate to take into account domain lengths and topology. 

A possible solution would be to integrate the strand graph system proposed in this paper 

with a biophysical model of nucleic acid structures. This could be achieved using a coarse-

grained approach such as OxDNA [8] or Multistrand [40], or using a worm-like chain model 

[27] to compute the volume swept out by each domain, in order to determine whether two 

domains can interact. Such biophysical modelling could also be used to compute specific 

rates of interaction [12, 43], which is currently lacking in our approach and is an important 

direction for future work. A sufficiently detailed and rigorously parametrised system could 

in future be used as an underlying formalism to model nucleic acid folding pathways, 

involving DNA origami [38] and potentially RNA tiles [11].

This work represents an important step towards a general formal language for modelling, 

simulating and analysing the behaviour of arbitrary nucleic acid systems at the domain level. 

We envisage that future versions of the Visual DSD software will be based on the theoretical 

framework outlined in this paper, to facilitate the design of dynamic nucleic acid systems 

involving complex topologies.
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Appendices

A An introduction to DNA strand displacement

In this appendix, we present a brief introduction to DNA strand displacement reactions [49]. 

Figure 9 shows our abstract representation of DNA strands, sequences, and structures. Each 

single-stranded DNA molecule is represented by a straight line, with parallel lines denoting 

duplexes where the two strands are bound together to form a double helix. We use domains 

to represent DNA subsequences, which we assume have been designed such that each 

domain x binds only to its complementary domain x*. Complementary DNA sequences obey 

the laws of Watson-Crick base-pairing, that is, A binds to T and C binds to G. Each single 

DNA strand has an inherent orientation: the two ends of the strand are known in the field of 

DNA chemistry as the 5′ and 3′ ends. In our diagrams, we denote the 3′ end of the DNA 

strand using an arrow, as is common in such diagrams of DNA structures. We distinguish 

between “long domains”, written just as x, which we assume are on the order of 25 – 30 

nucleotides in length, and “toehold domains”, written with the carat symbol as tˆ, which we 

assume are on the order just 5 – 8 nucleotides in length. This difference means that long 

domains, when they bind to their complements, bind sufficiently stably that spontaneous 

unbinding of the domain is extremely unlikely. Thus, we assume that binding of long 

domains is irreversible. On the other hand, the binding between complementary toehold 

domains is relatively weak, so two strands that are only bound together by a toehold domain 

may spontaneously unbind. Thus, we assume that binding of toehold domains is reversible.

Figure 9 an example of a basic DNA strand displacement reaction. The reactants comprise a 

strand displacement “gate”, which is a two-strand complex, and a single-stranded input 

strand. In the first reaction, the single-stranded input binds reversibly to the gate via the 

complementary tˆ toehold. Thus, the overhanging toehold provides a nucleation point for the 

interaction between the input strand and the two-strand gate complex. Once the input strand 

is bound, the remainder of the input strand (the x domain) is held in place adjacent to the 

gate, which has the same DNA sequence (the x domain). This initiates a reaction known as a 

“branch migration”, in which bases from the preivously bound strand unbind from the 

inhibitor and are replaced by bases from the invading input strand. This process is a random 

walk, and if the junction between the two strands reaches the far end of the complex then the 

upper strand that was previously strongly bonded to the lower strand of the gate is now only 

bound by a short toehold domain (the uˆ domain). This allows the previously bound strand to 

reversibly unbind from the gate, leaving the input strand bound to the gate, the previously 

bound strand free in solution, and the previously bound toehold domain uˆ exposed on the 

gate. We refer to this process as a “strand exchange” reaction because the diffusing input 

strand is reversibly exchanged for the diffusing output strand. If the secondary toehold 

domain uˆ is omitted from the gate, the strand displacement reaction is reversible because 

the displaced output strand cannot rebind from the gate if the secondary toehold is absent. 

Irreversible strand displacement gates of this form, labeled with a fluorophore-quencher pair, 

are often used in experimental implementations of DNA strand displacement to detect the 

presence of certain input strands by observing the increase in fluorescence caused when the 

strand is displaced from the gate, thereby separating the fluorophore from the corresponding 

quencher molecule.
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DNA strand displacement reactions have been used to implement a range of molecular 

information processing systems, including digital logic circuits [35, 41], artificial neural 

networks [37], chemical reaction networks [42], entropy-driven catalytic cycles [50], and 

distributed algorithms [4]. Strand displacement circuits have also been used for diagnostic 

applications [39].

B Vectorised Semantics

In this appendix, we present a “vectorised” version of the reduction semantics for processes, 

which enables multiple sequential migration reactions to be derived as a single merged 

reaction step.

Definition 15. Vectorised reduction semantics of processes. The semantics is identical to the 

non-vectorised semantics of Definition 2, except that each domain d is replaced with a 

vector of domains d̄ = d1,…, dN, and each bond i is replaced with a vector of bonds ī = i1,…, 

iN in rules (R3) and (RM). We write d̄!j̄ as short for d1!j1,…, dN ! jN and d̄ !j̄ as short for 

dN*!jN,…, d1*!j1. We define corresponding vectorised functions as follows, with adjacent(j1,

…, jN, P) = (adjacent(j1, P) ⋃ adjacent(jN, P)) \ {j1,…, jN} and anchored(j1, …, jN, P) = 

anchored(j1, P).

C Encoding the Classic DSD Semantics

C.1 Classic DSD syntax and semantics

Here we choose as our reference point the classic DSD syntax and semantics published in 

our previous work on stochastic simulation of biological modelling languages [21]. Without 

loss of generality, we assume that any “new” quantifiers, module definitions, and module 

instantiations have been expanded away, so that the classic DSD syntax can be written down 

as shown in Definition 16.

Definitions 17–20 recapitulate the reduction semantics of the classic DSD system that was 

initially published in [21].

C.2 A translation from classic DSD syntax into process calculus syntax

Now, we define a translation function ⌈−⌉; that maps a classic DSD program Q into a 

corresponding program P in our process calculus syntax. The translation is defined by 

induction on the structure of classic DSD programs Q, as follows.

Name X, Y, Z ∷ = N Long domain

Nˆ Short domain
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Domain D ∷ = X Domain

X* Complemented domain

Non-empty sequence S ∷ = D1 … DN Sequence of domains N ≥ 1

Possibly empty sequence L, R ∷ = D1 … DN Sequence of domains N ≥ 0

Strand A ∷ = <S > Upper strand

{S} Lower strand

Segment C ∷ = {L′}<L > [S]<R>{R′} Gate segment

Gate G ∷ = C Single segment

C:G Lower strand concatenation

C∷G Upper strand concatenation

Classic DSD Program Q ∷ = A Strand

G Gate

Q1 ‖ Q2 Parallel composition of classic species

Definition 16. Syntax for classic DSD programs.

Definition 17. Elementary reduction rules for classic DSD programs, reproduced from 

Definition 23 of [21]. In rule (RM) we assume that the first domain in R2 is distinct from the 

first domain in S2, so that branch migration is maximal along a given sequence and the rules 

(RM) and (RD) are mutually exclusive. We write ∷: [ S] as an abbreviation for the 

connection of S to another species via concatenation to either the upper or the lower strand. 

Similarly we write … { S}… for the connection of a lower strand to other species via lower-

strand concatenation, and G… for the connection of G to another gate via concatenation to 

the lower strand.

The cases for parallel composition and upper strands are trivial, as is the case for lower 

strands, except that we must reverse the domain sequence when converting from the classic 

lower strand syntax to the standardized upper strand syntax of the process calculus 

representation. The non-trivial case of this definition is the case for a gate G, where we 
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require an auxiliary function tr to recursively convert the segment-based classic DSD syntax 

to the strand-based process calculus syntax. Note that, in the call to tr, the arguments [] are 

empty lists of domains from the DSD process calculus syntax, not elements of the classic 

DSD syntax. The auxiliary function tr can be defined by recursion over the structure of 

classic DSD gates G, as follows.

Definition 18. Rotating and reverisng strands and gates in the classic DSD calculus, 

reproduced from Definition 24 of [21]. We write rev( S) for the domain list whose order is 

reversed from that in S.

Definition 19. Structural congruence rules for the classic DSD calculus, reproduced from 

Definition 25 of [21]. In addition to these rules, we assume that parallel composition of 

classic DSD species is commutative and associative, and that the structural congruence 

relation is reflexive, symmetric and transitive (i.e., is an equivalence relation).

Definition 20. Inductive reduction rules for the classic DSD calculus, reproduced from 

Definition 26 of [21]. We write rev( D) for the function that reverses all of the strands and 

complexes in process D, and com( D) for the function that complements all of the domains in 

process D.
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The arguments d̄
upper and d̄

lower to the tr function are lists of domains from the DSD process 

calculus syntax. These lists are used to record the upper and lower domains observed in the 

segments to the left: hence, they are initialized to be empty when the function is called from 

⌈G⌉. When a gate concatenation is encountered, one of these strands will be terminated, 

depending on whether the concatenation was on the upper or lower strand. The terminated 

strand is constructed by taking the appropriate stored domains from d̄
upper or d̄

lower, and 

concatenating them with the appropriate (upper or lower) domains from the current segment. 

For the recursive call, that list is reset to empty and the domains from the continuing strand 

are transferred to the other list for storage. The bonds between domains that were previously 

represented implicitly by being inside the [−] duplex component of the segment, are now 

represented explicitly using named bonds in the process calculus syntax: we assume that the 

new bond names are chosen freshly for each double-stranded domain.

It is straightforward to see that the cases of the translation for parallel composition, upper 

strands, and lower strands are correct. The case for gates is almost as simple: we observe 

that the order of domains in strands is preserved by the translation, including across domain 

boundaries, and that the bonds between domains are also duplicated correctly.

C.3 Correspondence between classic DSD semantics and process calculus 

semantics

We will use as our starting point the DSD semantics from [21]. We write Q ⇒ Q′ to mean 

that the classic DSD program Q can be reduced to the classic DSD program Q′ using the 

semantic rules from [21], and we write P → P′ for a reduction from the process calculus 

program P to the process calculus program P′ using the process calculus semantics. Our aim 

here is to prove the following proposition.

Proposition 21. For any classic DSD programs Q and Q′, if Q ⇒ Q′ then ⌈Q⌉ → ⌈Q′⌉.

Before we can prove the correspondence, we require some preliminary Lemmas.

Lemma 22. For all gates G, ⌈G⌉ = ⌈ rotate(G)⌉. Similarly, for all strands A, ⌈A⌉ = ⌈ 

rotate(A)⌉.

Proof. Straightforward, given the definition of rotate from Definition 18.

Lemma 23. For all classic DSD programs Q, if⌈Q⌉ = <S1> ⋯ <Sn> then [ rev(Q)] = < 

rev(S1)> ⋯ < rev(Sn)>. Furthermore, rev(⌈Q⌉) = ⌈ rev(Q)⌉.

Proof. The first claim is straightforward, by considering each species from Q on a per-

species basis and using the definition of rev from Definition 18. The second claim follows 

from the first.
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Lemma 24. For all classic DSD programs Q, if⌈Q⌉ = <S1> ⋯ <Sn> then ⌈ com(Q)⌉ = < 

com(S1)> ⋯ < com(Sn)>. Furthermore, com(⌈Q⌉) = [ com(Q)].

Proof. The first claim is straightforward, by considering each species from Q on a per-

species basis. The second claim follows from the first.

Lemma 25. For all classic DSD programs Q and Q′, if Q = Q′ then ⌈Q⌉ = ⌈Q′⌉.

Proof. The proof proceeds by induction on the height of the derivation of Q ≡ Q′, which is 

defined in Definition 19. The cases are as follows.

• First rule. We assume that G ≡ rotate(G). Then, the result follows from Lemma 

22.

• Second rule. We assume that A ≡ rotate (A). Then, the result also follows from 

Lemma 22.

• Third rule. We assume that Q ≡ Q′, where

both hold. Then, by straightforward calculations we get that

for some L̂, R̂, , , and P̂, as required.

• Fourth rule. We assume that Q ≡ Q′, where

both hold. Then, by straightforward calculations we get that

for some L̂, R̂, , , and P̂, as required.

• Fifth rule. We assume that Q = Q1‖Q2 and , and hence that 

. Then, ⌈Q⌉ = ⌈Q1⌉ | ⌈Q2⌉ and . By assumption 

we have  and by induction it follows that . Thus we get that 

, and hence , i.e., ⌈Q⌉ = ⌈Q′⌉, as 

required.
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• Parallel composition is commutative and associative. This case follows from the 

fact that systems in the process calculus syntax are identified up to reordering of 

strands.

• Structural congruence is an equivalence relation. This case follows from the fact 

that equality on translated classic DSD programs is also an equivalence relation.

Thus, we have covered all required cases, which completes the proof of Lemma 25.

We are now in a position to prove the correspondence theorem.

Theorem 26. For any classic DSD programs Q and Q′, if Q ⇒ Q′ then ⌈Q⌉ → ⌈Q′⌉.

Proof. The proof proceeds by induction on the height of the derivation of Q ⇒ Q′. The base 

cases, which correspond to the rules from Definition 17, are as follows.

• Rule RB. In this case, we get that

both hold, for some , , and P̂, and for some fresh i. We note that the newly-

formed bond i is not within a hairpin, and therefore, using rule RB of the semantics 

of the process calculus, we can show that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

• Rule RU. The argument for this case is similar to that for RB: the calculations are 

the same, with the only additional requirement being that we must show that in the 

reduction context in the process calculus semantics there is no bond adjacent to 

bond i. However, this is trivial because the domains in L and R (if they exist) are 

not bound to the lower strand, so there are no adjacent bonds.

• Rule RC. In this case, we get that

both hold, for some L̂, , , and P̂, and for some fresh i. We note that the newly-

formed bond i is not within a hairpin, and therefore, using rule RB of the semantics 

of the process calculus, we can show that ⌈Q⌉ →⌈Q′⌉ holds, as required. (Note that 

we cannot use rule RU derive the reverse reaction ⌈Q′⌉ →⌈Q⌉ in the process 

calculus in this case, because the domains from S and S* are in a duplex so the 

resulting context is not a valid unbinding context.)

• Rule RM. To do. In this case, we get that
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both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3 

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required. (Note that the process calculus reduction 

rules do not in fact require the migration reaction to be maximal, unlike the rules 

from [21].)

• Rule RD. In this case, we get that

both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3 

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required.

• Rule GB. In this case, we get that

both hold, for some L̂, , , and P̂, and for some fresh k. We note that the newly-

formed bond k is not within a hairpin, and therefore, using rule RB of the semantics 

of the process calculus, we can show that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

• Rule GU. The argument for this case is similar to that for GB: the calculations are 

the same, with the only additional requirement being that we must show that in the 

reduction context in the process calculus semantics there is no bond adjacent to 

bond k. However, this is trivial because the rule specifies that the domains in R1 

and R (if they exist) are not bound to the lower strand, so there are no adjacent 

bonds.

• Rule GD. In this case, we get that

both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3 

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required.

The inductive cases, which correspond to the rules from Definition 20, are as 

follows.

• First rule. We assume that rev(Q) ⇒ rev(Q′), and by assumption we get that Q 
⇒ Q′. By induction we get ⌈Q⌉ → ⌈Q′⌉. Then, since the rules of the process 

calculus are closed under the rev operation (in the case of rule R3, to see this we 

note that the same context can be used to derive 3-way migrations in both the 3′ and 

5′ directions), we get that rev(⌈Q⌉) → rev(⌈Q′⌉). Finally, by Lemma 23 we get ⌈ 

rev(Q)⌉ → ⌈ rev(Q′)⌉, as required.

Petersen et al. Page 33

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Second rule. We assume that com(Q) ⇒ com(Q′), and by rule RC we get that Q ⇒ 

Q′. By induction we get ⌈Q⌉ → ⌈Q′⌉. Since the reduction rules of the process 

calculus do not specify which domains are complemented, only their “relative 

complementarity”, it follows that the process semantics is closed under the com 

operation. Hence we get com(⌈Q⌉) → com(⌈Q′⌉), and by Lemma 24 it follows that 

⌈ com(Q)⌉ → com(Q′)⌉, as required.

• Third rule. We assume that Q = Q1‖Q2 and , and that Q ⇒ Q′. Then, 

by assumption we get that , and by induction we get that 

holds. Since we can add additional strands to the context in any process calculus 

reduction, it follows that  holds, i.e., that (⌈Q⌉) → ⌈Q′⌉, as 

required.

• Fourth rule. We assume that Q ⇒ Q′. Then, by assumption there exist Q″ and Q‴ 

such that Q ≡ Q″ and Q″ ≡ Q‴ and Q‴ ≡ Q′ all hold. By induction we get that ⌈Q
″⌉ → ⌈Q‴⌉ holds. Then, by Lemma 25 we get that ⌈Q⌉ = ⌈Q″⌉ and ⌈Q‴⌉ = ⌈Q′⌉. 

Thus it follows that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

Thus, we have covered all required cases, which completes the proof of Lemma 25.

C.4 Comments on the semantic correspondence

If we were able to delimit the subset of process calculus programs that correspond to a 

classic DSD program, then we could define a reverse translation ⌊P⌋ that turns a process 

calculus program back into the corresponding classic DSD program, if such a classic DSD 

program exists. Then, we could try to prove the reverse version of Theorem 26, i.e, if P is a 

process calculus program that corresponds to a classic DSD program, then P → P′ implies 

⌊P⌋ ⇒ ⌊P′⌋. However, this would entail showing that if P corresponds to a classic DSD 

program and P → P′ then P′ also corresponds to a classic DSD program. This property does 

not hold for arbitrary process calculus programs P, because the process calculus semantics 

allows additional reactions, e.g. reactions between single-stranded overhangs that would 

form tree-like structures. The classic DSD semantics neglects such reactions, even though 

they might be possible in practice, because the classic DSD syntax cannot encode such 

structures. Therefore, the reverse direction of Theorem 26 does not hold in general. Thus, 

the new semantics is not a conservative extension of the classic DSD semantics but rather a 

proper extension.

D Comparison with Kappa

In this appendix we use a simple example to illustrate how a DSD program can be encoded 

into kappa [10]. We outline some of the challenges involved, together with potential areas 

for future work. The example we consider is the three-way initiated four-way branch 

migration example described in Fig. 1D. The DSD code for the example is as follows:

<L T2ˆ!i2 X*!i1 T1ˆ> | <A X!i1 T2ˆ*!i2> |
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<T1ˆ* X!j1 R> | <X*!j1 A*!j2> | <A!j2>

The code defines five strands that represent the initial state of the system. From this initial 

state, the full state space is automatically generated by repeated application of the DSD rules 

in Definition 2, as illustrated in Fig. 1D.

We refer the reader to [10] for a description of the kappa language, and to [7, 6] for technical 

definitions. Briefly, kappa is defined in terms of site graphs, where the vertices of the graph 

are also referred to as agents. When encoding a DSD program into kappa, an agent 

represents a DNA strand and a site represents a domain. By definition, each agent has a 

unique name and the sites belonging to a given agent are also unique. To represent our DSD 

example in kappa, we define unique agent names X1,…, X5 to represent the strands. Since a 

given domain may occur multiple times within the same strand, we cannot use the domain 

itself as the site name. Instead, we define unique site names s1,…, s4 and annotate each site 

with the domain, using the kappa notation for an internal state, where a site s with internal 

state L is written s ∼ L. Thus, the internal state of a site is used to represent the domain at 

that site. Finally, we note that kappa does not directly support the notion of complementary 

states. Instead, we use a naming convention such that the state x′ is assumed to be 

complementary to x. Using this approach, we can encode the DSD example of Fig. 1D into 

kappa as follows:

X1(s1∼L, s2∼T2!i2, s3∼X′!i1, s4∼T1), X2(s1∼A, s2∼X!i1, s3∼T2′!i2),

X3(s1∼T1′, s2∼X!j1, s3∼R), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A!j2)

Although the encoding of the DSD syntax into kappa syntax is straightforward, a number of 

difficulties arise when trying to encode the DSD semantics (Definition 2) as kappa rules. In 

particular, to express the binding rule (RB) we need a way of stating that any site in any 

agent can bind to any other site in any other agent, provided the two sites have 

complementary states. Although there are extensions to kappa which permit a given rule to 

be defined once and applied to multiple agents [5], additional generalisations are still needed 

to allow a given rule to be applied to multiple sites and to define predicates over states, such 

as complementarity. In the absence of such generalisations, binding rules tailored to the 

example under consideration are required. For our specific example we end up with the 

following binding rule:

X1(s4∼T1), X3(s1∼T1′) –> X1(s4∼T1!i3), X3(s1∼T1′!i3)

This rule states that site s4 of agent X1 can bind to site s1 of agent X3. However, if we 

change the example slightly so that the complementary domains T1 and T1′ are on different 

sites, the rule is no longer applicable and a different rule needs to be defined. Thus, the 

binding rule is specific to the example.

Similarly, the unbinding rule (RU) for our example is defined in kappa as
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X1(s4∼T1!i3, s3∼X′!i1), X3(s1∼T1′!i3,s2∼X!j1) –> X1(s4∼T1, s3∼X′!i1), 

X3(s1∼T1′,s2∼X!j1)

This rule states that site s4 of agent X1 can unbind from site s1 of agent X3, provided site s3 

of agent X1 is not bound to site s2 of agent X3. In other words, bond j1 and i1 must be 

different. This condition is necessary because, according to rule (RU), a bond between two 

sites can only be broken if there are no adjacent bonds. Again, the kappa rule here is specific 

to our example, since there is currently no general way in kappa to specify that no adjacent 

bonds are present.

The branch migration rule (R3) for this example is defined in kappa as follows:

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A!j2)

–>

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A)

This illustrates another limitation of kappa, in that there is no way to define a generalised 

version of the anchored predicate, which checks whether a bond is part of a junction of 

arbitrary size. As a result, the junction needs to be represented explicitly. In this particular 

example the junction is made up of bonds i1, i3, j1, j2.

Finally, the N-way branch migration rule (RM) for this example is defined in kappa as 

follows:

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2)

–>

X1(s3∼X′!j1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!i1, s2∼A′!j2)

Here again, the specific junction needs to be represented explicitly, and there is no way of 

encoding a branch migration for a junction of arbitrary size N.
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Furthermore, we note that the result of the four-way branch migration can also perform an 

unbind. However, since this unbinding takes place on a different site to the first unbinding, 

an additional kappa rule needs to be defined:

X1(s1∼L, s2∼T2!i2, s3∼X′!j1), X2(s2∼X!i1, s3∼T2′!i2)

–>

X1(s1∼L, s2∼T2, s3∼X′!j1), X2(s2∼X!i1, s3∼T2′)

Thus, the kappa rule set is specific for a given DSD program and could potentially be 

substantial, since it needs to account for all of the different ways in which binding, 

unbinding and migration can occur in that example. This contrasts with a fixed set of only 

four rules in the DSD semantics.

We summarise the extensions to kappa that would be required in order to implement the 

DSD semantics of Definition 2 in a way that is independent of the specific example being 

considered:

• The ability to define meta rules that can be applied to all agents and all sites

• The ability to define predicates on states, in order to specify that any two sites can 

bind provided they have complementary states.

• The ability to define predicates such as adjacency in order to specify that two sites 

can only unbind if there are no bonds between corresponding adjacent sites.

• The ability to define predicates using enumeration i ∈ {1,…, N} for arbitrary 

values of N, for predicates such as anchored, to specify that a given bond is part of 

a junction of arbitrary size, and hidden, to specify that one end of a bond is hidden 

within a closed loop of arbitrary size.

Without these extensions, each example will require a manually encoded set of kappa rules. 

The power of kappa is that it allows a custom set of rules to be defined for each specific 

system under consideration. In contrast, with DSD we define a small set of general rules that 

capture the behaviour of a broad range of strand displacement systems, so that custom rules 

are not required to model each specific system under consideration: the same rules apply to 

all systems. This difference in approach requires the ability to define rules of a much more 

general nature than is currently possible in kappa.

D.1 Relation to site graphs

The fact that domains are on a strand in a specificorder distinguishes strand graphs from site 

graphs. As an example, consider a simple strand displacement reaction

       <a!i b> | <c*!k b* !j a*!i> | <b!j c!k>

–>(R3) <a!i b!j> | <c*!k b* !j a*!i> | <b c!k>
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which can be depicted as the following strand graph transformation:

If we do not have an order of the sites of a node, the the left-most situtation could also 

represent the program <a!i b> | <b*!j c*!k a*!i> | <c!k b!j>, which as a 

strand graph would be

and should not be possible. As site graphs, if one imagines the nodes drawn as just circles, 

the reactive and the non-reactive graphs are indistinguishable, even though the sites are 

named.
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Figure 1. 
State space for a collection of simple examples. There is a one-to-one correspondence 

between the program code and the graphical representation. For each example, the first line 

of code denotes the inital state, which is represented graphically on the left. Importantly, 

only the initial state needs to be written explicitly by the user, since the remaining states are 

generated automatically using the reduction rules of Definition 2.
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Figure 2. 
CRN for a catalytic three-armed junction (A, from Figure 2 of [45]) and for a cross-catalytic 

amplifier (B, from Figure 3 of [45]). The program code for the initial species is written by 

the user and is shown explicitly. The full CRN is generated automatically from the initial 

species, according to Definition 3.
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Figure 3. 
Partial set of chemical reactions for the bipedal walker example from Figure 5 of [45].

Petersen et al. Page 44

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Textual representation (A) and graphical depiction (B) of a strand graph corresponding to 

the start state of Fig. 1D. The correspondence between the calculus and strand grand 

representations is illustrated in (C), where each calculus strand is shown next to its colour.
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Figure 5. 
Inferred CRN for three-way initiated four-way branch migration. Thick lines go between 

reactant species and reactions, and thin arrows go from reactions to product species.
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Figure 6. 
Inferred state space for three-way initiated four-way branch migration. State transitions are 

marked by arrows, which are labelled with the rate of the reaction that would incur the 

transition.
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Figure 7. 
Time course from a stochastic simulation of the three-way initiated four-way branch 

migration. The legend refers to the species from Figure 5.
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Figure 8. 
DNA structure and sequence abstractions. We abstract away from the 3D atomic structure of 

the DNA strands to produce a simple 2D representation. We then subdivide the DNA strand 

sequences into domains, which allows us to design structures at a higher level of abstraction 

than the individual nucleotide sequences.
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Figure 9. 
DNA strand displacement example reaction. The input strand binds reversibly to the gate 

and initiates a reversible branch migration reaction across the domain x that is shared 

between the input strand and the strand already bound to the gate. When the branch 

migration reaction reaches the far end of the x domain, the other strand originally bound to 

the gate is now only bound via the complementary uˆ toehold domain. Thus, it can reversibly 

unbind from the gate, leaving the input strand bound to the gate, the previously bound strand 

free in solution, and the previously bound toehold domain uˆ exposed on the gate. We refer 

to this process as a “strand exchange” reaction.
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