
A strand graph semantics for DNA-based computation

Rasmus L. Petersen1, Matthew R. Lakin2, and Andrew Phillips1

1Microsoft Research, Cambridge, UK

2Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

Abstract

DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with

potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is

a general strategy for implementing a broad range of nanoscale computations, including any

computation that can be expressed as a chemical reaction network. Modelling and analysis of

DNA strand displacement systems is an important part of the design process, prior to experimental

realisation. As experimental techniques improve, it is important for modelling languages to keep

pace with the complexity of structures that can be realised experimentally. In this paper we present

a process calculus for modelling DNA strand displacement computations involving rich secondary

structures, including DNA branches and loops. We prove that our calculus is also sufficiently

expressive to model previous work on non-branching structures, and propose a mapping from our

calculus to a canonical strand graph representation, in which vertices represent DNA strands,

ordered sites represent domains, and edges between sites represent bonds between domains. We

define interactions between strands by means of strand graph rewriting, and prove the

correspondence between the process calculus and strand graph behaviours. Finally, we propose a

mapping from strand graphs to an efficient implementation, which we use to perform modelling

and simulation of DNA strand displacement systems with rich secondary structure.

Keywords

strand graph; site graph; process calculus; programming language; DNA computing; molecular
programming; biological computation

1 Introduction

Molecular computation is a powerful emerging technology for enabling programmable

control of matter at the nanoscale. As our scientific understanding of molecular-scale

phenomena continues to increase, new opportunities are being revealed for using nanoscale

computation to influence macro-scale systems such as whole organisms [1]. Thanks to the

sequence-specific chemistry of DNA interactions, DNA nanotechnology has emerged as a

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

Published in final edited form as:
Theor Comput Sci. 2016 June 13; 632: 43–73. doi:10.1016/j.tcs.2015.07.041.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

promising technique for implementing programmable nanoscale systems, which have great

potential for biofabrication, biosynthesis, and diagnostic and therapeutic applications.

DNA strand displacement [49] is a simple yet powerful approach for implementing

nanoscale computing systems, and has recently been used to implement a range of nanoscale

computations, including multi-layer logic circuits [41, 35], catalytic amplification cycles

[26, 50], artificial neural networks [37], and distributed algorithms [4]. It has also been

shown that the quantitative behaviour of arbitrary chemical reaction networks can be

implemented using DNA strand displacement [42, 4]. Furthermore, DNA strand

displacement systems have been used in practical applications such as logic-based analysis

of cell surface markers for cell sorting [39].

Formal modelling and analysis is an important step in the design of DNA strand

displacement systems, enabling mechanized verification of circuit behaviour [20, 47] as well

as fitting of reaction rate parameters from experimental data [4]. Such formal analysis

requires a means of representing a DNA strand displacement system in a formal language,

with a well-defined semantics that accurately models the interactions between system

components. In previous work, we developed a domain-specific DNA strand displacement

(DSD) language for modelling, simulating and analysing DNA strand displacement systems

[33, 24]. The language was formalised as a process calculus with a precise syntax and

semantics, and implemented as the Visual DSD software tool [25] to enable straightforward

use by scientists. Over time, the scope of the DSD language has been extended to increase

the diversity of DNA structures that can be modelled. Extensions were made to include

structures of theoretical and practical interest, such as linear heteropolymers of unbounded

lengths [23] for modelling Turing-powerful molecular computers [34], and strand

displacement circuits tethered to a substrate [22] for modelling localised molecular systems

[2, 44].

As the state of the art in DNA nanotechnology continues to develop, highly sophisticated

molecular devices are being designed and subsequently implemented in the laboratory.

Many of these devices involve rich secondary structures such as branches and loops [45, 36],

which cannot be represented in the current DSD language, despite the various extensions

that have already been incorporated. Furthermore, supporting such secondary structures

requires fundamental changes that go beyond simple extensions to the existing language.

Instead, it is necessary to completely reformulate the syntactic and semantic basis of the

DSD language using a more general framework, capable of encoding arbitrary secondary

structures and their interactions.

In this paper we present a language for modelling, simulating and analysing DNA strand

displacement systems involving rich secondary structures such as branches and loops. The

language is defined as a process calculus (Section 2), with a simple yet expressive syntax

and a formal semantics that precisely models the behaviour of systems over time, to enable

formal analysis. We define a corresponding graphical representation for the calculus, which

can be used to conveniently visualise complex models. To ensure compatibility with

previous work [24], we show that the calculus is sufficiently expressive to model all possible

behaviours of our previous calculus for DNA strand displacement systems (Appendix C). To

Petersen et al. Page 2

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

enable an efficient implementation of the language, we define a canonical representation

based on a formal model of strand graphs (Section 3). This allows us to use the expressive

power of graph theory both to represent secondary structures and to derive interactions via

localized graph rewriting rules. Finally, we present an efficient implementation of the strand

graph semantics (Section 4). A brief introduction to DNA strand displacement is also

included (Appendix A).

2 Process calculus

In this section we present a language for modelling, simulating and analysing DNA strand

displacement systems involving rich secondary structures such as branches and loops. The

language is defined in Section 2.1 as a process calculus with a formal syntax and semantics.

The formal syntax enables systems to be written down concisely as program code, to

facilitate rapid construction and editing of models. The formal semantics enables the

possible interactions between DNA strands to be computed automatically, for model

simulation and formal analysis. In Section 2.2 we illustrate the syntax and semantics of the

calculus through a number of examples, and present a corresponding graphical

representation for the syntax, which can be used to conveniently visualise complex models.

The graphical representation has a one-to-one correspondence with the textual syntax, such

that both can be used interchangeably. To ensure compatibility with previous work, in

Appendix C we prove that the calculus is sufficiently expressive to model all behaviours of

our previous calculus for DNA strand displacement systems [24, 21], which we term classic
DSD. We summarise the syntax and semantics of classic DSD in Appendix C.1, and present

a translation from classic DSD to our calculus in Appendix C.2. We use the calculus

semantics to prove in Appendix C.3 that our calculus is able to fully reproduce all

behaviours of classic DSD. The proof illustrates how the calculus semantics can be used to

perform formal analysis directly on processes of the calculus, without the need for additional

transformations, following the approach of previous process calculi such as the pi-calculus

[29, 30].

2.1 Syntax and semantics

The syntax of the process calculus is summarised in Definition 1. A process P is defined as a

multiset of strands, where each strand <S> is defined as a sequence S of one or more

domains. A domain can be either free or bound, where a free domain is represented as d and

a bound domain is represented as d!i, following similar notation introduced in [7], where i
represents the bond name. A domain name x represents a nucleotide sequence, while a

complement domain name x* represents the complement of the sequence x, such that x can

bind to x* via Watson-Crick base pairing. Finally, a domain x is defined as a toehold, written

xˆ, if the domain is considered to be short enough that it can spontaneously unbind from its

complement xˆ*. In the remainder of this paper, we also refer to a process P as a program.

The semantics of the process calculus is summarised in Definition 2. We note that the rules

can be applied to a collection of sequences in a given context, as shown in Definition 2.

Individual domains within a given sequence are separated by white space, while multiple

sequences are separated by a comma. Each rule is labelled with the name of the rule,

Petersen et al. Page 3

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

together with the set of bonds that are modified by the rule. The semantic rules rely on a

number of auxiliary functions in order to determine whether a give rule can be applied.

Specifically, the function adjacent(i, P) returns the set of bonds that are adjacent to bond i in

program P. The function hidden(i, P) returns true if one end of bond i occurs within a closed

loop, and hence is prevented from efficiently binding to its complement. The function

anchored(i, P) returns true if both ends of bond i are held “close” to each other, meaning that

bond i is part of a stable junction. We note that, although these functions take an arbitrary

process P as argument, they only examine a part of the context surrounding the bond i, as

illustrated graphically in Definition 2. An alternative version of Definition 2 is presented in

Appendix B, which allows multiple consecutive domains to be migrated simultaneously, in a

single merged reaction. We illustrate the various reduction rules through a collection of

example programs, described below.

Definition 1. Syntax of processes, in terms of domain names x, y, z and bonds i, j, k. We

assume that all processes P are well-formed in that each bond i in P appears exactly twice

and is shared between complementary domains. We consider processes equal up to re-

ordering of strands. The function toehold(x) returns true if x is a toehold domain. For

convenience, we also write xˆ if toehold(x).

Domain d ∷ = x Domain name

| x* Complementary domain name

Possibly bound domain o ∷ = d Free domain

| d!i Bound domain

Sequence S ∷ = o1 … oN Sequence of domains, N ≥ 1

Process P ∷ = <S1> |…| <SN> Multiset of strands, N ≥ 0

2.2 Examples

2.2.1 Hairpin toehold exchange—The first example (Fig. 1A) illustrates a hairpin

toehold exchange, in which an invader strand opens up a hairpin formed by a template

strand. For convenience, we assign names to the strands and provide a corresponding

graphical representation, which shows bound domains connected by their bond names. We

note that there is a one-to-one correspondence between the graphical representation and the

program code.

invader = <tˆ x> | template = <x!j uˆ!k y uˆ*!k x*!j tˆ*>

We can first apply rule (RB), which allows the domain t on the invader to bind to the

complementary domain t* on the template. The program matches the context C(t, t*), which

means that both the domain t and its complement t* are not already bound. We now check

whether a bond i can be formed between these two domains, written P′ = C(t!i, t*!i), by

ensuring that this bond is not hidden, written ¬hidden(i, P′). Currently a bond is defined as

hidden if one end of the bond is inside a closed loop that does not contain the other end of

the bond, which is not the case here. Note that this definition could be generalised to check

for the presence of additional secondary structures that may prevent the bond from forming.

Petersen et al. Page 4

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Since all of the conditions of rule (RB) are satisfied, we can form the new bond i between

the invader and the template to produce the program P′:

 <tˆ x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*>

->(RB) <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

We can now apply rule (RU), which allows the invader to unbind from the template by

breaking the bond between domains t and t*. The program matches the context P = C(t!i, t*!

i), which means that there is a bond i between domains t and t*. Furthermore, domain t
represents a toehold since it is annotated with the toehold symbol (ˆ), which means that the

domain is short enough that it is able to unbind spontaneously. We also check that the bond i
is not anchored in the program, written ¬anchored(i, P). We define a bond as “anchored” if it

is part of a junction that holds both ends of the bond close to each other, which is not the

case here. Note that this definition could be generalised to check for the presence of other

structures that may stabilise the bond. Since all of the conditions of rule (RU) are satisfied,

we can break the bond i between the invader and the template to produce the program C(t,
t*):

 <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

->(RU) <tˆ x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*>

Definition 2. Reduction semantics of processes, with graphical representations to clarify the

exposition. We define a context C(S1, …, SN) as a process P containing sequences S1, …,

SN, where permute(S1,…, SN) denotes any possible permutation of sequences S1,…, SN:

R ∷ = o1 … oN N ≥ 0

C(S1, …, SN) ∷ = split(permute(S1, …, SN)) |P N ≥ 1

split(S1, …, SN) ∷ = <R S1 R1 … SN RN>

| split (S1, …, Si) | split(Si+1, …, SN) i ∈{1, …, N − 1}

The function comp(d) returns the complement of domain d, where comp(x) = x* and

comp(x*) = x. The function adjacent(j, P) returns the set of bonds that are adjacent to j in P.

The function hidden(i, P) returns true if one end of bond i is hidden within a closed loop.

The function anchored(i, P) returns true if both ends of bond i are held close to each other,

such that bond i is part of a junction.

Petersen et al. Page 5

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To enable 3-way branch migration leaks, we relax the constraints on rule (R3) by replacing

anchored(j, P′) with |adjacent(j, P)| ≤ 1, which simply checks whether domain j has at most

one adjacent bond in P, where |B| denotes the number of elements in set B. Note that we use

P rather than P′ to check for adjacent bonds, to ensure that the strand being displaced has at

least one end free. Therefore we also require P = C(d′, d′!j, d!j) in this version of the rule

and have no requirement on P′. We refer to this generalised version of rule (R3) as rule (RL).

Similarly, to enable hairpin binding leaks we relax the constraints on rule (RB) by removing

the condition ¬hidden(i, P′). We refer to this generalised version of rule (RB) as rule (RH).

This takes us back to our initial state, which means that we can re-apply rule (RB) to

produce the program C(t!i, t*!i):

 <tˆ x> | <x!j uˆ!k y uˆ*!k x* !j tˆ*>

->(RB) <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

Now, instead of applying rule (RU) we can apply rule (R3), which allows the domain x of

the invader to displace the domain x of the template, by a process of branch migration. The

program matches the context C(x, x!j, x*!j), which means that there is a bond j between a

domain x and its complement x*, together with a third domain x that is not bound. We now

check whether one end of the bond can be moved from the template to the invader, written P′

= C(x!j, x, x*!j), such that the resulting bond is anchored. This is indeed the case, since there

is a bond i that is immediately adjacent to j in P′, holding both ends of bond j close to each

other. Since all of the conditions of rule (R3) are satisfied, we can move one end of bond j
from the template to the invader, to produce the program P′:

 <tˆ!i x> | <x!j uˆ!k y uˆ*!k x*!j tˆ*!i>

->(R3) <tˆ!i x!j> | <x uˆ!k y uˆ*!k x*!j tˆ*!i>

We can now apply rule (RU) again, which allows the hairpin to open. Unlike the previous

unbinding reaction, this one results in a hairpin opening rather than in two strands separating

completely from each other. The program matches the context C(u!k, u*!k), the bond k is

Petersen et al. Page 6

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

not anchored and the domain u is a toehold. Therefore, we can break the bond k and open up

the hairpin to produce the program C(u, u*):

 <tˆ!i x!j> | x < uˆ!k y uˆ*!k x*!j tˆ*!i>

->(RU) <tˆ! x!j x> | <x uˆ y uˆ* x*!j tˆ*!i>

We can now apply rule (RB) again, which closes the hairpin. Unlike the previous binding

interaction, this one involves two domains that are on the same strand, rather than two

domains on two different strands. As before, the program matches the context C(u, u*) and

the bond k that we wish to form is not hidden in P′ = C(u!k, u*!k), so the bond can form to

close the hairpin and produce the program P′:

 <tˆ!i x!j> | <x uˆ y uˆ* x*!j tˆ*!i>

->(RB) <tˆ!i x!j> | <x uˆ!k y uˆ*!k x*!j tˆ*!i>

2.2.2 Branch migration leak—The second example (Fig. 1B) illustrates a branch

migration leak, in which an invader strand opens up a hairpin formed by a template strand,

in the absence of an exposed toehold. To enable branch migration leaks, we relax the

constraints on rule (R3) so that the condition anchored(j, P′) is replaced with the condition |

adjacent(j, P)| ≤ 1, which simply checks that there is at most one bond adjacent to the bond j
that we wish to move, as described in Definition 2. We refer to this generalised version of

rule (R3) as rule (RL).

invader = <x> | template = <x!j y x*!j>

We can apply rule (RL), which allows the domain x of the invader to displace the domain x
of the template and open the hairpin, by a process of branch migration leak. The program

matches the context C(x, x!j, x*!j) and we now check that there is at most one bond adjacent

to the bond j that we wish to move. This ensures that at least one end of the bound strand is

able to fray, allowing the invader strand to initiate a migration in the absence of a toehold.

This is indeed the case, since there are no bonds adjacent to the bond j that we wish to move.

Since all of the conditions of rule (R3) are satisfied, we can move one end of bond j from the

template to the invader, to produce the program C(x!j, x, x*!j):

 <x> | <x!j y x*!j>

->(RL) <x!j> | <x y x*!j>

We can now apply rule (RL) again to close the hairpin. Unlike the previous branch migration

leak, this one involves two domains that are on the same strand. As before, the program

matches the context C(x, x!j, x*!j) and there are no bonds adjacent to the bond j that we

wish to move. Therefore, we can perform the branch migration leak and close the hairpin, to

produce the program C(x!j, x, x*!j):

 <x!j>|<x y x*!j>

Petersen et al. Page 7

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

->(RL) <x> | <x!j y x*!j>

2.2.3 Four-way branch migration—The third example illustrates a 4-way branch

migration (Fig. 1C), in which two bonds are exchanged between two pairs of

complementary domains.

<x!i y*!j1> | <y!j1 z*!k> | <z!k y*!j2> | <y!j2 x*!i>

The program matches the context C(y!j1, y*!j1, y!j2, y*!j2), which means that there are two

pairs of complementary domains y and y*, with the first pair joined by bond j1 and the

second pair joined by bond j2. Note that this matches rule (RM) for N = 2, where N denotes

the number of pairs of complementary domains. We now check whether the bonds j1 and j2

can be moved so that they are between complementary domains from different pairs, written

P′ = C(y!j1, y*! j2, y!j2, y*!j1), by checking that the bonds we wish to form are both

anchored in P′. This is indeed the case, since there is a bond i that is adjacent to bond j2 and

a bond k that is adjacent to bond j1 in P′. Since all of the conditions of rule (RM) are

satisfied, we can simultaneously exchange one end of bond j2 with one end of bond j1, to

produce the program P′:

 <x!i y*!j1> | <y!j1 z*!k> | <z!k y*!j2> | <y!j2 x*!i>

->(RM) <x!i y*!j2> | <y!j1 z*!k> | <z!k y*!j1> | <y!j2 x*!i>

2.2.4 Three-way initiated four-way branch migration—The final example illustrates

a 3-way initiated 4-way branch migration (Fig. 1D), as described in [36]. The transitions

between the first and second states are standard toehold binding and unbinding reductions,

according to rules (RB) and (RU). Once the T1ˆ toehold has bound, rule (R3) can be used to

derive a branch migration across the A domain. This reduction illustrates the use of the

anchored predicate to deduce that the bonds i1, i2, j1, j2 together form a junction that anchors

the j2 bond in place after the strand displacement reduction has occurred. Note that this

reduction could not be derived using the previously published DSD semantics, which

required the T1ˆ and A domains to be on the same invader strand. Once the four-way

junction has formed, neither the i3 bond nor the j2 bond can spontaneously unbind according

to rule (RU), since each of the bonds is anchored in place by the rest of the junction

consisting of i1, i2, j1, j2. Hence, the only possible reduction is the four-way branch

migration that exchanges bonds j1 and i2 between the two pairs of bound domains X and X*.

This reduction is derived using rule (RM), where the newly formed bond j1 is anchored by

the adjacent bond i3, and the newly formed bond i1 is anchored by the adjacent bond j2. This

reduction could also not be derived using the previously published DSD semantics, that do

not allow four-way junctions or four-way branch migration reactions. Finally, the only

remaining reductions are the reversible toehold unbinding and binding reductions on the T2ˆ

domain, according to rules (RU) and (RB).

Petersen et al. Page 8

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3 Chemical reaction network encoding

The reduction semantics of the previous section considers which reductions are possible.

This enables qualitative analysis such as computing the state space or state reachability of a

system, verifying input/output behaviour, or checking for behavioural equivalence. However,

for quantitative analysis such as stochastic and deterministic simulation or probabilistic

model checking, we must also consider the rate of each reduction. This requires quantifying

all of the possible ways in which a given reduction can take place. To achieve this, we follow

the approach of [21], by translating processes of the calculus to chemical reaction networks

that can then be simulated.

Briefly, a chemical reaction network (CRN) is defined as a pair (X, R), where X is a finite

set whose elements are referred to as species, and R is a finite set of reactions of the form

(R, r, P), with R, P ∈ ℕX and r ∈ ℝ. We let ℕX denote the set of multisets of X and ℝ

denote the set of real numbers, and we use bold font to denote a multiset. For a reaction (R,

r, P) the multiset R denotes the reactants, the multiset P denotes the products and the

constant r denotes the rate at which the reaction takes place. This can also be written as

. We write a multiset of species as [I1, …, IN], where Ii is a species. This can also be

written as I1 + … + IN. We also define a state as a multiset of species, where a reaction is

applied to a state by removing the reactants from the state and adding the products. An

example CRN is the following, which corresponds to Fig. 2A:

The first three reactions are bimolecular in that they each have two reactants, while the

fourth reaction is unimolecular, with a single reactant. The rate of a bimolecular reaction

scales with the product of the populations of the two species, since the species are assumed

to interact when they encounter each other by a process of diffusion.

Definition 3. Encoding a calculus process to a chemical reaction network. We define a

species as a process that is a connected component, such that any two strands in the process

are connected to each other by a path of shared bonds. The function complex(P) returns true

if P is a connected component. The function species (P) returns the multiset of species in P.

To enable a concise representation of species, the function populations([I1, …, IN]) converts

a multiset of species expressed as a list, to an equivalent multiset expressed as a list of pairs,

where the first element of the pair denotes the species and the second element denotes its

population. For this we use a notion of process equivalence (≡) to equate species, where

processes are equivalent up to global renaming of bonds. The functions rateB (R, B, P, P′)

and rateU (R, B, P, P′) compute the bimolecular and unimolecular rate constants of a

reaction, respectively. The function freshen(P) produces a process P′ ≡ P in which all bonds

are renamed using globally unique names.

Petersen et al. Page 9

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In contrast, the rate of a unimolecular reaction scales with the population of the single

species. This distinction is essential when computing a CRN from a DSD process, and is

achieved by checking whether or not two interacting strands belong to the same connected

component.

Definition 3 presents an encoding from the DSD calculus to a chemical reaction network.

The function species(P) computes the multiset of species in process P, while the function

reactions(I, X) computes the set of reactions between the species I and each of the species in

X. As in [24, 21], we only consider unimolecular and bimolecular reactions, defined by rules

(UR) and (BR), respectively. Note that we need to compute the multiset of species after each

reduction, since the connected components may change as a result of new bonds being

formed or broken. As in [21], the reactions function can be used to generate a CRN in

saturating or just-in-time modes. In saturating mode, we assume a fixed set of species X and

we compute reactions(I, (X\I)) for all I ∈ X, where X \ I denotes the set X with the element I
removed. Thus, the entire set of possible reactions is computed in one go. In just-in-time

mode, the possible reactions involving only the initial species are computed, and then the

remaining reactions are computed dynamically during a stochastic simulation, by expanding

the reaction set whenever a new species is formed as the result of executing a reaction. This

allows simulation of systems with potentially unbounded numbers of species, such as

polymer chains, and in general can allow more efficient simulation of systems with large but

bounded numbers of species. We refer the reader to [21] for additional details of just-in-time

simulation.

The functions rateB (R, B,P1, P2, P′) and rateU(R,B, P, P′) in Definition 3 compute the

bimolecular and unimolecular rate constants of a reaction, respectively. The specific

definitions of these functions will depend on the choice of a suitable rate model. The

complexity of the rate model is likely to depend on the modelling problem at hand. Rate

models may range from a collection of default rates, to an approach in which all rates are

expressed as free parameters and fitted from experimental data, to a biophysics-based

approach for estimating rate constants. Here we propose an interim rate model, in which the

functions rateB(R, B, P1, P2, P′) and rateU(R, B, P, P′) use the domain d on which the bonds

B are formed or broken, together with the type of reduction R, to determine a rate constant

given by rate(R, d), similar to the approach of [24]. Specifically, rate(RB, d) and rate(RU, d)

return the rates of binding and unbinding, respectively, involving a domain d and its

Petersen et al. Page 10

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

complement, while rate(R3, d), rate(RM, d) and rate(RL, d) return the rates of branch

migration, n-way branch migration, and leakage, respectively, involving a domain d and its

complement. The function rateB directly returns the bimolecular rate constant based on the

type of interaction and the domain sequences, while the function rateU computes the

unimolecular rate constant of two interacting strands that are part of the same molecular

complex, by following the approach of [12, 22]. Briefly, for interacting strands that are part

of the same complex, this scales all bimolecular rates by the local concentration of the

interacting domains, given by conc(B,P,P′), to yield a unimolecular rate. We note that the set

of bonds B is used to pinpoint a specific interaction, which is required in cases where more

than one interaction on a given domain is possible. In our current approach, a default local

concentration is used. However, this approach can be generalised to make use of biophysical

models based on both the sequence and structure of the interacting DNA complexes, such as

those proposed by [12], for accurately computing the local concentration.

We consider the reductions in Fig. 1A to illustrate our interim rate model. The first binding

reduction (RB) denotes a bimolecular reaction of the invader binding to the template, which

takes place at rate rate(RB, t). However, the second binding reduction (RB) denotes a

unimolecular reaction, which takes place at rate rate(RB, u) × c, where c is the local

concentration of the interacting domains u and u*. This can be computed using a biophysical

model such as in [12]. For the reductions in Fig. 1B, the first leak reduction (RL) denotes a

bimolecular reaction of the invader binding to the template in the absence of a toehold,

which takes place at rate rate(RL, x). This rate is typically 1M−1s−1. However, the second

leak reduction (RL) denotes a unimolecular remote toehold leak reaction between the

template and the bound invader, which takes place at rate(RL, x) × c, where c is the local

concentration of the interacting domains. As the local concentration approaches 1M, or

about 1 molecule per nm3, the leak reaction rate is scaled to about 1s−1, which approaches

the rate of a normal branch migration reaction when the migrating bond is anchored.

We now make use of the CRN semantics to generate the chemical reaction networks for a

number of example systems based on programmed assembly of metastable hairpins to form

a variety of structures [45]. Note that in the experimental sequences that were used to

implement these systems, almost all individual domains were 6 nucleotides in length, which

corresponds to a toehold domain. Therefore, to reduce the notational burden associated with

explicitly labelling almost all domains as toeholds, we employ the notational convention that

domains with lower-case names are toeholds whereas domains with upper-case names are

long domains.

Our first example is the catalytic self-assembly of a three-arm branched junction, as

illustrated in Figure 2 of [45], where the computed reactions are summarized in Fig. 2A. Our

second example is the cross-catalytic signal amplification circuit from Figure 3 of [45],

where the computed reactions are summarized in Fig. 2B. Our third example is the

stochastic bipedal walker example from Figure 5 of [45], where the computed reactions are

summarized in Fig. 3. Note that for this example we have merged some of the reactions for

conciseness, and have also omitted the reverse reactions. Code in the process calculus syntax

for the initial species involved in these examples is presented below the corresponding

graphical representation.

Petersen et al. Page 11

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3 Strand graphs

The process calculus defined in the previous section represents a formal programming

abstraction for strand displacement systems with complex secondary structures. While the

syntax of the calculus provides a convenient way of writing down arbitrary secondary

structures composed of DNA strands, in practice the semantic rules would be challenging to

implement directly, because of the complexity of pattern-matching on arbitrary process

contexts that is required by the rules. In this section we provide a mapping from the process

calculus to a canonical representation based on strand graphs. This enables us to leverage the

expressive power of graph theory both to represent secondary structures and to derive

reactions via localized graph rewriting rules. Our rewrite rules are local in the sense that they

only have to consider a bounded number of connected components.

3.1 Notation

We summarise the definition for strand graphs in Definition 4. Each vertex v of the graph

represents a strand, and each site s at a vertex represents a domain. The sites at a given

vertex are ordered according to the sequence of domains in the strand, given the strand's

innate directionality. This vertex-specific ordering on sites is a key difference between strand

graphs and site graphs. An edge e between two sites represents a bond between two

domains. We can record the fact that certain domains are complementary and thus able to

bind to each other by a set of admissible edges (A); all edges that appear throughout the

execution of the program will be drawn from this set. Some of these edges denote bindings

between toeholds, while the remainder denote bindings between long domains. This

information (recorded by the function toehold) is needed in order to determine whether

edges can be removed by spontaneous unbinding of domains, which can only happen if the

bound domains are toeholds. At this point, we can omit information about the specific

domains on the strands. All of the information needed to manipulate connectivity is

available from the placement of sites on nodes, the set of admissible edges and the

annotation of toehold edges. The set E models the current edges in the program and is the

only non-static information. The reduction rules change one strand graph into another by

changing only this set of current edges. We therefore consider the rest of the information

static and only describe the transformations of E. In order to report which nodes correspond

to which strands to the user, we assign a colour to each vertex (via the function colour).
Thus, different copies of the same strand are modelled by different vertices with the same

colour. The domains can of course also be included on the strands for display purposes. The

colour information also simplifies the definitions and is helpful when introducing the CRN

semantics in Section 3.4.

We may draw a strand graph as in Fig. 4B. Each strand type is assigned a colour, for

instance the strand type <L T2ˆ X* T1ˆ> has been assigned the colour green (represented

by the number 1). The sites are marked as small black circles. To illustrate the sequence of

the sites, the nodes have been drawn as circular arrows (with the arrowhead at the 3′ end)

rather than circles. Thus, on the green node (node 1), the first site L is the lower left one. We

have drawn all the admissible edges; the current edges are drawn in black while the rest are

drawn in blue. Further, toehold edges are drawn as dashed.

Petersen et al. Page 12

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We define an encoding from a process to a strand graph in Definition 5. The assignment of

colours to strand types is made arbitrarily, which means that this assignment should be fixed

if different programs are to interact. For the moment we only consider the case where the

entire system is described by a single program. Note that toehold only has to look at one end

of the edge, since its domain, A, is constructed such that edges will either have short

domains at both ends or at neither end.

Definition 4. Strand graphs. For V ⊆ ℕ and length : V → ℕ, we define the following helper

functions:

legalS(V, length) = {(v, n) ∈ ℕ2 | v ∈ V ⋀ n ≤ length(v)} to be the set of legal sites, where a

site s = (v, n) is a pair of natural numbers such that v is a vertex and n is a position on that

vertex.

legalE(V, length) = {S ⊆ legalS(V, length) | |S| = 2} is the set of legal edges, where an edge e
= {s1, s2} is a set containing two sites, such that s1 ≠ s2.

We define a strand graph G = (V, length, colour, A, toehold, E), where:

V = {1, …, N} is the set of vertices; each vertex is a natural number.

colour : V → ℕ is a function assigning a colour to each vertex, colours are also natural

numbers.

length : V → ℕ is a function assigning a length to each vertex, such that colour(v1) =

colour(v2) ⇒ length(v1) = length(v2). That is, the length is really a function of the colour.

A ⊆ legalE(V, length) is a set of admissible edges, such that colour(e1) = colour(e2) ⇒ (e1 ∈

A ⇔ e2 ∈ A) and (legalS(V, length), A) forms a bipartite graph, which ensures that

admissible edges connect complementary domains. For an edge e = {(v1, n1), (v2, n2)} we

define colour(e) = {(colour(v1), n1), (colour(v2), n2)}.

toehold : A → is a function that returns true on all admissible edges between toehold

domains and false on admissible edges between long domains, such that colour(a1) =

colour(a2) ⇒ toehold(a1) = toehold(a2).

E = {e1, …, eM} ⊆ A is a set of current edges, such that (i ≠ j) ⇒ ei ⋂ ej = ∅. That is, at any

given instant there can be at most one edge connected to any given site.

Definition 5. Given a program P = <S1> | … | <SN>, we will define a corresponding strand

graph S = (V, length, colour, A, toehold, E). For a domain o, we define its type tp(o) by tp(d)

= d and tp(d!i) = d, that is tp erases all bonds. Given a strand S = o1 … on, we define the

type to be tp(S) = tp(o1) … tp(on) and the length to be len(S) = n. We now number the strand

types in order of appearance in the program, obtaining a list t1 … tT, from which we can

define the colour function. We also define domain functions dom and ndom and a toehold

predicate toe, all specific to P, such that dom(i, j) is the jth domain in Si, ndom(i, j) is the

name of dom(i, j) (i.e. with any bindings removed) and toe(i, j) is true exactly if ndom(i, j) is

a toehold domain. We are now ready to define the strand graph S:

Petersen et al. Page 13

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2 Reduction semantics

The reduction semantics of strand graphs is given in Definition 6. We briefly provide some

intuition for the reduction rules below. The rules can then be seen to simply change the

colour of the edges. Rule (GB) states that if there is an edge that is admissible but not

current, with both end sites unoccupied and not hidden from each other, then this edge can

be added to the current set. This reflects that the two domains at the end sites are able to

bind. Rule (GU) states that if there is a current edge that denotes a toehold and is not

anchored, then it can be removed from the current set. This is because the toehold is free to

unbind. To describe rules (G3) and (GM) we introduce the concept of a displacing path. In

particular, an admissible edge can become a current edge even if one of the end sites is

taken, by removing the edge that is in the way. That is we will make the following

transformation:

Definition 6. Semantics of strand graphs, assuming a global finite set V of vertices and a

global set A of admissible edges. The function sites(E) = {s | ∃ e ∈E. s ∈ e} returns the set

of sites in E. The function adjacent(e, E) returns the set of edges in E that are adjacent to

edge e. Two edges are adjacent if they occur between the same pair of vertices and each site

in one edge is adjacent to a site in the other edge. Since paired strands run in opposite

directions, the end sites are shifted in opposite directions. The function hidden(e, E) returns

true if one end of edge e is hidden within a closed loop. The predicate anchored(e, E) holds

only if edge e occurs between two sites that are held close together, such that e is part of a

junction. The reactions are annotated with the set of bonds they form or break.

As in Definition 2, to enable 3-way branch migration leaks, we relax the constraints on rule

(G3) by replacing anchored(a, E) with |adjacent(e, E) | ≤ 1, which simply checks whether

domain e has at most one adjacent edge in E. We refer to this generalised version of rule

(G3) as rule (GL). Similarly, to enable hairpin binding leaks we relax the constraints on rule

Petersen et al. Page 14

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(GB) by removing the condition ¬hidden(a, E). We refer to this generalised version of rule

(GB) as rule (GH).

However the transformation will only occur if the anchored predicate is true. In that case, we

may depict the situation as follows:

This illustrates that the bond can be seen to swing, rather than one edge disappearing and

another appearing. We can then imagine that if the site to which the bond would swing is

already occupied then another bond swing would need to happen first. This could form a

long chain as follows:

The red arrows then form what we term a displacing path. If such a path forms a loop, it

denotes the simultaneous swapping of a list of bonds. If it does not form a loop, it can be

unravelled from the end into a series of single bond swaps. The latter situation is captured by

Petersen et al. Page 15

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

rule (G3) and the former by rule (GM). We can summarize the four main rules graphically as

follows (also set next to the rules in Definition 6):

We can also illustrate the example of Fig. 1D as follows:

3.3 Correspondence with process calculus semantics

In this section we sketch a proof that the operational semantics of the process calculus and

strand graph representations coincide. We will write EP for the edge graph that was derived

from the process P. We begin by stating some lemmas that are straightforward to prove,

hence their proofs are omitted.

Lemma 7. adjacent(i, P) = adjacent({(v, n),(v′, n′)}, Ep), where there exists d such that

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 8. hidden(i, P) ⇔ hidden({(v, n),(v′, n′)}, EP), where there exists d such that

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 9. anchored(i, P) ⇔ anchored({(v, n), (v′, n′)}, EP), where there exists d such that

dom(v, n) = d!i and dom(v′, n′) = comp(d)!i.

Lemma 10. anchored (a, E) ⇔ anchored(a, E \ {e}) ⇔ anchored(a, E ⋃ {e′}), provided e
and e′ are not among the bonds forming the anchor.

We can now present a proof of the main correspondence theorem.

Theorem 11. There exist R and B such that iff there exists G and E such that

.

Proof. We first note that the effects of the rules are disjoint, that is for given P, P′ only one

rule could apply to tranform P into P′, likewise for given EP and EP′. This can be seen by

observing the changes of bonds: For X ∈ R, G, rules XU will remove one bond, rules XB
will add one bond, rules X3 will move a single bond and rules XM will move more than one

bond. (Rule GM cannot be instantiated with N = 1 as this would make e1 = a1, contradicting

that e1 ∈ E and a1 ∈ A\ E). It follows that the theorem can be strengthened to conclude that

R = RY and G = GY, for some Y ∈ U, B, 3, M. We will proceed by cases on Y.

• Case RB,GB. There exists an i such that P = C(x, x*) and P′ = C(x!i, x*! i) iff there

exists an a ∈ A \ EP such that a ⋂ sites (EP) = ∅ and EP′ = Ep ⋃ {a}. In that case, a
= {s, s′}, where dom(s) = x!i and dom(s′) = x*!i, and by Lemma 8 we get that

Petersen et al. Page 16

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hidden(i, P′) ⇔ hidden(a, EP′), i.e., that ¬hidden(i, P′) ⇔ ¬hidden(a, EP′). Thus,

for B = {i} and E = {a}, we get that .

• Case RU,GU. There exists an i such that P = C(x!i, x*!i) and P′ = C(x, x*) iff there

exists an e ∈ EP such that EP′ = EP \ {e}. In that case, e = {s, s′}, where dom(s) = x!

i and dom(s′) = x*!i, and soby Lemma 9 we get that ¬anchored(i, P) ⇔

¬anchored(e, EP), and by definition we get that toehold(x) ⇔ toehold(e). Thus, for

B = {i} and E = {e}, we get that .

• Case R3,G3. There exists j such that P = C(d′, d′!j, d!j) and P′ = C(d′!j, d′, d!j) iff
there exists e ∈ EP and a ∈ A \ EP such that e = {s, s′} and a = {s, s″} and s″ ∉

sites(EP) and EP′ = (EP \ {e}) ⋃ {a}. In that case, dom(s) = d!j and dom(s′) = d′!j,
and so by Lemmas 9 and 10 we get that anchored(j, P) ⇔ anchored (a, EP′) ⇔

anchored (a, EP). Thus, for B = {j} and E = {a}, we get that

.

• Case RM,GM. There exists j, …, jN such that P = C(d!j1, d′!j1,…, d!jN, d′!jN) and

P′ = C(d!j1, d′!j2, …, d!jN, d′!jN+1) iff there exists e1, …, eN ∈ EP and a1,…, aN ∈

A\EP such that for all k ∈ {1, …, N}, and , with

and such that EP′ = (EP \ {e1, …, eN}) ⋃ {a1, …, aN}. It is then the case that, for all

k ∈ {1, …, N}, dom(sk) = d*!jk and . By Lemmas 9 and 10 we get

that anchored(jk, P′) ⇔ anchored(ak, EP′) ⇔ anchored(ak, EP) for all k ∈ {1, …,

N}. Thus, for B = {j1, …, jN} and E = {a1, …, aN}, we get that

.

• Case leaks. The cases for the leak reaction rules are similar to those above, with

the only extra requirement being that we must use Lemma 7 to show that |

adjacent(j, P)| = |adjacent(e, EP)|, where e is defined as in the case for rule R3

above. From this, it is trivial to see that |adjacent(j, P)| ≤ 1 ⇔ |adjacent(e, EP)| ≤ 1,

as required.

This covered all cases, and therefore completes the proof of Theorem 11.

3.4 CRN semantics

The semantics of Definition 6 can be used to derive the behaviour of a full system, but

represents each copy of a species explicitly. We would like to represent each species only

once and record its multiplicity during simulation or state space exploration. A species in a

strand graph is defined as a connected component, that is, a maximal connected sub graph. It

is therefore tempting to define a species simply to be a connected strand graph. However, the

interaction of species relies on them sharing the notions of admissible edges as well as

toeholds, so we shall define species relative to this data structure. First we note that both

notions factor through the colour map, meaning that to determine if an edge is admissible or

is a toehold, it is enough to know the colour of the vertices at the endpoints (and the sites).

Thus, we shall define the notion of an environment ξ = (C, length, A, toehold) to be a tuple

where C = {1, …, K} is a set of colours, length : C → ℕ, A ⊆ legalE(C, length), and

Petersen et al. Page 17

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

toehold : A → . This is much like for strand graphs, except that everything is now given in

colour space. Given an environment ξ, a species on ξ, T = (V, colour, E) is then a tuple

where V = {1, …, N}, colour : V → C, colour(E) ⊆ A, such that sg(ξ, T) is a connected

strand graph. So to decide admissibility of an edge, we first translate it into colour space and

then ask the environment. The map sg turns an environment and a species on that

environment into a strand graph, and is given by sg(ξ, S) = (V′, length′, colour′, A′, toehold′,

E′), where

We will write admξ(T) to denote A′. We say that two species, T1 and T2, on the same

environment ξ are isomorphic if sg(ξ, T1) ∼ sg(ξ, T2), that is they are isomorphic as strand

graphs as per Definition 13. We will write this as T1 ∼ξ T2.

We need one more thing for our species semantics, namely the ability to put two species next

to each other and consider the resulting strand graph to determine reactions. Since all species

have vertices numbered from 1, we need to renumber one of the species. Thus we define a

binary operator |ξ on species by

where

and E = E1 ⋃ (E2 + N). Here E2 + N means the set of edges obtained by adding N to all

vertices of all the sites in E2. Note that we allow sg to be applied to a graph which is not

connected. Finally, we need a function species in the other direction, taking a strand graph

and returning the connected components restructured into species via a similar renumbering.

This will be a multiset rather than a set, since different connected components might be

isomorphic. We can now define a CRN semantics, as shown in Definition 12. As with

Definition 3, this semantics is parametrised by a rate model, which is used to compute

unimolecular and bimolecular rate constants. We adopt a similar interim rate model to the

one proposed for the process calculus in Section 2.

Petersen et al. Page 18

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 Implementation

Our implementation takes a given program, transforms it into a strand graph, splits this into

connected components, brings each connected component into a canonical form, and then

proceeds to enumerate reactions, compute the state space and/or do a just-in-time simulation

of the system. We will describe the canonical form below, but first we describe the data

structures for representing strand graphs.

4.1 Data structures

Since the vertices in a species are numbered 1 through N, and the colour function maps

vertices to natural numbers, both of these data can be stored as a single array of length N of

integers (in the implementation, we note that everything is numbered from 0 rather than

from 1). The edges of a strand graph are stored as a set of pairs of sites. To avoid

complications with storing the same edge in two different ways, these pairs are always

stored in canonical form, such that the smallest site (by the lexicographic order on integers)

is stored in the first component. Similar conventions are used to store the environment. As an

optimisation, additional data structures are computed once during species normalisation.

These include data structures for storing the anchored bonds, the set of bound ports and the

admissible edges (not in colour space).

4.2 Species isomorphisms

Given the split of information into global and local, a permutation on a strand graph can be

described as a permutation of the vertices which preserves the colours and does not change

the set of edges. In fact, this is enough to determine isomorphism. That is, we have the

following lemma:

Lemma 14. For a connected strand graph S = sg(ξ, T), where T = (V, colour, E), π is a

strand graph automorphism on S iff π is a permutation of V such that colour ∘ π = colour and

∀v1, n1, v2, n2. .

Definition 12. CRN semantics of strand graphs. The function species(S) returns the multiset

{(T1, m1), …, (TN, mN)} of components in S, where mi denotes the multiplicity of

component Ti in S. Importantly, we use a notion of strand graph isomorphism (∼) to

compare components, as shown in Definition 13. As in Definition 3, the functions

rateU(R,E,C) and rateB(R,E,C) compute the unimolecular and bimolecular rate constants,

respectively, associated with the reduction of type R involving edges E of the multiset C.

Definition 13. Strand graph isomorphisms. Given a strand graph S = (V, length, colour, A,
toehold, E), an automorphism π : V → V is a permutation of the vertices such that

Petersen et al. Page 19

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

That is, π is colour- (and therefore length-) preserving and is also permuting E and A in a

coherent manner. Since this defines how π permutes edges, we allow ourselves to write π e
for e ∈ A in the last constraint saying that π preserves toeholds. Given two strand graphs S
and S′, we say that S is isomorphic to S′, written S ∼ S′, if there exists an automorphism π

on S such that S′ = π S. Note that this definition relies on the assignment of colours to be

coherent across strand graphs.

Proof. Left to right is trivial given that sg preserves V, colour, and E. Right to left follows

from the fact that, since it preserves colour, ξ is a valid environment for π(T) and sg(ξ,π(T))

will produce the same length and toehold functions and the same set of admissible edges.

This means that the local information is enough to establish isomorphism or, as we do in the

implementation, to compute a canonical representation.

4.3 Canonical representations of species

During reaction enumeration, just-in-time simulations [21] and state space exploration, all

species are kept in canonical form to enable quick equality checking. The canonical form is

obtained by finding a canonical labelling of the nodes. In [32] a series of worst-case

quadratic algorithms for finding a canonical labelling of site graphs is presented. There, a

site graph is first transformed into a graph with coloured edges and then the ordering of the

colours is used to define edge enumeration. Here, we already have coloured edges, by lifting

the colour of nodes. Because the sites are ordered, we do not need to sort edges by colour

during edge enumeration, we can simply order them by outgoing site. A much bigger gain in

practice comes from the fact that a canonical labelling is determined as soon as we have

decided on a starting vertex. This means that we can restrict ourselves to vertices of a single

colour. We can, for instance, choose the lowest colour with a minimal set of nodes. Thus, if

there is only a single strand type with only one instance in the species, we can immediately

obtain a canonical labelling by enumerating from the lowest such, and no second phase to

compare enumerations is necessary.

The worst-case complexity is still quadratic, which occurs when all strands have the same

colour but none of them are isomorphic. This would occur, for instance, in a linear polymer.

It is an interesting problem to speed up such cases; one solution might be to perform some

abstraction, such as forgetting the length, similarly to how list predicates are handled in

static analyses. Finally, even when systems grow very large, in many cases the connected

components stay small, meaning that even quadratic complexity is tolerable.

Petersen et al. Page 20

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.4 Three-way initiated four-way branch migration example

We have run the implementation on all the examples presented in Section 2. The output

graphs that are automatically generated by the implementation are substantial, therefore we

have omitted them from the paper. The CRN generated for the example of Fig. 1D is

presented in Fig. 5. The rounded boxes represent species and the square boxes represent

reactions, each box being labelled by the reaction rate. Bold lines are inputs to reactions and

thin arrows are outputs. The bold rounded boxes denote initial species in the system. These

species can react via external binding to form a single complex. This complex can either

perform a toehold unbind to reverse the reaction or a displacement to kick off the strand A,

resulting in four strands that can perform a four-way branch migration followed by a

reversible toehold unbinding. We have used the default rates from Visual DSD for binding,

unbinding, and migration.

The state space produces analogous behaviour, as shown in Figure 6. The initial state is

marked in bold, where we have specified one of each initial molecule. The implementation

automatically detects the individual species as connected components of the strand graph

corresponding to each state. Both the CRN and the state space were computed from the

following program, as described in Fig. 1D.

<tether T2ˆ!a X*!b T1ˆ> | <A X!b T2ˆ*!a> | <T1ˆ* X!c RA> | <X* !c A*!d>

| <A!d>

We have also performed a stochastic simulation of the system, starting with 1000 molecules

of the initial tethered species (Species 1, purple) and 1200 molecules of the other initial

species (Species 4, light blue). The time course is presented in Figure 7. We observe the

binding of the two initial species form the light green Species 5, which rapidly produces

strand “A” (Species 0, dark blue) and another transient product (Species 7, dark brown,

mostly covered by light green) which then performs the four-way branch migration followed

by a toehold unbinding. This means that the final species enter into a stochastic equilibrium

(the large Species 6 in red and one of the products is in dark green with the other product

directly underneath). This simulation was run using the following program, where the

components are given explicitly in order to assign multiplicities.

 1000 * (<tether T2ˆ!a X*!b T1ˆ> | <A X!b T2ˆ*!a>)

| 1200 * (<T1ˆ* X!c RA> | <X* !c A*!d> | <A!d>)

Note that if one of the explicit components were not connected, it would be split into

separate species that would each be assigned the same multiplicity. For comparison, we note

that all models tested so far that are compatible with both the new implementation and the

most recent release of Visual DSD [25] are faster in the new implementation.

Petersen et al. Page 21

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 Discussion

In this paper we have presented a formal language for modelling domain-level interactions

between nucleic acid complexes with arbitrary secondary structures. We have defined our

language as a process calculus and have proposed a mapping to a canonical representation

based on strand graphs, which is derived from site graphs by imposing an ordering on the

sites in each vertex. This is necessary because vertices represent individual strands and sites

represent domains that appear in a particular order on the strand. Edges between sites encode

the bonds that exist between various domains. By defining local strand graph rewrite rules

we have presented an operational semantics for deriving reactions between DNA structures.

This significantly extends our previous work on the DSD programming language, by

enabling additional classes of structures and interactions to be derived, such as dendritic

structures and n-way branch migration reactions with n ≥ 4. More generally, the approach

can handle arbitrary DNA secondary structures. We have also defined an encoding to

chemical reaction networks, which allows strand graph systems to be simulated using

stochastic simulators based on the Gillespie algorithm [13] or ordinary differential equation

solvers. This required computing the connected components of a strand graph, which

correspond to the individual chemical species. We have also derived the state space of strand

graph systems, which can be analysed by probabilistic model checking [20, 47] using tools

such as PRISM [15]. We have used our language to model several systems that were beyond

the scope of previous implementations such as [25]. These include programmable

biomolecular self-assembly pathways based on hairpin opening [45], and a recently-

proposed three-way initiated four-way branch migration reaction scheme, which is the

foundation for surface-based molecular Turing machines and reusable digital logic circuits

[36]. Finally, we have shown that our language is capable of expressing all of the behaviours

of previously published DSD semantics [21].

5.1 Related Work

The inspiration for a strand graph approach to modelling nucleic acid secondary structures

came from kappa [7], a language for formally modelling interactions between agents via

named sites, based on site graphs. Following the approach of kappa, we defined a formal

syntax with an accompanying reduction semantics. Unlike kappa, however, our reduction

rules were fixed to reflect existing knowledge of DNA chemistry, DNA strand displacement

and hybridization interactions. Future work could investigate encodings of these rules

directly in kappa, however this presents a number of challenges. First, the strand

displacement rules rely on a notion of ordering between sites, which is currently not directly

supported in kappa. More importantly, kappa rules allow site-specific interactions to be

described, whereas here we wish to describe rules that are independent of the specific sites

involved, but rely instead on notions of domain complementarity and relative positioning of

sites. Another challenge is the ability to express primitives that require enumeration over an

unspecified number of bonds, such as the anchored primitive. This requires checking the

existence of a path of connected bonds within a junction that may contain an arbitrary

numbers of branches. In kappa, a separate primitive would need to be defined for each

junction with a specific number of branches. Although the current DSD language cannot be

encoded in kappa directly, it would be interesting to consider extensions to kappa that would

Petersen et al. Page 22

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

facilitate such encodings. This would enable DSD to be implemented directly in kappa,

without requiring a custom implementation. A more detailed comparison with kappa is

provided in Appendix D.

Ours is not the first attempt to model nucleic acid structures with graphs. In [28], a

formalism where subgraphs are replaced by other subgraphs as a result of enzymatic

reactions is presented. In [16, 17], a set of rewrite rules specifically targeting strand

displacement systems is given. These rules correspond to GB, GU and G3, and the paper

further treats the problem of efficient enumeration of reactions by computing the possible

states of local connectivity of strands. These two formalisms both model backbones

explicitly as a series of bonds, whereas here we have an implicit representation given by the

ordering of sites. In [14] an approach similar to ours is presented, though not formalised as

strand graphs. Rather, the reaction semantics is defined in terms of pseudocode algorithms.

Furthermore, instead of deriving branch migration reactions based on displacing paths, a

fixed set of rules is defined, including a rule corresponding to branch migration with N fixed

at 4. An approach to efficient computation is also presented, based on simplifying the

reaction graphs using assumptions of time scale separation. In [31] the backbone is again

modelled explicitly, but here with the intention of expressing base stacking. This is currently

not expressible in our formalism and represents an interesting opportunity for detailed

system modelling, in particular for the derivation of leak reactions that occur via blunt-end

stacking and subsequent strand displacement, as discussed in [35]. That work also includes

enzymatic reactions such as restriction enzyme digest and ligation, which we have

previously only been able to model by manually augmenting a DSD program with explicit

chemical reactions [46]. However, our formalism does enable the derivation of more general

strand displacement reactions, such as three-way initiated four-way branch migration.

A somewhat less related development is found in [19] and [18], where the expressivity of

graph rewriting is explored. There, the relation between subgraphs and species is not as

direct. Rather, the question is investigated of whether rewrite rules exist, even for

unconstrained systems, that give desired behaviour, along with the question of synthesis of

such rules. The intention is that nodes represent programmable particles and that the right

programs will then realise the synthesised rules. As the computational power of nucleic acid

systems is progressively tamed in laboratories, in particular with regard to the programmable

manipulation of matter at the mesoscale using nanoscale interactions, it is possible that these

two lines of research could be unified in the future.

In this paper, we have defined a process calculus based on explicitly-named bonds to provide

a text-based front-end language for declaring arbitrary strand graph structures. A domain-

level “dot-paren”-style language such as that used by NUPACK [48] could be used as an

alternative. However, it is worth noting that, while our strand graph-based approach can

encode any secondary structure directly, the dot-paren syntax approach requires an

unbounded number of different kinds of parentheses to encode all possible secondary

structures: for any fixed number of kinds of parentheses, there exist pseudoknotted structures

that cannot be expressed. Pseudoknots are structures in which loops are formed by strands

folding back on themselves in such a way that the loops are not well-nested within larger

loops. A simple example would be <x!i a y!j b x*!i c y*!j>. An alternative could

Petersen et al. Page 23

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

be to adopt a numeric approach to specifying nucleic acid secondary structure [9] that, like

our process calculus syntax, can also encode arbitrary nucleic acid structures.

5.2 Future Work

In this paper we have expanded the set of reactions that we can derive by introducing the

concept of “anchored” bonds. This generalizes the 3-way branch migration rules from

previously published DSD semantics, which only allowed branch migration to occur when

the “anchor” domain and the “displacing” domain were adjacent single-stranded domains on

the same invader strand. This generalization is required to handle the three-way initiated

four-way branch migration example [36], because the three-way migration involves a

toehold and a migration domain that are on different strands but are connected by a double-

stranded domain, following the associative toehold scheme [3]. It is also required to derive

the final step of the three-way junction assembly example from [45]. Making this

generalization raises interesting questions regarding the appropriate level of modelling detail

concerning such intramolecular binding reactions. For example, in rule GU, bound

complementary toeholds are only allowed to spontaneously unbind as long as the bond is not

anchored. In particular, in the three-way initiated four-way branch migration example, this

means that the initial toehold cannot unbind between the completion of the three-way

migration step and initiation of the four-way migration step. Although the complementary

toehold domains may unbind, in practice they will rebind quickly as their effective local

concentration is very high compared to diffusion-limited binding with another species.

Making this simplification prevents the strand graph model from deriving highly unlikely

polymerization reactions between multiple structures that have reached this point in the

reaction pathway, i.e., whose t1 and toeholds are also exposed. The concept of “anchored”

bonds is also used in rule G3: the requirement that the newly formed bond a be anchored

requires that the migration reaction must produce a junction. These definitions also allow us

to express leak reactions concisely: The leaky version of rule G3 does not require that the

bond a being formed is anchored. Instead it states that the bond e being broken can have at

most one adjacent domain. This relaxation means that rule GL can be used to initiate a

displacement reaction without an anchored toehold binding event.

Previous work [24] presented a method for converting a detailed semantics into a hierarchy

of more abstract semantics, by merging reactions that occur on relatively fast timescales,

such as multiple strand displacement reactions triggered by a single invader strand [42]. This

enabled more tractable models to be generated automatically for high-level analysis. In

principle, this approach can also be directly applied to the strand graph systems presented

here. Interestingly, three-way initiated four-way migration raises further questions regarding

this merging of reactions. Merging multiple strand displacement steps is relatively

straightforward when they occur sequentially and on a fast timescale. However, in three-way

initiated four-way migration it is not in fact the case that the three-way strand displacement

reaction must completely finish before the four-way migration can take place. Indeed, in

practice they will most likely occur concurrently to some extent, in the sense that the four-

way migration may proceed as far as the three-way migration has completed, and progress

on the four-way migration may act as a brake on backward steps of the three-way migration.

Thus it may make sense to merge such “concurrent” reactions.

Petersen et al. Page 24

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The reduction semantics presented in this paper provides a novel formalism of branch

migration reactions in terms of a displacing path. This allows the GM rule to derive four-

way branch migration reactions as well as similar reactions involving more branches, such

as 6- or 8-way branch migration. The concept of displacing paths allows us to derive such

reactions without a special-case reaction rule, by requiring that bonds are swapped between

neighbouring domains in a sequence that eventually terminates by reaching the first domain.

Although this reasoning process is expressed in terms of sequential bond-passing, the bond-

swapping reactions occur concurrently in practice. The requirement that anchored(ai, E)

holds in rule GM requires that all of the branches involved in the migration need to have an

anchor point. One could relax this constraint such that not all new bonds along a displacing

path need to be anchored, and estimate the number of anchors by experiments or biophysical

modelling.

The strand graph approach provides considerable expressiveness for defining secondary

structures, and for deriving structures via dynamic interactions between existing species. In

principle, one may define essentially arbitrary secondary structures without any

consideration of their biophysical plausibility. For instance, a strand graph such as the

following

<a!i b!j0 c!j1 d!j2 a*!i> | <d*!j2 c*!j1 b*!j0>

can be defined in the syntax, however the bond between a and a* is not biophysically

plausible unless the combined length of the domains in the duplex (b, c and d) is

considerably longer than the persistence length of double-stranded DNA. Such bindings are

currently not prevented in our syntax, however they could be disallowed in the reduction

rules by augmenting the hidden predicate to take into account domain lengths and topology.

A possible solution would be to integrate the strand graph system proposed in this paper

with a biophysical model of nucleic acid structures. This could be achieved using a coarse-

grained approach such as OxDNA [8] or Multistrand [40], or using a worm-like chain model

[27] to compute the volume swept out by each domain, in order to determine whether two

domains can interact. Such biophysical modelling could also be used to compute specific

rates of interaction [12, 43], which is currently lacking in our approach and is an important

direction for future work. A sufficiently detailed and rigorously parametrised system could

in future be used as an underlying formalism to model nucleic acid folding pathways,

involving DNA origami [38] and potentially RNA tiles [11].

This work represents an important step towards a general formal language for modelling,

simulating and analysing the behaviour of arbitrary nucleic acid systems at the domain level.

We envisage that future versions of the Visual DSD software will be based on the theoretical

framework outlined in this paper, to facilitate the design of dynamic nucleic acid systems

involving complex topologies.

Acknowledgments

This material is based upon work supported by the National Science Foundation under grants 1027877, 1028238,
and 1318833. M.R.L. gratefully acknowledges support from the New Mexico Cancer Nanoscience and
Microsystems Training Center (NIH/NCI grant 5R25CA153825).

Petersen et al. Page 25

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Appendices

A An introduction to DNA strand displacement

In this appendix, we present a brief introduction to DNA strand displacement reactions [49].

Figure 9 shows our abstract representation of DNA strands, sequences, and structures. Each

single-stranded DNA molecule is represented by a straight line, with parallel lines denoting

duplexes where the two strands are bound together to form a double helix. We use domains

to represent DNA subsequences, which we assume have been designed such that each

domain x binds only to its complementary domain x*. Complementary DNA sequences obey

the laws of Watson-Crick base-pairing, that is, A binds to T and C binds to G. Each single

DNA strand has an inherent orientation: the two ends of the strand are known in the field of

DNA chemistry as the 5′ and 3′ ends. In our diagrams, we denote the 3′ end of the DNA

strand using an arrow, as is common in such diagrams of DNA structures. We distinguish

between “long domains”, written just as x, which we assume are on the order of 25 – 30

nucleotides in length, and “toehold domains”, written with the carat symbol as tˆ, which we

assume are on the order just 5 – 8 nucleotides in length. This difference means that long

domains, when they bind to their complements, bind sufficiently stably that spontaneous

unbinding of the domain is extremely unlikely. Thus, we assume that binding of long

domains is irreversible. On the other hand, the binding between complementary toehold

domains is relatively weak, so two strands that are only bound together by a toehold domain

may spontaneously unbind. Thus, we assume that binding of toehold domains is reversible.

Figure 9 an example of a basic DNA strand displacement reaction. The reactants comprise a

strand displacement “gate”, which is a two-strand complex, and a single-stranded input

strand. In the first reaction, the single-stranded input binds reversibly to the gate via the

complementary tˆ toehold. Thus, the overhanging toehold provides a nucleation point for the

interaction between the input strand and the two-strand gate complex. Once the input strand

is bound, the remainder of the input strand (the x domain) is held in place adjacent to the

gate, which has the same DNA sequence (the x domain). This initiates a reaction known as a

“branch migration”, in which bases from the preivously bound strand unbind from the

inhibitor and are replaced by bases from the invading input strand. This process is a random

walk, and if the junction between the two strands reaches the far end of the complex then the

upper strand that was previously strongly bonded to the lower strand of the gate is now only

bound by a short toehold domain (the uˆ domain). This allows the previously bound strand to

reversibly unbind from the gate, leaving the input strand bound to the gate, the previously

bound strand free in solution, and the previously bound toehold domain uˆ exposed on the

gate. We refer to this process as a “strand exchange” reaction because the diffusing input

strand is reversibly exchanged for the diffusing output strand. If the secondary toehold

domain uˆ is omitted from the gate, the strand displacement reaction is reversible because

the displaced output strand cannot rebind from the gate if the secondary toehold is absent.

Irreversible strand displacement gates of this form, labeled with a fluorophore-quencher pair,

are often used in experimental implementations of DNA strand displacement to detect the

presence of certain input strands by observing the increase in fluorescence caused when the

strand is displaced from the gate, thereby separating the fluorophore from the corresponding

quencher molecule.

Petersen et al. Page 26

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DNA strand displacement reactions have been used to implement a range of molecular

information processing systems, including digital logic circuits [35, 41], artificial neural

networks [37], chemical reaction networks [42], entropy-driven catalytic cycles [50], and

distributed algorithms [4]. Strand displacement circuits have also been used for diagnostic

applications [39].

B Vectorised Semantics

In this appendix, we present a “vectorised” version of the reduction semantics for processes,

which enables multiple sequential migration reactions to be derived as a single merged

reaction step.

Definition 15. Vectorised reduction semantics of processes. The semantics is identical to the

non-vectorised semantics of Definition 2, except that each domain d is replaced with a

vector of domains d̄ = d1,…, dN, and each bond i is replaced with a vector of bonds ī = i1,…,

iN in rules (R3) and (RM). We write d̄!j̄ as short for d1!j1,…, dN ! jN and d̄ !j̄ as short for

dN*!jN,…, d1*!j1. We define corresponding vectorised functions as follows, with adjacent(j1,

…, jN, P) = (adjacent(j1, P) ⋃ adjacent(jN, P)) \ {j1,…, jN} and anchored(j1, …, jN, P) =

anchored(j1, P).

C Encoding the Classic DSD Semantics

C.1 Classic DSD syntax and semantics

Here we choose as our reference point the classic DSD syntax and semantics published in

our previous work on stochastic simulation of biological modelling languages [21]. Without

loss of generality, we assume that any “new” quantifiers, module definitions, and module

instantiations have been expanded away, so that the classic DSD syntax can be written down

as shown in Definition 16.

Definitions 17–20 recapitulate the reduction semantics of the classic DSD system that was

initially published in [21].

C.2 A translation from classic DSD syntax into process calculus syntax

Now, we define a translation function ⌈−⌉; that maps a classic DSD program Q into a

corresponding program P in our process calculus syntax. The translation is defined by

induction on the structure of classic DSD programs Q, as follows.

Name X, Y, Z ∷ = N Long domain

Nˆ Short domain

Petersen et al. Page 27

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Domain D ∷ = X Domain

X* Complemented domain

Non-empty sequence S ∷ = D1 … DN Sequence of domains N ≥ 1

Possibly empty sequence L, R ∷ = D1 … DN Sequence of domains N ≥ 0

Strand A ∷ = <S > Upper strand

{S} Lower strand

Segment C ∷ = {L′}<L > [S]<R>{R′} Gate segment

Gate G ∷ = C Single segment

C:G Lower strand concatenation

C∷G Upper strand concatenation

Classic DSD Program Q ∷ = A Strand

G Gate

Q1 ‖ Q2 Parallel composition of classic species

Definition 16. Syntax for classic DSD programs.

Definition 17. Elementary reduction rules for classic DSD programs, reproduced from

Definition 23 of [21]. In rule (RM) we assume that the first domain in R2 is distinct from the

first domain in S2, so that branch migration is maximal along a given sequence and the rules

(RM) and (RD) are mutually exclusive. We write ∷: [S] as an abbreviation for the

connection of S to another species via concatenation to either the upper or the lower strand.

Similarly we write … { S}… for the connection of a lower strand to other species via lower-

strand concatenation, and G… for the connection of G to another gate via concatenation to

the lower strand.

The cases for parallel composition and upper strands are trivial, as is the case for lower

strands, except that we must reverse the domain sequence when converting from the classic

lower strand syntax to the standardized upper strand syntax of the process calculus

representation. The non-trivial case of this definition is the case for a gate G, where we

Petersen et al. Page 28

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

require an auxiliary function tr to recursively convert the segment-based classic DSD syntax

to the strand-based process calculus syntax. Note that, in the call to tr, the arguments [] are

empty lists of domains from the DSD process calculus syntax, not elements of the classic

DSD syntax. The auxiliary function tr can be defined by recursion over the structure of

classic DSD gates G, as follows.

Definition 18. Rotating and reverisng strands and gates in the classic DSD calculus,

reproduced from Definition 24 of [21]. We write rev(S) for the domain list whose order is

reversed from that in S.

Definition 19. Structural congruence rules for the classic DSD calculus, reproduced from

Definition 25 of [21]. In addition to these rules, we assume that parallel composition of

classic DSD species is commutative and associative, and that the structural congruence

relation is reflexive, symmetric and transitive (i.e., is an equivalence relation).

Definition 20. Inductive reduction rules for the classic DSD calculus, reproduced from

Definition 26 of [21]. We write rev(D) for the function that reverses all of the strands and

complexes in process D, and com(D) for the function that complements all of the domains in

process D.

Petersen et al. Page 29

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The arguments d̄
upper and d̄

lower to the tr function are lists of domains from the DSD process

calculus syntax. These lists are used to record the upper and lower domains observed in the

segments to the left: hence, they are initialized to be empty when the function is called from

⌈G⌉. When a gate concatenation is encountered, one of these strands will be terminated,

depending on whether the concatenation was on the upper or lower strand. The terminated

strand is constructed by taking the appropriate stored domains from d̄
upper or d̄

lower, and

concatenating them with the appropriate (upper or lower) domains from the current segment.

For the recursive call, that list is reset to empty and the domains from the continuing strand

are transferred to the other list for storage. The bonds between domains that were previously

represented implicitly by being inside the [−] duplex component of the segment, are now

represented explicitly using named bonds in the process calculus syntax: we assume that the

new bond names are chosen freshly for each double-stranded domain.

It is straightforward to see that the cases of the translation for parallel composition, upper

strands, and lower strands are correct. The case for gates is almost as simple: we observe

that the order of domains in strands is preserved by the translation, including across domain

boundaries, and that the bonds between domains are also duplicated correctly.

C.3 Correspondence between classic DSD semantics and process calculus

semantics

We will use as our starting point the DSD semantics from [21]. We write Q ⇒ Q′ to mean

that the classic DSD program Q can be reduced to the classic DSD program Q′ using the

semantic rules from [21], and we write P → P′ for a reduction from the process calculus

program P to the process calculus program P′ using the process calculus semantics. Our aim

here is to prove the following proposition.

Proposition 21. For any classic DSD programs Q and Q′, if Q ⇒ Q′ then ⌈Q⌉ → ⌈Q′⌉.

Before we can prove the correspondence, we require some preliminary Lemmas.

Lemma 22. For all gates G, ⌈G⌉ = ⌈ rotate(G)⌉. Similarly, for all strands A, ⌈A⌉ = ⌈

rotate(A)⌉.

Proof. Straightforward, given the definition of rotate from Definition 18.

Lemma 23. For all classic DSD programs Q, if⌈Q⌉ = <S1> ⋯ <Sn> then [rev(Q)] = <

rev(S1)> ⋯ < rev(Sn)>. Furthermore, rev(⌈Q⌉) = ⌈ rev(Q)⌉.

Proof. The first claim is straightforward, by considering each species from Q on a per-

species basis and using the definition of rev from Definition 18. The second claim follows

from the first.

Petersen et al. Page 30

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 24. For all classic DSD programs Q, if⌈Q⌉ = <S1> ⋯ <Sn> then ⌈ com(Q)⌉ = <

com(S1)> ⋯ < com(Sn)>. Furthermore, com(⌈Q⌉) = [com(Q)].

Proof. The first claim is straightforward, by considering each species from Q on a per-

species basis. The second claim follows from the first.

Lemma 25. For all classic DSD programs Q and Q′, if Q = Q′ then ⌈Q⌉ = ⌈Q′⌉.

Proof. The proof proceeds by induction on the height of the derivation of Q ≡ Q′, which is

defined in Definition 19. The cases are as follows.

• First rule. We assume that G ≡ rotate(G). Then, the result follows from Lemma

22.

• Second rule. We assume that A ≡ rotate (A). Then, the result also follows from

Lemma 22.

• Third rule. We assume that Q ≡ Q′, where

both hold. Then, by straightforward calculations we get that

for some L̂, R̂, , , and P̂, as required.

• Fourth rule. We assume that Q ≡ Q′, where

both hold. Then, by straightforward calculations we get that

for some L̂, R̂, , , and P̂, as required.

• Fifth rule. We assume that Q = Q1‖Q2 and , and hence that

. Then, ⌈Q⌉ = ⌈Q1⌉ | ⌈Q2⌉ and . By assumption

we have and by induction it follows that . Thus we get that

, and hence , i.e., ⌈Q⌉ = ⌈Q′⌉, as

required.

Petersen et al. Page 31

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Parallel composition is commutative and associative. This case follows from the

fact that systems in the process calculus syntax are identified up to reordering of

strands.

• Structural congruence is an equivalence relation. This case follows from the fact

that equality on translated classic DSD programs is also an equivalence relation.

Thus, we have covered all required cases, which completes the proof of Lemma 25.

We are now in a position to prove the correspondence theorem.

Theorem 26. For any classic DSD programs Q and Q′, if Q ⇒ Q′ then ⌈Q⌉ → ⌈Q′⌉.

Proof. The proof proceeds by induction on the height of the derivation of Q ⇒ Q′. The base

cases, which correspond to the rules from Definition 17, are as follows.

• Rule RB. In this case, we get that

both hold, for some , , and P̂, and for some fresh i. We note that the newly-

formed bond i is not within a hairpin, and therefore, using rule RB of the semantics

of the process calculus, we can show that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

• Rule RU. The argument for this case is similar to that for RB: the calculations are

the same, with the only additional requirement being that we must show that in the

reduction context in the process calculus semantics there is no bond adjacent to

bond i. However, this is trivial because the domains in L and R (if they exist) are

not bound to the lower strand, so there are no adjacent bonds.

• Rule RC. In this case, we get that

both hold, for some L̂, , , and P̂, and for some fresh i. We note that the newly-

formed bond i is not within a hairpin, and therefore, using rule RB of the semantics

of the process calculus, we can show that ⌈Q⌉ →⌈Q′⌉ holds, as required. (Note that

we cannot use rule RU derive the reverse reaction ⌈Q′⌉ →⌈Q⌉ in the process

calculus in this case, because the domains from S and S* are in a duplex so the

resulting context is not a valid unbinding context.)

• Rule RM. To do. In this case, we get that

Petersen et al. Page 32

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required. (Note that the process calculus reduction

rules do not in fact require the migration reaction to be maximal, unlike the rules

from [21].)

• Rule RD. In this case, we get that

both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required.

• Rule GB. In this case, we get that

both hold, for some L̂, , , and P̂, and for some fresh k. We note that the newly-

formed bond k is not within a hairpin, and therefore, using rule RB of the semantics

of the process calculus, we can show that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

• Rule GU. The argument for this case is similar to that for GB: the calculations are

the same, with the only additional requirement being that we must show that in the

reduction context in the process calculus semantics there is no bond adjacent to

bond k. However, this is trivial because the rule specifies that the domains in R1

and R (if they exist) are not bound to the lower strand, so there are no adjacent

bonds.

• Rule GD. In this case, we get that

both hold, for some L̂, , , and P̂. Then, we can use the process calculus rule R3

to conclude that ⌈Q⌉ → ⌈Q′⌉, as required.

The inductive cases, which correspond to the rules from Definition 20, are as

follows.

• First rule. We assume that rev(Q) ⇒ rev(Q′), and by assumption we get that Q
⇒ Q′. By induction we get ⌈Q⌉ → ⌈Q′⌉. Then, since the rules of the process

calculus are closed under the rev operation (in the case of rule R3, to see this we

note that the same context can be used to derive 3-way migrations in both the 3′ and

5′ directions), we get that rev(⌈Q⌉) → rev(⌈Q′⌉). Finally, by Lemma 23 we get ⌈

rev(Q)⌉ → ⌈ rev(Q′)⌉, as required.

Petersen et al. Page 33

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Second rule. We assume that com(Q) ⇒ com(Q′), and by rule RC we get that Q ⇒

Q′. By induction we get ⌈Q⌉ → ⌈Q′⌉. Since the reduction rules of the process

calculus do not specify which domains are complemented, only their “relative

complementarity”, it follows that the process semantics is closed under the com

operation. Hence we get com(⌈Q⌉) → com(⌈Q′⌉), and by Lemma 24 it follows that

⌈ com(Q)⌉ → com(Q′)⌉, as required.

• Third rule. We assume that Q = Q1‖Q2 and , and that Q ⇒ Q′. Then,

by assumption we get that , and by induction we get that

holds. Since we can add additional strands to the context in any process calculus

reduction, it follows that holds, i.e., that (⌈Q⌉) → ⌈Q′⌉, as

required.

• Fourth rule. We assume that Q ⇒ Q′. Then, by assumption there exist Q″ and Q‴

such that Q ≡ Q″ and Q″ ≡ Q‴ and Q‴ ≡ Q′ all hold. By induction we get that ⌈Q
″⌉ → ⌈Q‴⌉ holds. Then, by Lemma 25 we get that ⌈Q⌉ = ⌈Q″⌉ and ⌈Q‴⌉ = ⌈Q′⌉.

Thus it follows that ⌈Q⌉ → ⌈Q′⌉ holds, as required.

Thus, we have covered all required cases, which completes the proof of Lemma 25.

C.4 Comments on the semantic correspondence

If we were able to delimit the subset of process calculus programs that correspond to a

classic DSD program, then we could define a reverse translation ⌊P⌋ that turns a process

calculus program back into the corresponding classic DSD program, if such a classic DSD

program exists. Then, we could try to prove the reverse version of Theorem 26, i.e, if P is a

process calculus program that corresponds to a classic DSD program, then P → P′ implies

⌊P⌋ ⇒ ⌊P′⌋. However, this would entail showing that if P corresponds to a classic DSD

program and P → P′ then P′ also corresponds to a classic DSD program. This property does

not hold for arbitrary process calculus programs P, because the process calculus semantics

allows additional reactions, e.g. reactions between single-stranded overhangs that would

form tree-like structures. The classic DSD semantics neglects such reactions, even though

they might be possible in practice, because the classic DSD syntax cannot encode such

structures. Therefore, the reverse direction of Theorem 26 does not hold in general. Thus,

the new semantics is not a conservative extension of the classic DSD semantics but rather a

proper extension.

D Comparison with Kappa

In this appendix we use a simple example to illustrate how a DSD program can be encoded

into kappa [10]. We outline some of the challenges involved, together with potential areas

for future work. The example we consider is the three-way initiated four-way branch

migration example described in Fig. 1D. The DSD code for the example is as follows:

<L T2ˆ!i2 X*!i1 T1ˆ> | <A X!i1 T2ˆ*!i2> |

Petersen et al. Page 34

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

<T1ˆ* X!j1 R> | <X*!j1 A*!j2> | <A!j2>

The code defines five strands that represent the initial state of the system. From this initial

state, the full state space is automatically generated by repeated application of the DSD rules

in Definition 2, as illustrated in Fig. 1D.

We refer the reader to [10] for a description of the kappa language, and to [7, 6] for technical

definitions. Briefly, kappa is defined in terms of site graphs, where the vertices of the graph

are also referred to as agents. When encoding a DSD program into kappa, an agent

represents a DNA strand and a site represents a domain. By definition, each agent has a

unique name and the sites belonging to a given agent are also unique. To represent our DSD

example in kappa, we define unique agent names X1,…, X5 to represent the strands. Since a

given domain may occur multiple times within the same strand, we cannot use the domain

itself as the site name. Instead, we define unique site names s1,…, s4 and annotate each site

with the domain, using the kappa notation for an internal state, where a site s with internal

state L is written s ∼ L. Thus, the internal state of a site is used to represent the domain at

that site. Finally, we note that kappa does not directly support the notion of complementary

states. Instead, we use a naming convention such that the state x′ is assumed to be

complementary to x. Using this approach, we can encode the DSD example of Fig. 1D into

kappa as follows:

X1(s1∼L, s2∼T2!i2, s3∼X′!i1, s4∼T1), X2(s1∼A, s2∼X!i1, s3∼T2′!i2),

X3(s1∼T1′, s2∼X!j1, s3∼R), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A!j2)

Although the encoding of the DSD syntax into kappa syntax is straightforward, a number of

difficulties arise when trying to encode the DSD semantics (Definition 2) as kappa rules. In

particular, to express the binding rule (RB) we need a way of stating that any site in any

agent can bind to any other site in any other agent, provided the two sites have

complementary states. Although there are extensions to kappa which permit a given rule to

be defined once and applied to multiple agents [5], additional generalisations are still needed

to allow a given rule to be applied to multiple sites and to define predicates over states, such

as complementarity. In the absence of such generalisations, binding rules tailored to the

example under consideration are required. For our specific example we end up with the

following binding rule:

X1(s4∼T1), X3(s1∼T1′) –> X1(s4∼T1!i3), X3(s1∼T1′!i3)

This rule states that site s4 of agent X1 can bind to site s1 of agent X3. However, if we

change the example slightly so that the complementary domains T1 and T1′ are on different

sites, the rule is no longer applicable and a different rule needs to be defined. Thus, the

binding rule is specific to the example.

Similarly, the unbinding rule (RU) for our example is defined in kappa as

Petersen et al. Page 35

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

X1(s4∼T1!i3, s3∼X′!i1), X3(s1∼T1′!i3,s2∼X!j1) –> X1(s4∼T1, s3∼X′!i1),

X3(s1∼T1′,s2∼X!j1)

This rule states that site s4 of agent X1 can unbind from site s1 of agent X3, provided site s3

of agent X1 is not bound to site s2 of agent X3. In other words, bond j1 and i1 must be

different. This condition is necessary because, according to rule (RU), a bond between two

sites can only be broken if there are no adjacent bonds. Again, the kappa rule here is specific

to our example, since there is currently no general way in kappa to specify that no adjacent

bonds are present.

The branch migration rule (R3) for this example is defined in kappa as follows:

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A!j2)

–>

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2), X5(s1∼A)

This illustrates another limitation of kappa, in that there is no way to define a generalised

version of the anchored predicate, which checks whether a bond is part of a junction of

arbitrary size. As a result, the junction needs to be represented explicitly. In this particular

example the junction is made up of bonds i1, i3, j1, j2.

Finally, the N-way branch migration rule (RM) for this example is defined in kappa as

follows:

X1(s3∼X′!i1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!j1, s2∼A′!j2)

–>

X1(s3∼X′!j1, s4∼T1!i3), X2(s1∼A!j2, s2∼X!i1),

X3(s1∼T1′!i3, s2∼X!j1), X4(s1∼X′!i1, s2∼A′!j2)

Here again, the specific junction needs to be represented explicitly, and there is no way of

encoding a branch migration for a junction of arbitrary size N.

Petersen et al. Page 36

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Furthermore, we note that the result of the four-way branch migration can also perform an

unbind. However, since this unbinding takes place on a different site to the first unbinding,

an additional kappa rule needs to be defined:

X1(s1∼L, s2∼T2!i2, s3∼X′!j1), X2(s2∼X!i1, s3∼T2′!i2)

–>

X1(s1∼L, s2∼T2, s3∼X′!j1), X2(s2∼X!i1, s3∼T2′)

Thus, the kappa rule set is specific for a given DSD program and could potentially be

substantial, since it needs to account for all of the different ways in which binding,

unbinding and migration can occur in that example. This contrasts with a fixed set of only

four rules in the DSD semantics.

We summarise the extensions to kappa that would be required in order to implement the

DSD semantics of Definition 2 in a way that is independent of the specific example being

considered:

• The ability to define meta rules that can be applied to all agents and all sites

• The ability to define predicates on states, in order to specify that any two sites can

bind provided they have complementary states.

• The ability to define predicates such as adjacency in order to specify that two sites

can only unbind if there are no bonds between corresponding adjacent sites.

• The ability to define predicates using enumeration i ∈ {1,…, N} for arbitrary

values of N, for predicates such as anchored, to specify that a given bond is part of

a junction of arbitrary size, and hidden, to specify that one end of a bond is hidden

within a closed loop of arbitrary size.

Without these extensions, each example will require a manually encoded set of kappa rules.

The power of kappa is that it allows a custom set of rules to be defined for each specific

system under consideration. In contrast, with DSD we define a small set of general rules that

capture the behaviour of a broad range of strand displacement systems, so that custom rules

are not required to model each specific system under consideration: the same rules apply to

all systems. This difference in approach requires the ability to define rules of a much more

general nature than is currently possible in kappa.

D.1 Relation to site graphs

The fact that domains are on a strand in a specificorder distinguishes strand graphs from site

graphs. As an example, consider a simple strand displacement reaction

 <a!i b> | <c*!k b* !j a*!i> | <b!j c!k>

–>(R3) <a!i b!j> | <c*!k b* !j a*!i> | <b c!k>

Petersen et al. Page 37

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which can be depicted as the following strand graph transformation:

If we do not have an order of the sites of a node, the the left-most situtation could also

represent the program <a!i b> | <b*!j c*!k a*!i> | <c!k b!j>, which as a

strand graph would be

and should not be possible. As site graphs, if one imagines the nodes drawn as just circles,

the reactive and the non-reactive graphs are indistinguishable, even though the sites are

named.

References

1. Amir, Yaniv; Ben-Ishay, Eldad; Levner, Daniel; Ittah, Shmulik; Abu-Horowitz, Almogit; Bachelet,
Ido. Universal computing by DNA origami robots in a living animal. Nature Nanotechnology. May;
2014 9(5):353–7.

2. Chandran, Harish; Gopalkrishnan, Nikhil; Phillips, Andrew; Reif, John. Localized hybridization
circuits. In: Cardelli, Luca; Shih, William, editors. Proceedings of the 17th International Conference
on DNA Computing and Molecular Programming, volume 6937 of Lecture Notes in Computer
Science. Springer-Verlag; 2011. p. 64-83.

3. Chen, Xi. Expanding the rule set of DNA circuitry with associative toehold activation. Journal of the
American Chemical Society. 2012; 134:263–271. [PubMed: 22129141]

4. Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik,
David; Seelig, Georg. Programmable chemical controllers made from DNA. Nature
Nanotechnology. 2013; 8:755–762.

5. Danos, Vincent; Feret, Jérôme; Fontana, Walter; Harmer, Russell; Krivine, Jean. Rule-based
modelling and model perturbation. Transactions on Computational Systems Biology. 2009; 11:116–
137.

6. Danos, Vincent; Feret, Jérôme; Fontana, Walter; Krivine, Jean. Abstract interpretation of cellular
signalling networks. In: Logozzo, Francesco; Peled, Doron; Zuck, Lenore D., editors. Proceedings,
volume 4905 of Lecture Notes in Computer Science; Verification, Model Checking, and Abstract
Interpretation, 9th International Conference, VMCAI 2008; San Francisco, USA. January 7-9, 2008;
Springer; 2008. p. 83-97.

7. Danos, Vincent; Laneve, Cosimo. Formal molecular biology. Theoretical Computer Science. 2004;
325:69–110.

8. Doye JPK, Ouldridge TE, Louis AA, Romano F, Sulc P, Matek C, Snodin BEK, Rovigatti L,
Schreck JS, Harrison RM, Smith WP. Coarse-graining DNA for simulations of DNA
nanotechnology. Physical Chemistry Chemical Physics. 2013; 15:20395–20414. [PubMed:
24121860]

Petersen et al. Page 38

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9. Leigh Fanning, M.; Macdonald, Joanne; Stefanovic, Darko. Proceedings of the 2nd ACM
Conference on Bioinformatics, Computational Biology and Biomedicine. ACM; 2011. ISO:
numeric representation of nucleic acid form; p. 404-408.

10. Feret J, Danos V, Krivine J, Harmer R, Fontana W. Internal coarse-graining of molecular systems.
Proceedings of the National Academy of Sciences of the USA. 2009; 106:6453–6458. [PubMed:
19346467]

11. Geary, Cody; Rothemund, Paul WK.; Andersen, Ebbe S. A single-stranded architecture for
cotranscrip-tional folding of RNA nanostructures. Science. 2014; 345(6198):799–804. [PubMed:
25124436]

12. Genot, Anthony J.; Yu Zhang, David; Bath, Jonathan; Turberfield, Andrew J. Remote toehold: a
mechanism for flexible control of DNA hybridization kinetics. Journal of the American Chemical
Society. Feb; 2011 133(7):2177–2182. [PubMed: 21268641]

13. Gillespie D. Exact stochastic simulation of coupled chemical reactions. Journal of Physical
Chemistry. 1977; 81(25):2340–2361.

14. Grun, Casey; Sarma, Karthik; Wolfe, Brian; Woo Shin, Seung; Winfree, Erik. A domain-level
DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary
structures. Verification of Engineered Molecular Devices and Programs (VEMDP). 2014

15. Hinton, A.; Kwiatkowska, M.; Norman, G.; Parker, D. PRISM: A tool for automatic verification of
probabilistic systems. In: Hermanns, H.; Palsberg, J., editors. Proc 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'06), volume 3920
of LNCS. Springer; 2006. p. 441-444.

16. Ibuki, Kawamata; Fumiaki, Tanaka; Masami, Hagiya. Abstraction of DNA graph structures for
efficient enumeration and simulation. IPSJ SIG Notes. Jul; 2011 2011(12):1–6.

17. Kawamata, Ibuki; Aubert, Nathanael; Hamano, Masahiro; Hagiya, Masami. Abstraction of graph-
based models of bio-molecular reaction systems for efficient simulation. In: Gilbert, David R.;
Heiner, Monika, editors. Proceedings, volume 7605 of Lecture Notes in Computer Science;
Computational Methods in Systems Biology - 10th International Conference, CMSB 2012;
London, UK. October 3-5, 2012; Springer; 2012. p. 187-206.

18. Klavins E. Programmable self-assembly. Control Systems, IEEE. Aug; 2007 27(4):43–56.

19. Klavins E, Ghrist R, Lipsky D. A grammatical approach to self-organizing robotic systems. IEEE
Transactions on Automatic Control. Jun; 2006 51(6):949–962.

20. Lakin, Matthew R.; Parker, David; Cardelli, Luca; Kwiatkowska, Marta; Phillips, Andrew. Design
and analysis of DNA strand displacement devices using probabilistic model checking. Journal of
the Royal Society Interface. 2012; 9(72):1470–1485.

21. Lakin, Matthew R.; Paulevé, Loïc; Phillips, Andrew. Stochastic simulation of multiple process
calculi for biology. Theoretical Computer Science. 2012; 431:181–206.

22. Lakin, Matthew R.; Petersen, Rasmus; Gray, Kathryn E.; Phillips, Andrew. Abstract modelling of
tethered DNA circuits. In: Murata, Satoshi; Kobayashi, Satoshi, editors. Proceedings of the 20th
International Conference on DNA Computing and Molecular Programming, volume 8727 of
Lecture Notes in Computer Science. Springer International Publishing; 2014. p. 132-147.

23. Lakin, Matthew R.; Phillips, Andrew. Modelling, simulating and verifying Turing-powerful strand
displacement systems. In: Cardelli, Luca; Shih, William, editors. Proceedings of DNA17, volume
6937 of Lecture Notes in Computer Science. Springer-Verlag; 2011. p. 130-144.

24. Lakin, Matthew R.; Youssef, Simon; Cardelli, Luca; Phillips, Andrew. Abstractions for DNA
circuit design. Journal of the Royal Society Interface. 2012; 9(68):470–486.

25. Lakin, Matthew R.; Youssef, Simon; Polo, Filippo; Emmott, Stephen; Phillips, Andrew. Visual
DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics. 2011;
27(22):3211–3213. [PubMed: 21984756]

26. Bingling, Li; Ellington, Andrew D.; Chen, Xi. Rational, modular adaptation of enzyme-free DNA
circuits to multiple detection methods. Nucleic Acids Research. 2011; 39(16):e110. [PubMed:
21693555]

27. Mazur, Alexey K. Wormlike chain theory and bending of short DNA. Physical Review Letters.
2007; 98:218102. [PubMed: 17677812]

Petersen et al. Page 39

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

28. McCaskill, John S.; Niemann, Ulrich. Graph replacement chemistry for DNA processing. In:
Condon, Anne; Rozenberg, Grzegorz, editors. DNA Computing, volume 2054 of Lecture Notes in
Computer Science. Springer; Berlin Heidelberg: 2001. p. 103-116.

29. Milner, Robin. Communicating and mobile systems - the Pi-calculus. Cambridge University Press;
1999.

30. Milner, Robin; Parrow, Joachim; Walker, David. A calculus of mobile processes, I. Inf Comput.
1992; 100(1):1–40.

31. Mokhtar, Reem; Garg, Sudhanshu; Chandran, Harish; Bui, Hieu; Song, Tianqi; Reif, John. A graph
rewriting system for modeling DNA nanodevices. DNA. 2013

32. Oury, Nicolas; Pedersen, Michael; Petersen, Rasmus. Canonical labelling of site graphs. In: Petre,
Ion, editor. Electronic Proceedings in Theoretical Computer Science; Proceedings Fourth
International Workshop on Computational Models for Cell Processes; Turku, Finland. 11th June
2013; Open Publishing Association; 2013. p. 13-28.

33. Phillips, Andrew; Cardelli, Luca. A programming language for composable DNA circuits. Journal
of the Royal Society Interface. Aug; 2009 6(S4):419–436.

34. Qian, Lulu; Soloveichik, David; Winfree, Erik. Efficient Turing-universal computation with DNA
polymers. In: Sakakibara, Yasubumi; Mi, Yongli, editors. Proceedings of DNA16, volume 6518 of
Lecture Notes in Computer Science. Springer-Verlag; 2011. p. 123-140.

35. Qian, Lulu; Winfree, Erik. Scaling up digital circuit computation with DNA strand displacement
cascades. Science. 2011; 332:1196–1201. [PubMed: 21636773]

36. Qian, Lulu; Winfree, Erik. Parallel and scalable computation and spatial dynamics with dna-based
chemical reaction networks on a surface. In: Murata, Satoshi; Kobayashi, Satoshi, editors.
Proceedings of the 20th International Conference on DNA Computing and Molecular
Programming, volume 8727 of Lecture Notes in Computer Science. Springer International
Publishing; 2014. p. 114-131.

37. Qian, Lulu; Winfree, Erik; Bruck, Jehoshua. Neural network computation with DNA strand
displacement cascades. Nature. 2011; 475:368–372. [PubMed: 21776082]

38. Rothemund, Paul WK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;
440:297–302. [PubMed: 16541064]

39. Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler,
Vincent P., Jr; Rudchenko, Sergei; Stojanovic, Milan N. Autonomous molecular cascades for
evaluation of cell surfaces. Nature Nanotechnology. 2013; 8:580–586.

40. Schaeffer, JM. Master's thesis. California: Institute of Technology; 2012. Stochastic simulation of
the kinetics of multiple interacting nucleic acid strands.

41. Seelig, Georg; Soloveichik, David; Yu Zhang, David; Winfree, Erik. Enzyme-free nucleic acid
logic circuits. Science. 2006; 314:1585–1588. [PubMed: 17158324]

42. Soloveichik D, Seelig G, Winfree E. DNA as a universal substrate for chemical kinetics.
Proceedings of the National Academy of Sciences of the USA. 2010; 107(12):5393–5398.
[PubMed: 20203007]

43. Srinivas, Niranjan; Ouldridge, Thomas E.; Sulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis,
Ard A.; Doye, Jonathan PK.; Winfree, Erik. On the biophysics and kinetics of toehold-mediated
dna strand displacement. Nucleic Acids Res. Sep.2013

44. Teichmann, Mario; Kopperger, Enzo; Simmel, Friedrich C. Robustness of localized DNA strand
displacement cascades. ACS Nano. 2014; 8(8):8487–8496. [PubMed: 25089925]

45. Yin, Peng; Choi, Harry MT.; Calvert, Colby R.; Pierce, Niles A. Programming biomolecular self-
assembly pathways. Nature. 2008; 451:318–322. [PubMed: 18202654]

46. Yordanov, Boyan; Kim, Jongmin; Petersen, Rasmus L.; Shudy, Angelina; Kulkarni, Vishwesh V.;
Phillips, Andrew. Computational design of nucleic acid feedback control circuits. ACS Synthetic
Biology. 2014; 3(8):600–616. [PubMed: 25061797]

47. Yordanov, Boyan; Wintersteiger, Christoph M.; Hamadi, Youssef; Phillips, Andrew; Kugler, Hillel.
Proceedings of DNA19, volume 8141 of Lecture Notes in Computer Science. Springer-Verlag;
2013. Functional analysis of large-scale DNA strand displacement circuits. In David Soloveichik
and Bernard Yurke, editors; p. 189-203.

Petersen et al. Page 40

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

48. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA.
NUPACK: analysis and design of nucleic acid systems. Journal of Computational Chemistry.
2011; 32:170–173. [PubMed: 20645303]

49. Yu Zhang, David; Seelig, Georg. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry. 2011; 3:103–113.

50. Yu Zhang, David; Turberfield, Andrew J.; Yurke, Bernard; Winfree, Erik. Engineering entropy-
driven reactions and networks catalyzed by DNA. Science. 2007; 318:1121–1125. [PubMed:
18006742]

Petersen et al. Page 41

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
State space for a collection of simple examples. There is a one-to-one correspondence

between the program code and the graphical representation. For each example, the first line

of code denotes the inital state, which is represented graphically on the left. Importantly,

only the initial state needs to be written explicitly by the user, since the remaining states are

generated automatically using the reduction rules of Definition 2.

Petersen et al. Page 42

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
CRN for a catalytic three-armed junction (A, from Figure 2 of [45]) and for a cross-catalytic

amplifier (B, from Figure 3 of [45]). The program code for the initial species is written by

the user and is shown explicitly. The full CRN is generated automatically from the initial

species, according to Definition 3.

Petersen et al. Page 43

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Partial set of chemical reactions for the bipedal walker example from Figure 5 of [45].

Petersen et al. Page 44

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Textual representation (A) and graphical depiction (B) of a strand graph corresponding to

the start state of Fig. 1D. The correspondence between the calculus and strand grand

representations is illustrated in (C), where each calculus strand is shown next to its colour.

Petersen et al. Page 45

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Inferred CRN for three-way initiated four-way branch migration. Thick lines go between

reactant species and reactions, and thin arrows go from reactions to product species.

Petersen et al. Page 46

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Inferred state space for three-way initiated four-way branch migration. State transitions are

marked by arrows, which are labelled with the rate of the reaction that would incur the

transition.

Petersen et al. Page 47

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Time course from a stochastic simulation of the three-way initiated four-way branch

migration. The legend refers to the species from Figure 5.

Petersen et al. Page 48

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
DNA structure and sequence abstractions. We abstract away from the 3D atomic structure of

the DNA strands to produce a simple 2D representation. We then subdivide the DNA strand

sequences into domains, which allows us to design structures at a higher level of abstraction

than the individual nucleotide sequences.

Petersen et al. Page 49

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
DNA strand displacement example reaction. The input strand binds reversibly to the gate

and initiates a reversible branch migration reaction across the domain x that is shared

between the input strand and the strand already bound to the gate. When the branch

migration reaction reaches the far end of the x domain, the other strand originally bound to

the gate is now only bound via the complementary uˆ toehold domain. Thus, it can reversibly

unbind from the gate, leaving the input strand bound to the gate, the previously bound strand

free in solution, and the previously bound toehold domain uˆ exposed on the gate. We refer

to this process as a “strand exchange” reaction.

Petersen et al. Page 50

Theor Comput Sci. Author manuscript; available in PMC 2017 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1 Introduction
	2 Process calculus
	2.1 Syntax and semantics
	2.2 Examples
	2.2.1 Hairpin toehold exchange
	2.2.2 Branch migration leak
	2.2.3 Four-way branch migration
	2.2.4 Three-way initiated four-way branch migration

	2.3 Chemical reaction network encoding

	3 Strand graphs
	3.1 Notation
	3.2 Reduction semantics
	3.3 Correspondence with process calculus semantics
	3.4 CRN semantics

	4 Implementation
	4.1 Data structures
	4.2 Species isomorphisms
	4.3 Canonical representations of species
	4.4 Three-way initiated four-way branch migration example

	5 Discussion
	5.1 Related Work
	5.2 Future Work

	A An introduction to DNA strand displacement
	B Vectorised Semantics
	C Encoding the Classic DSD Semantics
	D Comparison with Kappa
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

