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Abstract

Datacenter-scale computing for analytics workloads is
increasingly common. High operational costs force het-
erogeneous applications to share cluster resources for
achieving economy of scale. Scheduling such large and
diverse workloads is inherently hard, and existing ap-
proaches tackle this in two alternative ways: 1) central-
ized solutions offer strict, secure enforcement of schedul-
ing invariants (e.g., fairness, capacity) for heterogeneous
applications, 2) distributed solutions offer scalable, effi-
cient scheduling for homogeneous applications.

We argue that these solutions are complementary, and
advocate a blended approach. Concretely, we propose
Mercury, a hybrid resource management framework that
supports the full spectrum of scheduling, from central-
ized to distributed. Mercury exposes a programmatic
interface that allows applications to trade-off between
scheduling overhead and execution guarantees. Our
framework harnesses this flexibility by opportunistically
utilizing resources to improve task throughput. Exper-
imental results on production-derived workloads show
gains of over 35% in task throughput. These benefits
can be translated by appropriate application and frame-
work policies into job throughput or job latency improve-
ments. We have implemented and contributed Mercury
as an extension of Apache Hadoop / YARN.1

1 Introduction

Over the past decade, applications such as web search
led to the development of datacenter-scale computing, on
clusters with thousands of machines. A broad class of
data analytics is now routinely carried out on such large
clusters over large heterogeneous datasets. This is often
referred to as “Big Data” computing, and the diversity of

1The open-sourcing effort is ongoing at the moment of writing the
paper. Progress can be tracked in Apache JIRA YARN-2877 [6].

applications sharing a single cluster is growing dramat-
ically for various reasons: the consolidation of clusters
to increase efficiency, the diversity of data (ranging from
relations to documents, graphs and logs) and the corre-
sponding diversity of processing required, the range of
techniques (from query processing to machine learning)
being increasingly used to understand data, the ease of
use of cloud-based services, and the growing adoption of
Big Data technologies among traditional organizations.

This diversity is addressed by modern frameworks
such as YARN [27], Mesos [16], Omega [24] and
Borg [28], by exposing cluster resources via a well-
defined set of APIs. This facilitates concurrent sharing
between applications with vastly differing characteris-
tics, ranging from batch jobs to long running services.
These frameworks, while differing on the exact solution
(monolithic, two-level or shared-state) are built around
the notion of centralized coordination to schedule cluster
resources. For ease of exposition, we will loosely refer
to all such approaches as centralized scheduler solutions.
In this setting, individual per-job (or per-application
framework) managers petition the centralized scheduler
for resources via the resource management APIs, and
then coordinate application execution by launching tasks
within such resources.

Ostensibly, these centralized designs simplify cluster
management in that there is a single place where schedul-
ing invariants (e.g., fairness, capacity) are specified and
enforced. Furthermore, the central scheduler has cluster-
wide visibility and can optimize task placement along
multiple dimensions (locality [31], packing [15], etc.).

However, the centralized scheduler is, by design, in
the critical path of all allocation decisions. This poses
scalability and latency concerns. Centralized designs
rely on heartbeats which are used for both liveness and
for triggering allocation decisions. As the cluster size
scales, to minimize heartbeat processing overheads, op-
erators are forced to lower the heartbeat rate (i.e., less fre-
quent heartbeats). In turn, this increases the scheduler’s



Figure 1: Task and job runtime distribution.

allocation latency. This compromise becomes problem-
atic if typical tasks are short [22]. A workload analy-
sis from one of the production clusters at Microsoft also
suggests that shorter tasks are dominant. This is shown
as a CDF of task duration in Figure 1. Note that almost
60% of the tasks complete execution under 10 seconds.
Therefore, the negative effects of centralized heartbeat-
based solutions range from poor latency for interactive
workloads to utilization issues (slow allocation decisions
means resources are fallow for longer periods of time).

To amortize the high scheduling cost of centralized
approaches, the “executor” model has been proposed
[29, 19, 21, 22]. This hierarchical approach consists in
reusing containers assigned by the central scheduler to
an application framework that multiplexes them across
tasks/queries.2 Reusing containers assumes that submit-
ted tasks have similar characteristics (to fit in existing
containers). Moreover, since the same system-level pro-
cess is shared across tasks, the executor model has lim-
ited applicability to within a single application type. It is,
thus, orthogonal to our work.

Fully distributed scheduling is the leading alternative
to obtain high scheduling throughput. A practical sys-
tem leveraging this design is Apollo [9]. Apollo al-
lows each running job to perform independent schedul-
ing choices and to queue its tasks directly at worker
nodes. Unfortunately, this approach relies on a uniform
workload (in terms of application type), as all job man-
agers need to run the same scheduling algorithm. In this
context, allowing arbitrary applications, while prevent-
ing abuses and strictly enforcing capacity/fairness guar-
antees, is non-trivial. Furthermore, due to lack of global
view of the cluster, distributed schedulers make local
scheduling decisions that are often not globally optimal.

In Figure 2, we pictorially depict the ideal operational
point of these three approaches: centralized [16, 27], dis-
tributed [9], and executor-model [29, 22], as well as the
target operational point for our design. A detailed dis-
cussion of related work is deferred to § 8.

2By containers we refer to the allocation units that may comprise
multiple resources, such as memory and CPU.
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Figure 2: Ideal operational point of alternative schedul-
ing approaches.

The key technical challenge we explore in this paper is
the design of a resource management infrastructure that
allows us to simultaneously: (1) support diverse (possi-
bly untrusted) application frameworks, (2) provide high
cluster throughput with low-latency allocation decisions,
and (3) enforce strict scheduling invariants (§ 2).

Below we present the main contributions of this paper.
First: we propose a novel hybrid resource manage-
ment architecture. Our key insight is to offload work
from the centralized scheduler by augmenting the re-
source management framework to include an auxiliary
set of schedulers that make fast/distributed decisions (see
Fig. 3). The resource management framework compris-
ing these schedulers is now collectively responsible for
all scheduling decisions (§ 3).
Second: we expose this flexibility to the applications by
associating semantics with the type of requested contain-
ers (§ 3.2). Applications may now choose to accept high
scheduling costs to obtain strong execution guarantees
from the centralized scheduler, or trade strict guarantees
for sub-second distributed allocations. Intuitively, op-
portunistic jobs or applications with short tasks can ben-
efit from fast allocations the most.
Third: we leverage the newly found scheduling flexibil-
ity to explore the associated policy space. Careful policy
selection allows us to translate the faster scheduling de-
cisions into job throughput or latency gains (§ 4 and § 5).
Fourth: we implement, validate and open-source this
overall design in a YARN-based system called Mercury
(§ 6). We compare Mercury with stock YARN by running
synthetic and production-derived workloads on a 256-
machine cluster. We show 15 to 45% task throughput
improvement, while maintaining strong invariants for the
applications that need them. We also show that by tuning
our policies we can translate these task throughput gains
to improvements of either job latency or throughput (§ 7).

The open-source nature [6] and architectural general-
ity of our effort makes Mercury an ideal substrate for
other researchers to explore centralized, distributed and
hybrid scheduling solutions, along with a rich policy
space. We describe ongoing work in § 9.
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2 Requirements

Given a careful analysis of production workloads at Mi-
crosoft, and conversations with cluster operators and
users, we derive the following set of requirements we set
out to address with Mercury:

R1 Diverse application frameworks: Allow arbitrary
user code (as opposed to a homogeneous, single-app
workload).

R2 Strict enforcement of scheduling invariants: Exam-
ple invariants include fairness and capacity; this in-
cludes policing/security to prevent abuses.

R3 Maximize cluster utilization and throughput:
Higher cluster utilization and throughput lead to
higher return on investment (ROI).

R4 Fine-grained resource sharing: Tasks from different
jobs can concurrently share a single node.

R5 Efficiency and scalability of scheduling: Support
high rate of scheduling decisions.

Note that classical centralized approaches target R1-
R4, while distributed approaches focus on R3-R5. We
acknowledge the tension between conflicting require-
ments (R2 and R5), each emerging from a subset of the
applications we aim to support. In Mercury, we bal-
ance this tension by blending centralized and distributed
decision-making in a request-specific manner.

Non-goals Low latency for sub-second interactive
queries is outside the scope of our investigation. This is
the target of executor-model approaches [29, 19, 21, 22],
which achieve millisecond start times by sharing
processes. This is at odds with requirements R1-R2.

3 Mercury Design

We first provide an overview of the Mercury architecture
(§ 3.1). Next, we describe the programming interface
that Job Managers use for requesting resources (§ 3.2),
and how the framework allocates them (§ 3.3). Then we
provide details about task execution (§ 3.4).

3.1 Overview
Mercury comprises two subsystems, as shown in Fig. 3:
Mercury Runtime This is a daemon running on every

worker node in the cluster. It is responsible for all in-
teractions with applications, and for the enforcement
of execution policies on each node.

Mercury Resource Management Framework This is
a subsystem that includes a central scheduler running
on a dedicated node, and a set of distributed sched-
ulers running on (possibly a subset of) the worker
nodes, which loosely coordinate through a Mercury

Mercury Resource Management Framework

Mercury Runtime
...
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Distributed
Scheduler 3
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Figure 3: Mercury resource management lifecycle.

Coordinator. This combination of schedulers performs
cluster-wide resource allocation to applications for the
same pool of resources. The allocation unit, referred to
as a container, consists of a combination of CPU and
RAM resources on an individual machine.
Note that we do not dedicate specific part of the cluster

resources to each scheduler. This is done dynamically,
based on the resource requests from the running applica-
tions and the condition of the cluster, as described in § 4
and § 5. Conflicts emerging from schedulers assigning
resources over the same pool of machines are resolved
optimistically by the Mercury Runtime.

Next we present the resource management lifecycle,
following the steps of Fig. 3.
Resource request Consider an application running in
the cluster (Job Manager 1) that wants to obtain re-
sources. To this end, it petitions the local Mercury Run-
time through an API that abstracts the complex schedul-
ing infrastructure (step 1). The API allows applications
to specify whether they need containers with strict execu-
tion guarantees or not (§ 3.2). Based on this information
and on framework policies (§ 4), the runtime delegates
the handling of a request to the central scheduler (step 2)
or to one of the distributed schedulers (step 2a).
Container allocation The schedulers assign resources
to the application according to their scheduling invari-
ants, and signal this by returning to the Mercury Runtime
containers that grant access to such resources (steps 3
and 3a). The Mercury Runtime forwards back to the Job
Manager all the granted containers (step 4).
Task execution The application submits each allocated
container for execution to the Mercury Runtime on the
associated node (step 5).3 Depending on scheduling
priorities among containers and the resource utilization
on the node, the runtime decides whether the container
should be executed immediately or get enqueued for later
execution (more details in § 3.4). To execute a container,
the remote Mercury Runtime spawns a process on that
node and runs the application task (step 6). To ensure

3Containers are bound to a single machine to prevent abuses [27].
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that priorities are enforced, the runtime can also decide
to kill or preempt running tasks (step 7), to allow imme-
diate execution of higher priority tasks.

3.2 Resource Request
When requesting containers, a Job Manager uses Mer-
cury’s programming interface to specify the type of con-
tainers it needs. This specification is based on the con-
tainer’s allocation/execution semantics. Our design de-
fines the following two container classes:

GUARANTEED containers incur no queuing delay, i.e., they
are spawned by the Mercury Runtime as soon as they
arrive to a worker node. Moreover, these containers
run to completion bar failures, i.e., they are never pre-
empted or killed by the infrastructure.

QUEUEABLE containers enable the Job Manager to
“queue” a task for execution on a specific node. No
guarantees are provided on the queuing delay, or on
whether the container will run to completion or be
preempted.

3.3 Container Allocation
In our design (see Figure 3), GUARANTEED containers are
allocated by the central scheduler and QUEUEABLE con-
tainers are allocated by one of the distributed schedulers.
Requests for either containers are routed appropriately
by the Mercury Runtime. Furthermore, both schedulers
are free to allocate containers on any node in the cluster.
In what follows, we describe the design rationale.

The central scheduler has knowledge about container
execution as well as resource availability on individual
machines. This information is part of the periodic heart-
beat messages that are exchanged between the frame-
work components. Consequently, the central scheduler
can perform careful placement of GUARANTEED containers
without causing resource contention.

To support fast container allocation, a distributed
scheduler restricts itself to allocating QUEUEABLE contain-
ers, which can be placed on any machine in the cluster.
The distributed scheduler uses lightweight cluster load
information, provided by the Mercury Coordinator, for
making placement decisions.
The path not taken: We considered and discarded two
alternative designs. First the central scheduler could
make all scheduling decisions, including QUEUEABLE.
Such design would overload the central scheduler. This
would be coped with by limiting the rate at which Job
Managers can petition the framework for resources (e.g.,
every few seconds instead of in the millisecond range
as we enable with Mercury). This is akin to forfeit-
ing R5. The second alternative sees the framework-
level distributed scheduler making all decisions, includ-

ing GUARANTEED. This would require costly consensus
building among schedulers to enforce strict invariants, or
relax our guarantees, thus forfeiting R2.

The hybrid approach of Mercury allows us to meet re-
quirements R1- R5 of § 2, as we validate experimentally.

3.4 Task Execution
As described above, Mercury’s centralized and dis-
tributed schedulers independently allocate containers
on a single shared pool of machines. This in turn
means that conflicting allocations can be made by the
schedulers, potentially causing resource contention.
Mercury Runtime resolves such conflicts as follows:
GUARANTEED - GUARANTEED By design the central sched-

uler prevents this type of conflicts by linearizing allo-
cations. This is done by allocating a GUARANTEED con-
tainer only when it is certain that the target node has
sufficient resources.

GUARANTEED - QUEUEABLE This occurs when a central
scheduler and the distributed scheduler(s) allocate
containers on the same node, causing the node’s
capacity to be exceeded. Following the semantics of
§ 3.2, any cross-type conflict is resolved in favor of
GUARANTEED containers. In the presence of contention,
(potentially all) running QUEUEABLE containers are
terminated to make room for any newly arrived
GUARANTEED. If GUARANTEED containers are consuming
all the node resources, the start of QUEUEABLE ones is
delayed until resources become available.

QUEUEABLE - QUEUEABLE This occurs when multiple dis-
tributed schedulers allocate containers on the same tar-
get node in excess of available resources. Mercury
Runtime on the node enqueues the requests (see Fig-
ure 3) and thereby prevents conflicts. To improve job-
level latency, we explore a notion of priority among
QUEUEABLE containers in § 4.
When a QUEUEABLE container is killed there is po-

tentially wasted computation. To avoid this, Mercury
supports promoting a running QUEUEABLE container to a
GUARANTEED one. A Job Manager can submit a promotion
request to the Mercury Runtime, which forwards it to the
central scheduler for validation. The promotion request
will succeed only if the central scheduler determines that
the scheduling invariants would not be violated.

4 Framework Policies
In the previous section we presented our architecture and
the lifecycle of a resource request. We now turn to the
policies that govern all scheduling decisions in our sys-
tem. For ease of exposition we group the policies in three
groups: Invariants enforcement, Placement, and Load
shaping, as described in the following subsections.
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4.1 Invariants Enforcement Policies

These policies describe how scheduling invariants are en-
forced throughout the system.

Invariants for GUARANTEED containers Supporting
scheduling invariants for centralized scheduler de-
signs is well studied [1, 2, 14]. Furthermore, widely
deployed Hadoop/YARN frameworks contain robust
implementations of cluster sharing policies based on
capacity [1] and fairness [2]. Hence, Mercury’s central
scheduler leverages this work, and can enforce any of
these policies when allocating GUARANTEED containers.

Enforcing quotas for QUEUEABLE containers The en-
forcement of invariants for distributed schedulers is in-
herently more complex. Recall that applications have
very limited expectations when it comes to QUEUEABLE

containers. However, cluster operators need to enforce
invariants nonetheless to prevent abuses. We focus on
one important class of invariants: application-level quo-
tas. Our Mercury Runtime currently provides operators
with two options: (1) an absolute limit on the number
of concurrently running QUEUEABLE containers for each
application (e.g., a job can have at most 100 outstand-
ing QUEUEABLE containers), and (2) a limit relative to the
number of GUARANTEED containers provided by the cen-
tral scheduler (e.g., a job can have QUEUEABLE containers
up to 2× the number of GUARANTEED containers).

4.2 Placement Policies

These policies determine how requests are mapped to
available resources by our scheduling framework.

Placement of GUARANTEED containers Again, for cen-
tral scheduling we leverage existing solutions [1, 2].
The central scheduler allocates a GUARANTEED container
on a node, if and only if that node has sufficient re-
sources to meet the container’s demands. By tracking
when GUARANTEED containers are allocated/released on a
per-node basis, the scheduler can accurately determine
cluster-wide resource availability. This allows the cen-
tral scheduler to suitably delay allocations until resources
become available. Furthermore, the scheduler may also
delay allocations to enforce capacity/fairness invariants.

Distributed placement of QUEUEABLE containers Our
objective when initially placing QUEUEABLE containers
is to minimize their queuing delay. This is dependent
on two factors. First, the head-of-line blocking at a
node is estimated based on: (1) the cumulative execu-
tion times for QUEUEABLE containers that are currently
enqueued (denoted Tq), (2) the remaining estimated exe-
cution time for running containers (denoted Tr). To en-
able this estimation, individual Job Managers provide
task run-time estimates when submitting containers for

execution.4 Second, we use the elapsed time since a
QUEUEABLE container was last executed successfully on a
node, denoted Tl , as a broad indicator of resource avail-
ability for QUEUEABLE containers on that node. The Mer-
cury Runtime determines at regular intervals the ranking
order R of a node as follows:

R = Tq +Tr +Tl

Then it pushes this information to the Mercury Coordi-
nator that disseminates it to the whole cluster through
the heartbeat mechanism. Subsequently, each distributed
scheduler uses this information for load balancing pur-
poses during container placement. We build around a
pseudo-random approach in which a distributed sched-
uler allocates containers by arbitrarily choosing amongst
the “top-k” nodes that have minimal queuing delays,
while respecting locality constraints.

4.3 Load Shaping Policies
Finally, we discuss key policies related to maximizing
cluster efficiency. We proceed from dynamically (re)-
balancing load across nodes, to imposing an execution
order to QUEUEABLE containers, to node resource policing.

Dynamically (re)-balancing load across nodes To
account for occasionally poor placement choices for
QUEUEABLE containers, we perform load shedding.5

This has the effect of dynamically re-balancing the
queues across machines. We do so in a lightweight
manner using the Mercury Coordinator. In particular,
while aggregating the queuing time estimates published
by the per-node Mercury Runtime, the Coordinator
constructs a distribution to find a targeted maximal
value. It then disseminates this value to the Mercury
Runtime running on individual machines. Subsequently,
using this information, the Mercury Runtime on a node
whose queuing time estimate is above the threshold,
selectively discards QUEUEABLE containers to meet this
maximal value. This forces the associated individual Job
Managers to requeue those containers elsewhere.

Observe that these policies rely on the task execution
estimates provided by the users. Interestingly, even in
case of inaccurate estimates, re-balancing policies will
restore the load balance in the system. Malicious users
that purposely and systematically provide wrong esti-
mates are out of the scope of this paper, although our
system design allows us to detect such users.

Queue reordering Reordering policies are responsible
for imposing an execution order to the queued tasks. Var-
ious such policies can be conceived. In Mercury, we are

4Such estimates are currently provided by the users, but can also be
derived from previous job executions, and/or be dynamically adjusted
as parts of a job get executed.

5Other methods, such as work stealing, can also be applied. We use
load shedding as it naturally fits into a YARN-based implementation.
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currently ordering tasks based on the submission time of
the job they belong to. Thus, tasks belonging to jobs sub-
mitted earlier in the system will be executed first. This
policy improves job tail latency, allowing jobs to finish
faster. This in turn allows more jobs to be admitted in
the system, leading to higher task throughput, as we also
show experimentally in § 7.2.3.

Resource policing: minimizing killing To minimize
preemption/killing of running QUEUEABLE containers, the
Mercury Runtime has to determine when resources can
be used for opportunistic execution. In doing so, it maxi-
mizes the chances of a QUEUEABLE container actually run-
ning to completion. We develop a simple policy that
leverages historical information about aggregate cluster
utilization to identify such opportunities. Based on cur-
rent and expected future workload, the Mercury Coordi-
nator notifies the per-node Mercury Runtimes regarding
the amount of local resources that will be required for
running GUARANTEED containers over a given time win-
dow. Subsequently, the Mercury Runtime can oppor-
tunistically use the remaining resources in that period for
QUEUEABLE containers and thereby minimize preemption.

5 Application-level Policies

As explained in § 3.1, Mercury exposes the API for appli-
cations to request both GUARANTEED and QUEUEABLE con-
tainers. To take advantage of this flexibility, each Job
Manager should implement an application policy that
determines the desired type of container for each task.
These policies allow users to tune their scheduling needs,
going all the way from fully centralized scheduling to
fully distributed (and any combination in between).

In this paper, we introduce the following flexible pol-
icy, while we discuss more sophisticated options in our
technical report [18].
hybrid-GQ is a policy that takes two parameters: a

task duration threshold td , and a percentage of QUEUEABLE
containers pq. QUEUEABLE containers are requested for
tasks with expected duration smaller than td , in pq per-
cent of the cases. All remaining tasks use GUARANTEED

containers. In busy clusters, jobs’ resource starvation
is avoided by setting pq to values below 100%. Note
that fully centralized scheduling corresponds to setting
td = 0, and fully distributed scheduling corresponds to
setting td = ∞ and pq = 100%. We refer to these policies
as only-G and only-Q, respectively.

6 Mercury Implementation

We implemented Mercury by extending Apache Hadoop
YARN [3]. We provide a brief overview of YARN before
detailing the modifications that support our model.

...
YARN Node Manager

Distributed
Scheduler

YARN Application 
Master

allocate(…, container type);

allocate (…)

startContainer(..)

YARN Resource Manager

Mercury 
Coordinator

YARN Node Manager

Distributed
Scheduler

Figure 4: Mercury implementation: dashed boxes show
Mercury modules and APIs as YARN extensions.

6.1 YARN Overview

Hadoop YARN [27] is a cluster resource management
framework that presents a generalized job scheduling in-
terface for running applications on a shared cluster. It is
based on a centralized scheduling architecture, consist-
ing of the following three key components.

ResourceManager (RM): This is a central component
that handles arbitration of cluster resources amongst
jobs. The RM contains a pluggable scheduler module
with a few implementations [1, 2]. Based on the shar-
ing policies, the RM allocates containers to jobs. Each
allocation includes a token that certifies its authenticity.

NodeManager (NM): This is a per-node daemon that
spawns processes locally for executing containers and
periodically heartbeats the RM for liveness and for no-
tifying it of container completions. The NM validates
the token offered with the container.

ApplicationMaster (AM): This is a per-job component
that orchestrates the application workflow. It corre-
sponds to the Job Manager we use throughout the paper.

6.2 Mercury Extensions to YARN

We now turn to the implementation of Mercury in
YARN. Further details can be found in JIRA (the
Apache Hadoop feature and bug tracking system) [6].

Adding container types We introduce our notion of con-
tainer type as a backward-compatible change to the allo-
cation protocol. The semantics of the containers allo-
cated by the YARN RM match GUARANTEED containers.
Hence, as shown in Fig. 4, the YARN RM corresponds to
the central scheduler of our Mercury design. QUEUEABLE
containers are allocated by an ex novo distributed sched-
uler component, which we added to the NM.

Interposing Mercury Runtime We have implemented
Mercury Runtime as a module inside the YARN NM (see
Fig. 4) and thereby simplified its deployment. As part of
our implementation, a key architectural change we made
to YARN is that the Mercury Runtime is introduced as a
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layer of indirection with two objectives. First, the Mer-
cury Runtime proxies container allocation requests be-
tween an AM and Mercury’s schedulers, thereby control-
ling how requests are satisfied. This proxying is effected
by rewriting configuration variables and does not require
modifications to AM. Second, for enforcing execution
semantics, the Mercury Runtime intercepts an AM sub-
mitted container request to the NM and handles them ap-
propriately. We elaborate on these next.

The AM annotates each request with the weakest guar-
antee it will accept, then forwards the request using the
allocate() call in Fig. 4. Mercury directs requests for
GUARANTEED resources to the central RM, but it may ser-
vice QUEUEABLE requests using the instance of Mercury’s
distributed scheduler running in the NM. When this hap-
pens, since it is essentially a process context switch, the
QUEUEABLE containers (and tokens) for any node in the
cluster are issued with millisecond latency. The authen-
ticity of the container allocations made by a distributed
scheduler is validated at the target NM using the same
token checking algorithm that YARN uses for verifying
GUARANTEED containers.

To enforce the guarantees provided by the respec-
tive container types, Mercury intercepts container cre-
ation commands at the NM. As illustrated in Fig. 4, a
startContainer() call will be directed to the Mercury
Runtime module running in the NM. This module imple-
ments the policies described in § 4; based on the con-
tainer type, the Mercury Runtime will enqueue, kill and
create containers.

6.3 Distributed Scheduler(s)

The distributed scheduler is implemented as a module
running in each NM. We discuss the changes necessary
for enforcing the framework policies described in § 4.

Placement To direct QUEUEABLE containers to fallow
nodes, Mercury uses estimates of queuing delay as de-
scribed in § 4.2. For computing this delay, the Mercury
Runtime requires computational time estimates for each
enqueued container. We modified the Hadoop MapRe-
duce [3] and Tez [4] AMs to provide estimates based
on static job information. Furthermore, in our imple-
mentation, the AMs continuously refine estimates at run-
time based on completed container durations. The Mer-
cury Coordinator is implemented as a module inside the
YARN RM (Fig. 4). It collects and propagates queuing
delays as well as the “top-k” information by suitably pig-
gybacking on the RM/NM heartbeats.

Dynamic load balancing Our implementation leverages
the Mercury Coordinator for dynamic load balancing.
We modified the YARN RM to aggregate information
about the estimated queuing delays, compute outliers

(i.e., nodes whose queuing delays are significantly higher
than average), and disseminate cluster-wide the targeted
queuing delay that individual nodes should converge to.
We added this information to YARN protocols and ex-
change it as part of the RM/NM heartbeats. Upon re-
ceiving this information, the Mercury Runtime on an out-
lier node discards an appropriate number of queued con-
tainers so as to fit the target. Containers dropped by a
Mercury Runtime instance are marked as KILLED by the
framework. The signal propagates as a YARN event to
the Mercury Runtime, which proxies it to the AM. The
AM will forge a new request, which will be requeued at
a less-loaded node.

Quotas To prevent QUEUEABLE traffic from overwhelming
the cluster, Mercury imposes operator-configured quotas
on a per-AM basis. A distributed scheduler maintains
an accurate count by observing allocations and container
start/stop/kill events.

7 Experimental Evaluation

We deployed our YARN-based Mercury implementation
on a 256-node cluster and used it to drive our experimen-
tal evaluation. § 7.1 provides the details of our setup. In
§ 7.2, we present results from a set of micro-experiments
using short tasks. Then in § 7.3, we describe results for a
synthetic workload involving tasks with a range of exe-
cution times. Finally, in § 7.4, we give results from work-
loads based on Microsoft’s production clusters.

Our key results are:
1. Our policies can translate task throughput gains into

improved job latency for 80% of jobs, and 36.3%
higher job throughput (§ 7.2.1).

2. Careful resource policing reduces the preemption of
QUEUEABLE containers by up to 63% (§ 7.2.3).

3. On production-derived workloads, Mercury achieves
35% task throughput gain over Stock YARN (§ 7.4).

7.1 Experimental Setup
We use a cluster of approximately 256 machines,
grouped in racks of at most 40 machines. Each machine
has two 8-core Intel Xeon E5-2660 processors with
hyper-threading enabled (32 virtual cores), 128 GB of
RAM, and 10 x 3-TB data drives configured as a JBOD.
The connectivity between any two machines within a
rack is 10 Gbps while across racks is 6 Gbps.

We deploy Hadoop/YARN 2.4.1 with our Mercury ex-
tensions for managing the cluster’s computing resources
amongst jobs. We set the heartbeat frequency to 3 sec,
which is also the value used in production clusters at Ya-
hoo!, as reported in [27]. For storing job input/output
we use HDFS [7] with 3x data replication. We use Grid-
mix [8], an open-source benchmark that uses workload
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Figure 5: Task throughput, job throughput and job latency for varying number of concurrent jobs.

traces for generating synthetic jobs for Hadoop clusters.
We use Tez 0.4.1 [4] as the execution framework for run-
ning these jobs.

Metrics reported In all experiments we measure task
throughput, job throughput, and job latency for runs of
30 mins. Due to space limitations, we report only task
throughput in some cases, however, the full set of re-
sults can be found in [18]. Note that for the task and
job throughput we are using box plots (e.g., see Fig. 5),
in which the lower part of the main box represents the
25-percentile, the upper part the 75-percentile, and the
red line the median. Moreover, the lower whisker is the
5-percentile, the upper the 95-percentile, and the green
bullet the mean.

7.2 Microbenchmarks
In this section we perform a set of micro-experiments
that show how Mercury can translate task throughput
gains into job throughput/latency gains. For a given
workload, we first study how the maximum number of
jobs allowed to run concurrently in the cluster affects per-
formance (§ 7.2.1). Then, we experimentally assess var-
ious framework policies (as discussed in § 4), including
placement (§ 7.2.2) and load shaping policies (§ 7.2.3).

For all experiments of this section we use Gridmix to
generate jobs with 200 tasks/job, in which each task ex-
ecutes, on average, for a 1.2 sec duration. We use the
only-G and only-Q policies (§ 5).

7.2.1 Varying Number of Concurrent Jobs

In this experiment, we investigate the performance of the
system by altering the number of jobs that the scheduling
framework allows to run concurrently. For distributed
scheduling (only-Q), we set this limit to 100, 150 and
200 jobs. This is compared with the central sched-
uler (only-G) that implements its own admission con-
trol [27], dynamically adjusting the number of running
jobs based on the cluster load. Fig. 5 shows that only-Q
dominates across the board, and that, given our cluster

configuration, 150 concurrent jobs yield the maximum
increase of task throughput, i.e., 38% over only-G. This
task throughput improvement translates to improvement
in both job throughput and latency (higher by 36% and
30%, respectively, when compared to only-G). Low job
limits (100 jobs) fail to fully utilize cluster resources,
while high limits (200 jobs) impact latency negatively.

In the following experiments, we use the 150-job limit,
as this gives the best compromise between job through-
put and latency, and explore other parameters. At each
experiment we adjust the job submission rate, so as to
have sufficient jobs at each moment to reach the job limit.

7.2.2 Placement Policies (Varying Top-k)

As discussed in § 4.2, whenever a distributed scheduler
needs to place a task on a node, it picks among the k
nodes with the smallest estimated queuing delay. Here
we experiment with different values for k. Our results are
shown in Fig. 6. The biggest gains are achieved for k=50,
with 44.5% higher task throughput compared to only-G.
Lower values (k=20) leave nodes under-utilized, while
higher values (k=100) place tasks to already highly-
loaded nodes. In both cases, higher load imbalance is
created, leading to lower task throughput. Therefore, in
the remainder of the experiments we use k=50.

7.2.3 Load Shaping Policies

In this section we study the load shaping policies that
were presented in § 4.3.

Balancing node load and queue reordering We
experiment with different ways of rebalancing node
queues. We synthetically cause imbalance by intro-
ducing few straggler nodes that underestimate queuing
delay. Our results are given in Fig. 7. Among the
presented policies, (1) only-Q is a basic approach
with no rebalancing; (2) only-Q/avg+σ triggers
rebalancing actions for any node with a queuing delay
which is over mean plus one standard deviation (σ );
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only-G only-Q only-Q/
avg+σ

only-Q/
avg+2σ

only-Q/
avg+2σ/
reorder

Load balancing policy

0

100

200

300

400

500

600

T
a
sk

 t
h
ro

u
g
h
p
u
t 

(t
a
sk

s/
se

c)

+8.5% +17.4% +15.4% +39.8%

0 50 100 150 200 250 300 350 400
Job runtime (sec)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

only-G
only-Q
only-Q/avg+σ

only-Q/avg+2σ

only-Q/avg+2σ/reorder

Figure 7: Task throughput and job latency for various load balancing
policies.

0 100 200 300 400 500
Time (sec)

0

20

40

60

80

100

120

M
e
m

o
ry

 f
o
r 
Q
U
E
U
E
A
B
L
E
 (

%
)

Desired max memory for QUEUEABLE

Actual max memory for QUEUEABLE

Figure 8: Desired and actual maximum percentage of
memory given to QUEUEABLE containers at each node.

Memory limit per node for
QUEUEABLE containers 20% 30% 40% 100%

Mean containers killed / node 287 428 536 780
Mean slot utilization for QUEUEABLE 11.4% 16.7% 20.9% 28.4%

Table 1: Effectiviness of maximum memory limit for
QUEUEABLE containers.

(3) only-Q/avg+2σ is as above with 2 standard de-
viations; (4) only-Q/avg+2σ/reorder is as above
with reordering of containers in the queue (favoring jobs
submitted earlier). Imbalances limit the task throughput
gains of only-Q to 8.5% over our baseline only-G.
Subsequent refinements improve the resulting gains by
up to 39.8%. Note that reordering reduces average job
latency: as jobs exit the system, new jobs start, and by
imposing fresh demand for resources drive utilization
higher. We measured frequency of task dequeuing to be
at an acceptable 14% of all tasks.

Resource policing: minimizing container killing To
show how resource policing (discussed in § 4.3) can be
used to minimize container killing, we create a Grid-
mix workload that generates a stable load of 70% us-
ing GUARANTEED containers, that is, 30% of the slots can
be used at each moment for QUEUEABLE containers. At
the same time, we are submitting QUEUEABLE containers
and observe the average number of such containers killed
(due to the GUARANTEED ones). We set the allowed mem-

ory limit for QUEUEABLE containers to 20, 30, 40, and
100% (the latter corresponds to no limit). Our results
are shown in Table 1. We also report the average utiliza-
tion due to QUEUEABLE containers. Our implementation is
able to opportunistically use resources leading to utiliza-
tion gains. However, given a steady compute demand,
aggressively utilizing those resources without knowing
future demand does cause an increase in task kills.

To address this issue we develop a novel policy us-
ing historical cluster utilization data to determine the
compute demand for current and future workload due
to GUARANTEED containers. Any remaining resources can
be used for executing QUEUEABLE containers. We input
this information to the Mercury Coordinator, which pe-
riodically propagates it to the Mercury Runtime on in-
dividual machines. This allows the Mercury Runtime
on each node to determine how many of the unallocated
resources can be used opportunistically. Fig. 8 shows
the actual (dashed line) and the observed (solid line) re-
sources used at a node for executing QUEUEABLE contain-
ers. The two lines track closely, demonstrating that our
implementation adapts to changing cluster conditions.
This also shows that there is no need for strict partition-
ing of resources.

7.3 Impact of Task Duration
We now explore the impact of task duration, by using
task run-times of 2, 10, and 20 sec. We compare only-G
and only-Q, parameterized at best, given our § 7.2 exper-
iments. Our results are shown in Fig. 9. As expected, the
longer the task duration, the smaller the benefit from us-
ing distributed scheduling. In particular, when compared
to the centralized scheduling, we get approx. 40% gains
both in task and job throughput for jobs with 2 sec tasks.
This gain drops to about 14% for jobs with 20 sec tasks.
Likewise, average job latency for distributed scheduling
is comparable with centralized for 2 sec tasks, but is 60%
worse for 20 sec tasks.

Note that for short tasks, to fully utilize the cluster re-
sources, more jobs are admitted in the cluster. For dis-
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Figure 9: Task throughput, job throughput and job latency for jobs with increasing task duration.

tributed scheduling, this leads to queuing at the same
time tasks belonging to a bigger number of jobs, which
increases the variance of job duration and thus of job
throughput. We are investigating more involved queue
reordering techniques to further mitigate this issue.

7.4 Microsoft-based Hybrid Workload

Finally we assess our system against a complex scenario.
We create a Gridmix workload that follows the task du-
ration characteristics observed in Microsoft production
clusters, as shown in Fig. 1.

We explore several configurations for our hybrid-GQ
policy (§ 5). Besides only-G and only-Q, we have:

50%-Q: all tasks have a 50% chance of being QUEUEABLE

(tD = ∞, pq = 50%);

<5sec-Q: all tasks shorter than 5 seconds are
QUEUEABLE (tD = 5sec, pq = 100%);

<10sec-70%-Q: 70% of tasks shorter than 10 seconds
are QUEUEABLE (tD = 10sec, pq = 70%);

In Fig. 10 we report on the task throughput, as well as
the job latency for jobs with various task durations from
this workload. In this mixed scenario, using only-Q

gives almost no improvement in task throughput and
also leads to worse job latency for jobs of all durations.
50%-Q gives the best task throughput, but that does not
get translated to clear wins in the latency of jobs with
short tasks (e.g., jobs with 3 and 11 sec tasks), espe-
cially for the higher percentiles, due to the unpredictabil-
ity of QUEUEABLE containers. On the other hand, handing
QUEUEABLE containers to the short tasks gives a signif-
icant improvement in task throughput (<10sec-70%-Q
achieves a 26% gain compared to only-G), and has
a performance comparable to the centralized scheduler
for the short tasks. What is more, for the longer tasks
there is significant job latency improvement. For in-
stance, <10sec-70%-Q reduces mean latency by 66%
(82%) when compared to only-G (only-Q) for 11 sec
tasks. The intuition behind these gains is that we “sneak”

the execution of short tasks using QUEUEABLE contain-
ers between the execution of long running tasks that use
GUARANTEED ones.

We also provide results for an additional hybrid work-
load in [18].

8 Related Work

Mercury relates to several proposed resource manage-
ment frameworks, which we discuss in this section.

Centralized Cluster resource management frameworks,
such as YARN [27], Mesos [16], Omega [24] and
Borg [28], are based on a centralized approach. We
implemented Mercury as extension to YARN and
experimentally demonstrated performance gains of a
hybrid approach. Borg is similar to YARN in that it
uses a logically centralized component for both resource
management and scheduling. On the other hand, Mesos
and Omega are geared towards supporting diverse,
independent scheduling frameworks on a single shared
cluster. They use a two-level scheduling model where
each framework (e.g., MPI, MapReduce) pulls resources
from a central resource manager, and coordinates multi-
tenant job execution over these resources in an idiom
isolated to that framework. Omega uses an optimistic
concurrency control model for updating shared cluster
state about resource allocation. This model works well
for clusters that retain their resources for a reasonably
long duration; a scheduling framework will almost
always obtain the set of nodes it needs, retries are rare,
and frameworks reach quick consensus on allocations.
In contrast, our approach of dynamic load balancing
works well even for heterogeneous workloads that share
resources at finer granularity.

A central scheduler can reason globally about soft
constraints such as data locality [17, 31], or hard con-
straints including multi-resource sharing [14], capacity
guarantees [1] or fairness [2]. With knowledge of the
workload, a central scheduler can also reason about al-
locations over time to effect reservation-based schedul-
ing [11] and packing [15]. We leverage this rich body
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Figure 10: Task throughput and job latency CDF for Microsoft-based workload.

of work for Mercury’s central scheduler. Quasar [13] ac-
counts for both resource heterogeneity and interference
during task placement, leading to near-optimal schedul-
ing for long jobs but impacting the latency of short jobs.

HPC schedulers (e.g., SLURM [30], TORQUE [26])
are also centralized job scheduling frameworks that sup-
port at most a few hundred concurrent running jobs/sec,
orders of magnitude lower than what Mercury targets.

Distributed Systems such as Apollo [9], are built us-
ing a fully decentralized approach. These schedulers
achieve extreme scalability for low-latency allocations
by allowing and correcting allocation conflicts. Lack-
ing a chokepoint for throttling or coordinated feedback,
fully distributed techniques maintain their invariants on
an eventual manner. Worker nodes in distributed ar-
chitectures maintain a queue of tasks to minimize time
the node spends idle and to throttle polling. Similar to
Mercury, Apollo estimates wait times at each node and
lazily propagates updates to schedulers. In particular,
Apollo uses a principled approach that combines opti-
mizer statistics and observed execution behavior to re-
fine task runtime estimates. These techniques can be in-
corporated by YARN AMs, which can in turn improve
Mercury’s placement and load balancing policies. Note
that, unlike Mercury, the scheduler in Apollo is part of
the SCOPE [34] application runtime, so operator policies
are not enforced, updated, or deployed by the platform.

Executor model Single-framework distributed sched-
ulers focus on a different class of workloads. Spar-
row [22] and Impala [19] schedule tasks in long-running
daemons, targeting sub-second latencies. This pattern is
also used in YARN deployments, as applications will re-
tain resources to amortize allocation costs [4, 29, 33] or
retain data across queries [20, 32]. In contrast, Mercury
not only mixes heterogeneous workloads with fine gran-
ularity, but its API also enables jobs to suitably choose a
combination of guaranteed and opportunistic resources.

Performance enhancement techniques Corrective
mechanisms for distributed placement of tasks are
essentially designed to mitigate tail latency [12]. Spar-
row uses batch sampling and late binding [22], which
are demonstrably effective for sub-second queries.

Apollo [9] elects to rebalance work by cloning tasks
(i.e., duplicate execution), rather than shedding work
from longer queues. Resources spent on duplicate work
adversely affect cluster goodput and contribute to other
tasks’ latency. Instead, Mercury uses dynamic load
shedding as its corrective mechanism.

Several Big Data schedulers have dynamically ad-
justed node allocations to relieve bottlenecks and im-
prove throughput [23, 25], but the monitoring is trained
on single frameworks and coordinated centrally. Princi-
pled oversubscription is another technique often applied
to cluster workloads [10] with mixed SLOs. Our cur-
rent approach with Mercury is intentionally conservative
(i.e., no oversubscription) and already demonstrates sub-
stantial gains. We can further improve on these gains by
enhancing Mercury to judiciously overcommit resources
for opportunistic execution.

9 Conclusion

Resource management for large clusters and diverse ap-
plication workloads is inherently hard. Recent work has
addressed subsets of the problem, such as focusing on
central enforcement of strict invariants, or increased effi-
ciency through distributed scheduling. Analysis of mod-
ern cluster workloads shows that they are not fully served
by either approach. In this paper, we present Mercury, a
hybrid solution that resolves the inherent dichotomy of
centralized-distributed scheduling.

Mercury exposes the trade-off between execution
guarantees and scheduling efficiency to applications
through a rich resource management API. We demon-
strate experimentally how this design allows us to
achieve task throughput improvements, while providing
strong guarantees to applications that need them. The
task throughput gains are then translated to job level
performance wins by well tuned policies.

The key architectural shift we introduce, has far
greater generality than we discussed in this paper.
In particular, the Mercury Runtime provides a level
of indirection that is being leveraged to scale YARN
clusters to over 50K machines by federating multiple
smaller clusters [5].
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