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Abstract— Many networked systems today, ranging
from home automation networks to global wide-area net-
works, are operated using centralized control programs.
Bugs in such programs pose serious risks to system secu-
rity and stability. We develop a new technique to system-
atically explore the behavior of control programs. Be-
cause control programs depend intimately on absolute
and relative timing of inputs, a key challenge that we
face is to systematically handle time. We develop an
approach that models programs as timed automata and
incorporates novel mechanisms to enable scalable and
comprehensive exploration. We implement our approach
in a tool called DeLorean and apply it to real control
programs for home automation and software-defined net-
works. DeLorean is able to finds bugs in these programs
as well as provide significantly better code coverage—up
to 94% compared to 76% for existing techniques.

1 Introduction
Control programs that orchestrate the actions of “dumb”
devices are becoming increasingly popular. The num-
ber of such devices, including locks, thermostats, motion
sensors, and packet forwarding switches, is projected to
grow beyond 50 billion by 2020 [10]. In a similar vein,
software-defined networking (SDN) has become a multi-
billion dollar market.

While control programs for these devices may be spec-
ified using simple languages (e.g., ISY [14], in the case
of home automation), reasoning about their correctness
is an incredibly complex task. The programs can have
complex interactions across rules due to shared variables
and device states. Further, time plays an important role
in program behavior, as the behavior can change with the
time of day or the time between occurrences of certain
events. System behavior is often programmed directly to
depend on time, in terms of policies (e.g., different ac-
tions during day vs. night) and protocol behavior (e.g.,
DHCP leases). Therefore, the behavior of these control
programs is hard to verify by running the program a few
times (e.g., during development) and, as a result, many
bugs are discovered in production. These bugs can com-
promise the safety, security, and efficiency of the system.

One method of uncovering bugs is to systematically
explore program behavior using model checking. How-
ever, prior work [6, 12, 15, 18, 22] does not address an
important aspect of program behavior, specifically time.

Instead, these tools abstract away time and, as a result,
assume timers of different periods can fire at any time
and in any order. Similarly, comparisons involving time
can nondeterministically return true or false. Such an
imprecise analysis of time is unacceptable for control
programs because, as we show later, it generates many
states that are not reachable in practice. This can force
developers to sort through many false positive bugs re-
ported by these tools. Furthermore, by abstracting time,
these tools preclude developers from verifying correct-
ness properties involving time (e.g., that timers fire at the
correct time and under the correct conditions). Tools that
use coarse heuristics to model time [23] eliminate false
positives at the expense of incomplete exploration.

Accurately modeling time when exploring program
behavior is a non-trivial problem. The challenge arises
because events can occur at any time. To explore all
possible behaviors, in theory, we must study all possi-
ble events occurring at all possible times. However, this
is an ill-defined concept since time is continuous. We
describe in §2.1 why circumventing this issue by naively
discretizing time is unsatisfactory.

We investigate the use of timed automata (TA) [2] to
systematically explore the behavior of control programs.
TAs have been previously used to verify models of real-
time systems. A TA is a finite state machine extended
with real-valued (not discrete) virtual clocks. TA tran-
sitions can specify constraints on clock variables. For
instance, a timeout transition should happen only when a
particular clock variable is greater than a constant. The
analyzability of TAs arises from the fact that, under cer-
tain conditions on clock constraints, one can define a fi-
nite number of regions [2]. All program states within a
region are equivalent with respect to the untimed behav-
ior of a system. Thus, “all possible times” can be safely
translated to “all possible regions.”

Prior work [4, 24] on exploring temporal behavior
with TAs analyzes only an abstract model of a program or
system. However, errors can be introduced in the model
if it does not faithfully capture the behavior of the pro-
gram, and the model can “drift” as the program evolves
during development [18]. In this paper, we focus on us-
ing TAs to verify temporal properties of actual code. In
particular, we ask: can TAs be used to analyze executable
programs? If so, what are the limitations of applying this
theory to practice?



Exploring the temporal behavior of a program with-
out the need to first derive a TA introduces several new
challenges. A TA-based exploration requires the set of
temporal constraints that appear in the program. We de-
velop a method to extract this information using program
analysis [16]. As with many verification techniques, TA-
based exploration inherits the state space explosion prob-
lem. As prior work is limited to exploring only abstract
models, most heuristics to reduce the state space assume
full knowledge of the model and cannot be used in our
exploration. We develop three new techniques to boost
exploration efficiency: (i) reducing the number of clock
variables in the program, to cut down the number of re-
gions we must explore; (ii) exploring the program as
multiple, independent control loops; and (iii) predicting
the response of the program to certain events, reducing
the number of times we must execute the program.

We implement our approach for TA-based exploration
in a tool called DeLorean and evaluate it in two diverse
domains: home automation (HA) and SDNs. We explore
10 real HA programs and 3 SDN applications. Though
DeLorean does not completely bridge the gap between
the theory and practice of exploring real code with TAs,
we see measurable benefit. DeLorean finds bugs uncov-
ered by existing verification tools and new bugs that can-
not be uncovered with existing techniques. We find we
can achieve higher fidelity in exploring behavior, result-
ing in improved state and code coverage. We achieve
up to 94% code coverage, compared to 76% in existing
techniques that explore temporal behavior [23].

2 Background and Motivation
Many networked systems today are logically central-
ized. An HA system is composed of a controller and de-
vices such as light switches, motion sensors, and locks.
The controller receives notifications from the devices
(e.g., when motion is sensed), can poll them for their
current state (e.g., current temperature), and can send
them commands (e.g., turn on the light switch). It uses
these capabilities to coordinate the devices. Similarly,
in SDNs, a controller manages the operation of switches
by configuring them to forward packets as desired. The
switches inform the controller when they receive packets
for which forwarding actions have not been configured.

At the core of logically centralized control systems is
a control program that determines its behavior. While
the implementation languages for different systems and
domains are different, control programs have a common
structure. Their operation can be understood in terms
of a set of rules. Each rule has a trigger and associ-
ated actions. A trigger is either an event in the envi-
ronment (e.g., sensed motion, arrival of a packet) or a
firing timer. Actions include setting a device state (e.g.,
turn on the light, installing a new rule in a switch) or a

variable and setting timers. Actions can be conditioned
on device state, variable and timer values, and time of
the day. Programs are single-threaded and each rule runs
until completion before another is processed.

Figure 1 shows an example program with three rules.
Assume that the user wants to turn on the front porch
light when motion is detected and it is dark out, and to
automatically turn off this light after 5 minutes if it is
daytime. Rule 1 is triggered when motion is detected by
the front porch motion sensor. It turns on the light if mo-
tion is detected twice within 1 second and the light level
sensed by a light meter is less than 20. The first condition
is a heuristic to filter out false positives in motion sens-
ing, and the second ensures that light is turned on only
when it is dark. Rule 1 also updates the time when mo-
tion was last detected. Rule 2 is triggered when the front
porch light goes from off to on (either programmatically
or through human action) and sets a timer for 5 minutes.
Rule 3 is triggered when this timer fires, and turns off the
light if the current time is between 6 AM and 6 PM.

2.1 Reasoning about Program Correctness
The correctness of control programs can be hard to rea-
son about. Even if individual rules are simple, reasoning
about the program as a whole can be difficult because
of complex interactions across rules. These interactions
arise from shared state across rules due to the state of
variables and devices. Thus, the program’s current be-
havior depends not only on the current trigger but also
on the current state, which in turn is a function of the
sequence and timings of rules triggered in the past. This
dependency and the number of possible sequences makes
predicting program behavior difficult.

As an example, even the simple program in Figure 1
has a behavior that may not be expected by the user. Sup-
pose the light is turned from off to on at 9:00 PM either
due to sensed motion or by the user, triggering Rule 2.
Then, the user walks on to the front porch at 9:04:50 PM,
triggering Rule 1. This user might expect the light to stay
on for at least 5 minutes, but it goes off unexpectedly 10
seconds later (at 9:05 PM). The fix here is of course to
reset the timer in Rule 1, but that may not be apparent to
the user until this behavior is encountered in practice.

Control programs are not the only ones whose correct-
ness is difficult to reason about; the same holds true for
almost all real-world programs such as network proto-
cols and distributed systems. As a result, in a range of
settings, researchers have developed a variety of tech-
niques and corresponding tools, called model checkers,
to automatically explore program behavior [6, 18].
Complex dependence on time. The behavior of control
programs can depend intimately on time, both absolute
time and the relative timing of triggers. For instance, the
behavior of the program in Figure 1 depends on the time



1 PorchMotion.Detected: /* Rule 1 */

2 if (Now - timeLastMotion < 1 secs

3 && lightMeter.LightLevel < 20)

4 FrontPorchLight.Set(On);

5 timeLastMotion = Now;

6 FrontPorchLight.StateChange: /* Rule 2 */

7 if (FrontPorchLightState == On)

8 timerFrontPorchLight.Reset(5 mins);

9 timerFrontPorchLight.Fired: /* Rule 3 */

10 if (Now.Hour > 6 AM && Now.Hour < 6 PM)

11 FrontPorchLight.Set(Off);

Figure 1: An example home automation program.

1 Trigger0:

2 timeTrigger0 = Now;

3 timeTrigger1 = Now;

4 trigger1Seen = false;

5 Trigger1:

6 if (Now - timeTrigger0 < 5 secs)

7 trigger1Seen = true;

8 Trigger2:

9 if (trigger1Seen)

10 if (Now - timeTrigger1 < 2 secs)

11 DoOneThing();

12 else

13 DoAnotherThing();

Figure 2: An example home automation program.

of day and on how close in time two motion events fire.
Existing model checkers do not systematically model

time. Most [6, 15, 18] perform untimed model checking.
They completely abstract time (in the interest of scala-
bility) and do not maintain temporal consistency. During
exploration, calls to gettimeofday() return random val-
ues and timers can fire in any order, regardless of their
values. This can lead to many false positives (§5.4), i.e.,
bad states that will not arise in practice. False positives
can be highly problematic, and often worse than missing
errors [23], because they can send developers on a wild
goose chase. Equally important for our context, since
time is abstracted, untimed model checkers cannot verify
time-related properties of a system, which are of prime
interest for control programs.

One model checker that maintains temporal consis-
tency is MoDist [23]. It has a global virtual clock, which
is used to return values for gettimeofday(). Timers are
fired in order and, when they do, the virtual clock is ad-
vanced accordingly. It uses static analysis of program
source to infer all timers, including implicit timers. (Line
2 of Figure 1 represents an implicit timer that is set in
Line 5 to expire in 1 second. Line 10 checks if the timer
has fired, and the program behaves differently for the two
cases.) During exploration, MoDist explores two cases,
one in which the timer has expired and one in which it
has not. In each, the clock value is set appropriately to a
value that is consistent with the explored case.

While MoDist’s approach does not produce false pos-
itives, it does not comprehensively explore all possible
behaviors because exploring both cases for timers is not
enough. Consider the simple example in Figure 2. This
program has three triggers: Trigger0 resets the control
loops; Trigger1 is considered as seen if it occurs within 5
seconds of Trigger0; and Trigger2 does different things
depending on whether it occurs within 2 seconds of Trig-
ger0. Assume that when Trigger0 fires, the virtual clock
time of MoDist is T (seconds). While exploring Trig-
ger1, to cover both cases MoDist will select one virtual
clock time in the range [T,T + 5) and one greater than
T + 5. But now it has a problem: while exploring Trig-
ger2, it can only explore one of the two branches (Line
10 or 12) and not both. If it had picked T + 1 in the
first case, it cannot explore the path on Line 13; if it had
picked T +3, it cannot explore the path on Line 11.

Note that at the point of exploring Trigger1, MoDist
has no reason to believe the specific selection in the range
[T,T +5) matters. All choices lead to the same program
state and paths, and only later the choice has an impact.
This is just one simple example; in reality, temporal con-
straints in the program can be highly complex (e.g., the
same timer may drive behavior in multiple places).

Without systematic modeling of the temporal behav-
ior of the program, the only way MoDist can explore
all possible program behaviors is to explore all possible
times of all possible triggers. But “all possible times”
is ill-defined because time is continuous. We could dis-
cretize time and assume events happen only at discrete
moments. But picking a granularity of discretization is
tricky—if it is too fine, the exploration will have too
much overhead as we would explore too many event oc-
currences; if it is too coarse, the exploration will miss
event sequences that occur at finer granularity in prac-
tice and lead to different behaviors. Simply picking the
smallest time-related constant in the program is also not
enough [2]. Thus, there appears no satisfactory way to
pick a granularity that works for all events and programs.

We thus systematically reason about time by explor-
ing the control program as a timed automaton (TA) [2].
This lets us carve time into equivalence regions such that
the exact timing of events within a region is immaterial.
Thus, instead of exploring all possible times, it suffices
to explore all possible regions.
Time-bound correctness properties. Untimed model
checkers find violations of properties such as liveness
(i.e., the system will eventually enter a good state) and
safety (i.e., the system never enters a bad state). Since
these tools abstract time, they cannot verify properties
involving concrete time. For example, consider an SDN
program caching mappings of ports to MAC addresses.
Entries should expire a certain period after their last ac-
cess. An untimed model checker can prove the entry ex-



Figure 3: A TA for the program in Figure 1.

pires after a certain sequence of events, but not that it
expires after a certain period of time. To prove such a
property, we must prove time-bound liveness. Further-
more, untimed model checkers cannot verify correctness
properties based on absolute time, such as a light turning
on at the right time or never being on at a certain time. In
our evaluation of HA programs, we find three bugs (P9-1,
P9-2, and P10-1 in §5.5) with this type of invariant.

2.2 Timed Automata
To reason systematically about time, we use timed au-
tomata [2] to guide our exploration. TAs are finite state
machines extended with real-valued virtual clocks (VC),
where a VC represents time elapsed since an event. (Wall
clock time is simply one possible VC, which measures
elapsed time since Jan. 1, 1970.) The state of a TA is
the combination of the state of the underlying finite state
machine together with the values of all VCs. A TA transi-
tion changes the machine state and may reset one or more
VCs. Each transition specifies a set of clock constraints
and is enabled from states that satisfy the constraint.

Figure 3 shows a TA that captures the behavior of the
program in Figure 1. There are four states, correspond-
ing to the Cartesian product of whether the front porch
light (FPL) is on or off and the current light level (CLL).
The TA uses three VCs to capture the time since i) the
last motion (tlm), ii) the light was turned on (tfpl), and
iii) midnight (td). Transitions are labeled with their trig-
gers (underlined), the clock constraints (in parenthesis),
and the clocks that are reset (in brackets). Motion denotes
motion, and FplOn and FplOff denote the physical acts of
manipulating the light. Some transitions have multiple
labels, one for each situation where the TA can go from
the source to the sink state. Transitions that have no trig-
gers are taken as soon as the clock constraints are met.

In general, systematic exploration of TAs is infeasi-
ble, even in theory, as VCs hold non-discrete real val-
ues. However, the seminal work on TAs [2] shows that an
exhaustive exploration is feasible provided the VC con-
straints obey certain conditions. The conditions are that
arithmetic operations cannot be performed between two
VCs and a VC cannot be involved in a multiplication or
division operation. But adding or subtracting constants
to VCs is allowed, and so is comparing two VCs (poten-

Figure 4: Time regions for the example in Figure 2.

tially after adding or subtracting constants).
Under these conditions the possible behaviors of the

TA can be discretized into regions, such that the (un-
countably many) states in a region behave the same with
respect to the correctness properties of the TA. How such
regions emerge can be intuitively understood if one ob-
serves that for the TA in Figure 3, after a motion event,
the future behaviors are determined by whether the suc-
ceeding motion event occurs before or after 1 sec. The
exact timing of the second motion event is not critical.
Regions exist in multi-dimensional space where each di-
mension corresponds to one VC, and a point in the space
represents concrete values of all the VCs. Regions en-
compass a set of points such that the exact point is im-
material for the purposes of comprehensive exploration.

The size of the region is proportional to the great-
est common denominator (GCD) of constants in clock
constraints, and hence the exploration will be faster if
the GCD is larger. Regions get exponentially smaller
as more VCs are included in the TA, because the plane
for each pair of VCs divides open spaces into two parts.
Once the regions are known, fully exploring the TA’s be-
havior requires 1) exploring all possible transitions, in re-
sponse to all possible triggers, from the current state; and
2) exploring exactly one delay transition in which there
is no state transition but all VCs advance by the same
amount. This amount is such that the time progresses to
the immediately succeeding region. Figure 4 shows the
regions for the example in Figure 2, which has two VCs.
The constants in the clock constraints are 5 and 2, and
thus the GCD is 1. We get 92 regions in this example.

3 Our Approach
Our goal is to systematically explore control program be-
havior. From a starting time and state, we want to predict
all possible program behaviors. The exploration should
be virtual so the actual state of the devices is not im-
pacted. The output should be the set of unique states the
system can be in, along with the sequence of events (i.e.,
triggers, actions) leading to that state.

3.1 Introducing Virtual Clocks
Control programs do not contain explicit references to
VCs, but as mentioned previously, all time-related activ-



ities in effect manipulate VCs.
There are three kinds of time-related activities in con-

trol programs. The first is measuring the relative time
between two events of interest (e.g., consecutive motion
events). Here, a variable (e.g., timeLastMotion in Fig-
ure 1) is used to store the time of the first event, which
is then subtracted from the wall clock time of the second
event. To express this as a VC, we set the VC to zero
when the first event occurs; the value of the VC when the
second event occurs yields the delay, since VCs progress
at the same rate as the wall clock unless reset.

The second time-related activity is a timer (e.g., timer-

FrontPorchLight in Figure 1). To capture this activity us-
ing a VC, we reset the VC when the timer is set, and
queue a timer trigger to fire after the desired delay, after
removing any previously queued event.

The third time-related activity is a sleep call, where
actions for a rule are taken after a delay (e.g., turn on
fan, sleep 30 seconds, turn it off). We express this by in-
troducing a new timer and new rule. The actions of the
new rule corresponds to post-sleep actions of the original
rule. The sleep and post-sleep actions in the original rule
are replaced by a timer that fires after the desired delay.
In our treatment of sleep calls, if the trigger for the orig-
inal rule occurs again before the timer set by an earlier
occurrence fires, the post-sleep actions that correspond
to the earlier trigger will not be carried out (because the
earlier timer event will be dequeued). This behavior is
consistent with the semantics of the systems we study.

3.2 Systematically Exploring Behavior
Given a control program and its starting state as input,
our goal is to explore a given duration of wall clock time.
A duration must be specified since wall clock time is un-
bounded and has an infinite number of regions. For pro-
grams with no dependency on the wall clock (e.g., many
SDN applications), no duration is needed.

We assume that the program can be modeled as a TA.
That is, all timers and variables that store time in program
are, in effect, VCs. To leverage time regions, these VCs
must satisfy the conditions mentioned above. We believe
that these conditions are met in many contexts. They are
certainly met in the different systems that we study in §5
and §6. The scripting languages of some of these systems
cannot even express complex clock operations.

However, our exploration does not assume a TA has
been derived from the actual code. Existing meth-
ods [4, 24] can explore the behavior of a TA, but deriving
the entire TA corresponding to the program may not be
feasible. Even the smallest of control programs can have
extremely large TAs, as it needs to capture the program
logic and its response to possible events.

Thus, we explore the TA dynamically, akin to how
FSA-based model checkers dynamically explore the FSA

1: EndWC=Time.Now + FFduration; . How long to explore
2: S0.WC = Time.Now; . Set the wall clock
3: ES = {}; . explored states
4: US={S0}; . unexplored states
5: while US 6= φ do
6: Si = US.pop();
7: ES.push(Si);
8: for all e in Events, Si.EnTimers do
9: So = Compute(Si, e);

10: if !Similar(So, (US ∪ ES)) then
11: US.push(So);
12: end if
13: end for
14: if Si.EnTimers = φ then
15: delay = DelayForNextRegion(Si.Region);
16: if Si.WC + delay > EndWC then
17: continue;
18: end if
19: So = Si.AdvanceAllVCs(delay);
20: for all timer in So.Timers do
21: if timer.dueTime >= So.WC then
22: So.EnTimers.Push(timer);
23: end if
24: end for
25: if !Similar(So, (US ∪ ES)) then
26: US.push((So, t));
27: end if
28: end if
29: end while

Figure 5: Pseudocode for basic TA exploration.

instead of deriving the complete FSA of the program.
From a starting program state, we repeatedly derive suc-
cessor states resulting from triggers or delay transitions.
For delay transitions, we must know the timed regions in
advance to compute the delay amount. Fortunately, con-
structing regions does not require the complete TA, but
only the constraints on the values of VCs [2]. We extract
these constraints using analysis of program source.

Figure 5 shows how we comprehensively explore pro-
gram behavior. Assume we want to explore FFDuration
of behavior, starting from the program state S0. Program
state includes the values of (non-time) variables, VCs,
and enabled timers (i.e., ready to fire). We do a breadth-
first exploration using a queue of unexplored states. Ob-
taining all successors of a state entails firing all possi-
ble events and all enabled timers. If a successor state is
not similar to any previously seen state, we add it to the
queue. Two states are similar if their variable values and
set of enabled timers are identical and if their VC values
map to the same region; VC values need not be identical
since the exact time within a region does not matter.

If the state being explored has no enabled timer, it is
eligible for a delay transition. This represents a period
of time where nothing happens and time advances to the
succeeding region. States with enabled timers need to
fire all enabled timers before time can progress. We ig-



nore the successor if this delay takes us past the end time
(i.e., starting wall clock time + specified duration). Oth-
erwise, the successor state is computed by advancing all
VCs. We treat wall clock time, which is virtualized dur-
ing exploration, as any other VC except that it never re-
sets; it tracks the progress of absolute time. We then
check if any of the timers have been enabled because of
this delay and mark them as such. The construction of
time regions guarantees that no timers are skipped dur-
ing the delay transition.

3.3 Achieving Scalable Exploration
The basic TA-based exploration above correctly handles
time but is too slow to be practical. We use three general
techniques to make it practical:
Predicting successor states Our first technique reduces
the time to obtain successor states of a state being ex-
plored. We must first define the notion of clock personal-
ity. Two program states have the same clock personality
if their values of all the VCs are equivalent with respect
to all the clock constrains of the TA. Two program states
can have the same clock personalities even if they are not
in the same region.

If two states S1 and S2 with the same clock person-
alities have identical variable values and enabled timers,
then any stimulus (i.e., combination of trigger and envi-
ronmental conditions) will have exactly the same effect
on both states. Thus, it is necessary to compute the suc-
cessor of only one such state, say S1. The successor of
S2 can be obtained from the successor of S1 while retain-
ing the clock values of S2 for all VCs except those that
are reset by the current stimulus.

Computing a successor requires deserializing the par-
ent’s state, running the program, subjecting it to the stim-
ulus, and serializing the successor’s state. These are
costly operations. In contrast, prediction requires only
copying the state and modifying VC values.
Independent control loops Our second optimization
is based on the observation that large control programs
may often be composed of multiple, independent control
loops manipulating different parts of the program state.
For instance, thermostats and furnaces may be controlled
by a climate control loop, and locks and alarms by a secu-
rity loop. These two may manipulate different variables
and clocks, but otherwise share no state. In such cases,
we can explore the loops independently, instead of ex-
ploring them jointly. Separate exploration is faster since
joint exploration considers the Cartesian product of the
values of independent variables and clocks. We use taint
tracking to identify independent loops.
Reducing the number of clocks The number of VCs in
the program has a significant impact on exploration effi-
ciency because the size of regions shrinks exponentially
with it. When transforming a control program, we should

introduce the minimum number of VCs. We exploit two
opportunities. First, consider cases where the actions in a
rule have multiple sleeps, e.g., action1; sleep(5); action2;

sleep(10); action3. Instead of using two timers (one per
sleep), we can use only one because the two sleeps can
never be active at the same time [7]. To retain the original
dynamic behavior, we introduce a new program variable
to track which actions should be taken when the timer
fires. In the example above, when the rule is triggered,
after action1 is taken, this variable is reset to 0 and the
timer is set to fire after 5 seconds. When the timer fires:
i) if the variable value is 0, action 2 is taken, the variable
is set to 1, and the timer is set to fire after 10 seconds; ii)
if the variable value is 1, action 3 is taken.

Second, control programs often have daily action for
different times of day (e.g., sunrise, one hour after sun-
rise). The straightforward translation is to introduce a
new timer per unique activity. A more efficient method
is to use one timer to conduct all such activities, using a
method similar to the above — introduce an additional
program variable to cycle through the different actions
and reset it after the last action is conducted.

3.4 Theory-Practice Gap
Existing TA-based model checkers work with abstract
models and assume the model is provided as input. In
building the model incrementally and dynamically, we
uncover several gaps in using TAs on real code.

A transition in a TA must occur instantaneously since
time only progresses explicitly through a delay transi-
tion. In practice, however, the processing of an event
(e.g., in response to motion occurring) may involve a
non-trivial amount of time. In our implementation, we
assume processing time is instantaneous, but propose a
technique to handle events with non-trivial processing
times. For each of these event handlers in the program,
we can introduce a timer to expire after the expected pro-
cessing time. When the timer is active and has not ex-
pired, the system is processing the event. If the timer is
inactive, either because the timer has expired or has not
been activated, the system is not processing the event.

In some systems, clocks may be created in response to
events. In SDN programs, for example, flows installed in
switches in response to a packet arrival at the controller
introduce two new VCs—one each for the soft and hard
timeouts. We can use symbolic execution to extract the
clock constraints for all possible values of timeouts, but
we cannot determine the number of occurrences of the
event triggering this behavior. Rather, this is dependent
on the number of times the event occurs along a path gen-
erating a specific state. We cannot add a new clock with
a new constraint to the region construction, as we can-
not change regions during exploration. Regions are con-
structed using GCD of the clock constraints and adding



Figure 6: Overview of DeLorean.

a new clock mid-exploration could change the delay if
the GCD changes. Instead, we pre-allocate a number of
VCs, each with a specific constraint. During exploration,
when a new VC needs to be created, it is allocated an
available VC from a queue of pre-allocated VCs.

4 Design
We now describe the design of DeLorean, our TA-based
model checker. As shown in Figure 6, the primary in-
puts to DeLorean is the control program—including a
model of the controller (on which the program runs) and
devices—and the duration of wall clock time to explore
(FFDuration). If the program has no dependence on wall
clock time, i.e., timers are relative, this parameter is not
needed. The user can also specify three optional inputs.
The first is a list of invariants on device states and system
behavior, which should be satisfied at all times. These
are specified in a manner similar to the i f conditions in
the rules and can include time. The second is the wall
clock time. The third is the starting state of (a subset
of) devices and variables from which exploration should
begin.

The output of DeLorean is all the unique states of the
devices. If invariants are specified and violated by any
state during the exploration, we also output the state. In
addition, DeLorean outputs the path that leads to each
state—a timestamped sequence of triggers, along with
the values of environmental factors during those firings.

DeLorean has three stages. First, the front end con-
verts the program to one where clocks have been virtual-
ized, using the method in §3.1. Second, pre-exploration
analyzes this program to recover information required for
the optimizations in §3.3. The final stage is the explo-
ration itself.

4.1 Pre-Exploration
This stage analyzes the program produced by the front
end to recover the information needed for construct-
ing timed regions and implementing the optimizations
in §3.3. Here, we use symbolic execution [16] of pro-
gram source. Symbolic execution simulates the execu-
tion of code using a symbolic value σx to represent the
value of each variable x. As the symbolic executor runs,
it updates the symbolic store that maintains information
about program variables. For example, after the assign-
ment y=2x the symbolic executor does not know the ex-
act value of y but has learned that σy=2σx. At branches,

symbolic execution uses a constraint solver to determine
the value of the guard expression given the information
in the store. The executor only explores the branch cor-
responding to the guard’s value as returned by the con-
straint solver, ensuring infeasible paths are ignored. If
there is insufficient information to determine the guard’s
value, both branches are explored. This produces a tree
of all possible program execution paths. Each path is
summarized by a path condition that is the conjunction
of branch choices made to go down that path.

We symbolically execute the program’s main control
loop, which is the starting point for all processing activ-
ity. We configure the symbolic executor to treat the fol-
lowing entities as symbolic: program state (variables and
clocks) and the parameters of the control loop. The out-
put of the symbolic executor is the set of possible paths
for each possible trigger. For each path, we obtain the i)
constraints that must hold for the program to traverse that
path, and ii) the program state that results after its traver-
sal. The constraints and the resulting program state are
in terms of input symbols, the entities we made symbolic
in the configuration.

We can now recover the following information.
Virtual clock constraints These are required for con-
structing time regions and for predicting successor states.
We obtain them from the output of symbolic execution
by taking the union of constraints on VCs along each
path. Additionally, program statements that reset a timer
x to k secs are essentially clock constraints of the form
x ≥ k. We extract such statements from the program
source and add corresponding constraints to the set.
Independent control loops We also use the output of
symbolic execution for taint tracking. We analyze the
program state that results from each path. If the final
value of a variable along any path is different from its
(symbolic) input value, that variable is impacted along
the path. This impact depends on the input symbols that
appear in the output value (data dependency) and path
constraints (control dependency). The variables corre-
sponding to those input symbols are tainting the variable.

We use this information to identify independent sets
of variables and VCs. Two variables or VCs are deemed
dependent if they either taint each other in the program,
or they occur together in a user-supplied invariant (as we
must do a joint exploration in this case as well). After
determining pairwise dependence, we compute the inde-
pendent sets that cover all variables and VCs.

4.2 Exploration
This stage implements the method outlined in §3. To
start, it runs the program and initializes the starting state.
We then checkpoint the program by serializing its in-
ternal state. The checkpoint captures the values of all
variables, including time related variables, and the times



type #rules #devs SLoC #VCs GCD (s)
P1 OmniPro 6 3 59 2 7200
P2 Elk 3 3 75 2 1800
P3 MiCasaVerde 6 29 143 2 300
P4 Elk 13 20 193 5 5
P5 ActiveHome 35 6 216 14 5
P6 mControl 10 19 221 4 5
P7 OmniIIe 15 27 277 6 60
P8 HomeSeer 21 28 393 10 2
P9 ISY 25 51 462 6 60
P10 ISY 90 39 867 6 10

Table 1: The HA programs we study.

when various timers will fire.
We maintain a table that contains the values of the VCs

of a state. Many states differ only in VC values—the suc-
cessor state after a delay transition differs from the parent
only in VC values, so does the successor that is predicted
from another state. Maintaining this table separately lets
us quickly obtain these successor states. It also helps re-
duce the memory footprint, since two states that differ
only in VC values can share the same checkpoint. How-
ever, this implies that the VC values in a table can be out
of sync with those embedded in the checkpoint. Thus,
when restoring a state, we update its VC values from the
table before any other processing.

4.3 Implementation
DeLorean is implemented with 10k+ lines of C# code.
The bulk of this code implements the pre-exploration and
exploration stage, which we developed from scratch. We
could not use existing tools for exploring TAs [4, 24] be-
cause we do not have the complete TA for the program.
Our implementation includes models of controllers and
devices in the two domains we study—home automation
(§ 5) and software-defined networks (§ 6).

For HA applications, we implemented front end mod-
ules for two systems—ISY [14] and ELK [9]. We chose
these two because of their popularity. The front end
parses ISY or ELK programs using ANTLR [3] and pro-
duces a C# program that captures the behavior of the pro-
gram and contains additional variables, rules, and actions
needed for modeling devices. As the state of these de-
vices is typically simple and can be represented using
boolean or integer variables, we can model the devices
automatically from the ISY or ELK program.

The pre-exploration stage uses Pex [19] to symboli-
cally execute the main event loop of this C# program.
Pex is a modern symbolic execution engine that mixes
concrete and symbolic execution (“concolic” execution)
to boost path coverage and efficiency.

5 Case Study: HA Networks
To evaluate a TA-based exploration against existing ver-
ification techniques, we examine DeLorean in two envi-
ronments: home automation networks and SDNs.

5.1 Domain-Specific Optimizations
A common behavior in HA is a dependence on envi-
ronmental factors (e.g., temperature, light level) sensed
by devices in the system. For a comprehensive evalua-
tion, we must explore all combinations of values of ex-
ternal factors. To address this challenge, we build on
prior work and combine symbolic execution with model
checking [6]. We use symbolic execution of program
source to infer equivalence classes of combinations of
values of environmental factors. In Figure 1, for exam-
ple, there are two equivalence classes, corresponding to
light level values below or higher than 20. Then during
exploration, we use one set of values per class, instead
of having to explore all possible combinations of values.
So, if a program depends on temperature and light level,
for every trigger, its response must be explored with all
combinations of temperature and light levels.

5.2 Dataset
We evaluate DeLorean using real HA programs. We so-
licited these programs on a mailing list for HA enthu-
siasts. We picked the 10 programs shown in Table 1.
We selected them for the diversity of HA systems and
the number of rules and devices. We see that most in-
stallations have tens of rules and devices, with the max-
imums being 90 and 51. This points to the challenge
users face today in predictably controlling their homes.
Collectively, these installations had 19 different types of
devices, including motion sensors, temperature sensors,
sprinklers, and thermostats.

The table shows the source lines of code (SLoC) and
the number of VCs in the program after transformation
in the first stage. Systems which we have not imple-
mented a front end yet were transformed manually. We
see that most installations have 5 or more VCs, indicating
a heavy reliance on time. The table also shows the GCD
(greatest common denominator) across all constants in
VC constraints in the program. The GCD can be coarsely
thought of as the detail with which the program observes
the passage of time. Since the size of the regions depends
on it, it also heavily influences the exploration time.

5.3 Exploration Performance
We run DeLorean over all 10 programs and conduct 20
trials, each with randomly selected starting state and time
(since program behavior depends on both). All experi-
ments use an 8 Core 2.5Ghz Intel Xeon PC with 16GB
RAM. Table 2 shows the number of transitions and aver-
age CPU time needed to explore one hour of wall clock
time for each program. We estimate DeLorean makes
200k transitions per second. Since HA programs depend
on wall clock time, we can also measure the CPU time
with respect to wall clock time. We also see that De-
Lorean can explore real programs 3.6 times to 36K times



# Transitions CPU Time (sec) Reduction w/ Prediction
P1 72 0.10 -11.11%
P2 123 0.12 -20%
P3 178 0.15 -7.14%
P4 19.7M 176.10 75.16%
P5 78.7K 1.03 61.28%
P6 51K 1.04 48%
P7 36.M 17.87 89.53%
P8 8.1M 89.50 84.36%
P9 121M 793.90 95.24%
P10 256M 998.0 83.5%

Table 2: Performance for exploring one hour of wall clock
time and the reduction in CPU time from predicting states.

faster than wall clock time.
An important element in obtaining quick explorations

for these programs is predicting successor states. While
this is a general optimization for dynamically explor-
ing TAs, its effectiveness depends on how often we en-
counter non-similar states with identical clock personal-
ities, variables, and enabled timers. To evaluate it, Ta-
ble 2 show the percentage reduction in CPU time when
prediction is used compared to when it is not used. For
the smallest programs, prediction leads to slower explo-
ration. This is because in such cases the overhead asso-
ciated with checking for past states that can be used for
prediction is greater than any benefit it brings. However,
for larger programs, prediction brings substantial benefit.
For P9, prediction cuts the exploration time by 95%, i.e.,
exploring without prediction is slower by a factor of 20.

5.4 Comparison with Alternatives
Untimed exploration As mentioned earlier, current
model checkers ignore time and can thus generate in-
valid program states that will not be generated in real
executions. If there were just a few, it is conceivable
that users would be willing to put up with occasional in-
correctness. However, we find that untimed exploration
results in many incorrect states. Figure 7 shows the per-
centage of additional, invalid states produced by untimed
model checking,1 when beginning from the same starting
state as DeLorean and running until it cannot find any
new states. Untimed exploration differs from DeLorean
in three aspects: i) in addition to successors based on
device notifications, each state has successors based on
each queued timer, independent of the target time of the
timer; ii) if a comparison to time is encountered during
exploration both true and false possibilities are consid-
ered; iii) there are no delay transitions. The graph av-
erages results over 10 paired trials with different starting

1This comparison based on invalid states alone hides one additional
limitation of untimed model checking. Untimed exploration is inca-
pable of verifying program behaviors that depend on time (e.g., light
turned off a second after turning on).

Figure 7: Invalid states generated by untimed exploration.

inputs, and the error bars shows maximum and minimum
percentage of invalid states.

We see that untimed exploration produces a significant
number of invalid states. For most programs, the num-
ber of invalid states is of the same order as the number
of valid states produced by DeLorean. Closer inspec-
tion of results from untimed exploration provides insight
into how some invalid states are produced. One common
case is where devices such as lights are programmed to
turn on in the evening, using a timer. Because timers can
fire anytime, untimed model checking incorrectly pre-
dicts that the light can be off in the evening, which will
not happen in practice. Another case is where certain
actions are meant to occur in a sequence, e.g., open the
garage door after key press and then close it 5 minutes
later. With DeLorean, these actions are carried out in
the right sequence, correctly predicting that the door is
left in the closed state. But both possible sequences are
explored by untimed exploration, one which incorrectly
predicts that the garage door is left open.
MoDist Unlike untimed exploration, MoDist maintains
temporal consistency during exploration, but at the ex-
pense of incomplete exploration (§2.1). To illustrate this,
we implement MoDist’s algorithm for exploring timers
in DeLorean and compare it with our exploration. We
compare two metrics–state coverage and code coverage.
State coverage measures the number of unique program
states explored and code coverage measures the num-
ber of lines of code exercised during exploration. Fig-
ures 8 and 9 show code and state coverage, respectively,
for MoDist and DeLorean averaged over 24 trials, each
exploring one hour. Programs omitted in Figure 8 have
equivalent coverage in MoDist and DeLorean.

5.5 Unintended Behaviors
To informally gauge DeLorean’s ability to find such be-
haviors, we inspect comments in two of the programs
(P9, P10) and turn them into invariants for which De-
Lorean should report violations. We find four violations.
P9-1 A comment indicated the lights in the back of the
house should turn on if motion is detected in the evening
(i.e., sunset to 11:35PM). But DeLorean found that the



Figure 8: Code coverage.

Figure 9: States missed by MoDist.

lights could be on even if there was no motion. A rule
appears misprogrammed—instead of using conjunction
as the condition to turn on the light (sunset < Now <

11:35PM && MotionDetected), it was using disjunction
(sunset < Now < 11:35PM || MotionDetected)

P9-2 A comment indicated the front porch light should
stay on from a half hour after sunset until 2AM. There
were two rules to implement this invariant: one turning
the light on at a half hour after sunset and one turning it
off at 2AM. But DeLorean found cases where the light
was off in that time window. Inspection revealed another
rule to turn off the light at 7:45PM. Thus, the invariant is
violated if sunset occurs after 7:15PM, which can happen
where the user of P9 resides. Exploring sunset values
higher than 7:15PM uncovered the violation.

P10-1 A comment indicated the user wanted to turn on
a dimmer switch in the master bath room when motion is
detected. But we found instances where the motion oc-
curred but the dimmer was not on. Inspection revealed
that the user’s detailed intent, implemented using two
rules, was to turn on the dimmer half-way when motion
occurs during the day, and to turn it on fully when its
detected during night. But the way day and night time
periods were defined left a 2 minute gap where nothing
would happen in response to motion.

P10-2 A comment indicated the user wanted to treat
three devices identically (i.e., all on or all off). Inspection
of a violation of this invariant showed that while three of
the four rules that involved these devices correctly ma-
nipulated them as a group, one rule had left out a device.

#trans
SLoC #VCs GCD (s) 1 VC 2 VCs 4 VCs

PySwitch 234 13 1 6210 49k 8.8M
LoadBalancer 2063 14 2 351k 512k 3.8M

EnergyTE 434 10 5 442k 1.7M 21M

Table 3: The OpenFlow programs we study.

6 Case Study: SDN
To further demonstrate the value of TA-based explo-
ration, we model and test SDN programs in DeLorean.
Similar to NICE [6], we create a model of the NOX
platform in C#, including the controller, switches, and
hosts. We discover relevant packet headers during
pre-exploration, using Pex to symbolically execute the
event handlers that make up the OpenFlow program.
Since OpenFlow switches have complex internal behav-
ior (e.g., flow tables) that we cannot observe externally,
we manually define models of OpenFlow switches and
hosts. OpenFlow programs have no dependency on ab-
solute time, therefore we use no wall clock time.

6.1 Dataset
We evaluate DeLorean using three real programs—a
MAC-learning switch (PySwitch), a web server load
balancer[21], and energy efficient traffic engineering
(REsPoNse) [20]. We manually translate the programs
from Python into C# for testing in DeLorean. Table 3
shows the source lines of code (SLoC), the total num-
ber of VCs that can be dynamically created during an
exploration, and the GCD of the clock constraints. As
in NICE, we bound the state space by limiting certain
events, such as the number of times a host sends a packet.

Each program has dependencies on relative time.
PySwitch, for example, uses a timer to periodically check
entries in a cache of MAC address-port mappings and
expire entries older than a specific time. In this case, a
VC is needed to express the timer scheduling the periodic
check, and another VC for each entry in the cache.

6.2 Comparison with Alternatives
We compare DeLorean to NICE, a model checker for
OpenFlow programs. Similar to untimed model check-
ing, NICE does not systematically model time. Instead,
application-specific heuristics are used to trigger timers
in each of the SDN applications tested. We construct a
model of the NOX platform for DeLorean and simulate
NICE’s exploration by running DeLorean with no VCs.
We also implement NICE’s heuristics for exploring timer
behavior. To informally gauge DeLorean’s ability to find
unintended behaviors, we create invariants from the 11
bugs discovered by NICE. We find DeLorean can repro-
duce violations for all 11 bugs.

We now compare DeLorean’s coverage of a program’s



% Missing % Incorrect
1 VC 2 VCs 4 VCs 1 VC 2 VCs 4 VCs

Pyswitch 0% 34% 84% 0% 0% 0%
Loadbalancer 95% 95% 95% 117% 123% 123%

EnergyTE 69% 87% 97% 26% 12% 46%

Table 4: Missing and invalid states generated by NICE,
compared to explorations in DeLorean using 1, 2, and 4
VCs.

Figure 10: Code coverage in DeLorean and NICE.

state space to that of NICE. In Figure 10, we show the
code coverage of DeLorean and NICE for the three pro-
grams. In PySwitch, NICE does not explore the timer for
periodically checking cache entries, therefore missing an
entire function.

In Table 4, we show the number of missed and incor-
rect states generated by NICE compared to explorations
in DeLorean using 1, 2, and 4 VCs. Because NICE does
not trigger any timers in PySwitch, it misses potential
behavior, but does not introduce any invalid states that
would be generated from timers firing at incorrect times
from incorrect states The heuristic for trigger timers in
the EnergyTE application, however, fires timers from ev-
ery possible state, resulting in invalid states. Similarly,
in LoadBalancer, timers can also fire from invalid states.

Further, NICE’s heuristics do not test the expiration
of flows. Correctly exploring this behavior requires, and
verifying correctness properties related to flow expira-
tions, requires more systematic treatment of time. This
results in missed states in both the EnergyTE and Load-

Balancer applications.
We see that with non-systematic treatment of time,

program exploration can introduce false behaviors or
miss potential behaviors. In programs dependent on ab-
solute and relative time, such as HA programs, we find
untimed exploration can produce too many invalid states
to be useful. Even in programs with dependencies only
on relative time, such as SDN programs, we see non-
systematic treatment of time can also produce as many
invalid states as valid states.

7 Related Work
Our work builds on progress the research community has
made towards verifying the behavior of real systems.

Model checking programs One class of techniques is
model checking, where programs are modeled as FSAs
and their behavior is comprehensively explored [12, 15,
18]. Recent work, like us, also combines model check-
ing with symbolic execution [5, 8, 22]. However, most
model checking work ignores time. This approach works
well for programs that have a weak dependence of time,
but the behavior of control programs that we study is in-
tricately linked with time. Ignoring time in such pro-
grams can lead to exploring infeasible executions, and it
cannot discover unexpected behaviors in which the mis-
match is the time gap between events. One exception
is NICE, which studies OpenFlow applications whose
behavior can vary considerably based on packet tim-
ings [6]. However, its treatment of time is not systematic
and instead relies on heuristics to explore timer behavior.
Model checking using TA There has been much work
on TA-based model checking in the real-time systems
community. It includes developing efficient tools to ex-
plore the TA [4, 24] as well as transformations that speed
explorations [7, 13]. This body of work assumes that
the entire TA is known in advance, and it does not target
program analysis. While we draw heavily on the insights
from it, to our knowledge, our work is the first to use TA
to model check programs. We describe general meth-
ods to dynamically and comprehensively explore pro-
gram executions and techniques to optimize exploration.
Other debugging techniques Explicit state model
checking, which we use, is complementary to other pro-
gram debugging approaches. Record and replay [17] can
help diagnose faults after-the-fact and is especially use-
ful for non-deterministic systems; in contrast, we want to
determine if faults can arise in the future. There has also
been work on “what-if” analysis in IP networks, e.g.,
with the use of shadow configurations [1] and route pre-
diction [11]. These focus on computing the outcomes of
configuration changes; in contract, we study the dynamic
behavior of more general programs.

8 Conclusions
Mistakes in control programs can impact the safety and
efficiency of their system. We develop a technique us-
ing timed automata to systematically explore program
behavior and verify temporal properties. We implement
our approach in a tool named DeLorean and apply it
to two domains where timing in control programs is
important—home automation and software-defined net-
works. We show it results in higher fidelity analysis,
including better state and code coverage, than existing
techniques that do not systematically model time.
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[20] VASIĆ, N., NOVAKOVIĆ, D., SHEKNAR., S., BHURAT, P.,
CANINI, M., AND KOSTIĆ, D. Identifying and using energy-
critical paths. In CoNEXT (2011).

[21] WANG, R., BUTNARIU, D., AND REXFORD, J. OpenFlow-
based server load balancing gone wild. In Hot-ICE (2011).

[22] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. CrystalBall: Predicting and preventing inconsistencies in de-
ployed distributed systems. In NSDI (2009).

[23] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MoDist:
Transparent model checking of unmodified distributed systems.
In NSDI (2009).

[24] YOVINE, S. Kronos: A verification tool for real-time systems.
Int’l Journal of Software Tools for Technology Transfer (1997).

http://antlr.org/
http://www.elkproducts.com/
http://blogs.cisco.com/news/the-internet-of-things-infographic/
http://blogs.cisco.com/news/the-internet-of-things-infographic/
http://www.universal-devices.com/99i.htm
http://www.universal-devices.com/99i.htm

	Introduction
	Background and Motivation
	Reasoning about Program Correctness
	Timed Automata

	Our Approach
	Introducing Virtual Clocks
	Systematically Exploring Behavior
	Achieving Scalable Exploration
	Theory-Practice Gap

	Design
	Pre-Exploration
	Exploration
	Implementation

	Case Study: HA Networks
	Domain-Specific Optimizations
	Dataset
	Exploration Performance
	Comparison with Alternatives
	Unintended Behaviors

	Case Study: SDN
	Dataset
	Comparison with Alternatives

	Related Work
	Conclusions

