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ABSTRACT 
Search personalization tailors the search experience to individual 
searchers. To do this, search engines construct interest models com-
prising signals from observed behavior associated with machines, 
often via Web browser cookies or other user identifiers. However, 
shared device usage is common, meaning that the activities of mul-
tiple searchers may be interwoven in the interest models generated. 
Recent research on activity attribution has led to methods to auto-
matically disentangle the histories of multiple searchers and cor-
rectly ascribe newly-observed search activity to the correct person. 
Building on this, we introduce attribution-based personalization 
(ABP), a procedure that extends traditional personalization to target 
individual searchers on shared devices. Activity attribution may 
improve personalization, but its benefits are not yet fully under-
stood. We present an oracle study (with perfect knowledge of which 
searchers perform each action on each machine) to understand the 
effectiveness of ABP in predicting searchers’ future interests. We 
utilize a large Web search log dataset containing both person iden-
tifiers and machine identifiers to quantify the gain in personaliza-
tion performance from ABP, identify the circumstances under 
which ABP is most effective, and develop a classifier to determine 
when to apply it that yields sizable gains in personalization perfor-
mance. ABP allows search providers to personalize experiences for 
individuals rather than targeting all users of a device collectively. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval—search process; selection process. 
Keywords 
Attribution-based personalization; Interest model; Personalization. 

1. INTRODUCTION 
Personalization can be a powerful mechanism to individualize the 
search experience [5][19][35][38][39]. The application of person-
alization at scale relies on unique identifiers assigned to machines 
based on browser cookies or client-side software such as browser 
toolbars. Individualizing the search experience relies on a one-to-
one correspondence between machine identifiers and individuals. 
Previous work has shown that machine identifiers are frequently 
associated with the search activity of multiple people (e.g., on over 
half of devices [47]), potentially impacting personalization effec-
tiveness. We conjecture that by attributing observed search behav-
ior to the correct person during the construction of interest models 
(profiles) and when processing received queries, the performance 

of personalization algorithms for applications such as predicting fu-
ture interests or re-ranking search results will improve. We refer to 
this new approach as attribution-based personalization, defined as: 
DEFINITION: Attribution-based personalization (ABP) is a pro-
cedure to tailor search experiences to individuals. The three phases 
are (1) activity attribution and interest model construction for indi-
vidual searchers from historic machine activity, (2) attribution of 
newly-observed activity to the correct searcher, and (3) application 
of that searcher’s specific interest model for personalization. 
Figure 1 illustrates the ABP process. Methods exist for phases 1 
and 2 [47]. We focus herein on the value of attribution for phase 3. 
Studies of personalization have examined its performance in con-
trolled settings, given a clear mapping between people and profiles 
[39]. For the application of personalization in practice, e.g., at large 
scale in Web search engines, such mappings cannot be guaranteed. 
Shared used of a single machine is common and we have shown in 
previous work that we can build models to accurately attribute ob-
served search activity to the correct person [47]. However, little is 
known about the value of attribution for personalization. To esti-
mate this we perform an oracle study. The study compares interest 
models constructed given perfect (oracle) assignment of activity to 
people against models built from all machine activity, the standard 
practice in personalization [5][35]. The development of new meth-
ods for ABP is an exciting new frontier for Information Retrieval 
research. Our goal is to frame the ABP challenge and estimate the 
gains attainable from applying ABP in practice. To estimate its util-
ity, we target future interest prediction, an important task in settings 
such as search, advertising, and recommendation [26][30][45].  
We make the following contributions with this paper: 

 Introduce attribution-based personalization as an important new 
area of personalization research and estimate its value for per-
sonalizing search experiences for people who share devices. 

 Characterize differences in the searcher interest models con-
structed from person- and machine-based activity. We do so via 
a search log containing machine and person identifiers for each 
query. We demonstrate differences in the interest models built 
by attributing activity to specific people rather than machines. 

 Show that these differences between identifier type (machine or 
person) are meaningful for an important application: predicting 
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Figure 1. Activity attribution and search personalization.  
Interest model construction happens offline (e.g., as part of a 

periodic process) and matching of new activity happens online 
(i.e., at query time). Historic and new data assigned to people 
using activity attribution (oracle or [47]). Models are built per 
person not per machine. New activity is assigned to searcher B. 
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searchers’ future interests. We experiment with using different 
sources for interest model construction (i.e., all historic activity 
linked to the identifier versus only activity for related queries). 

 Controlling for search task effects, we identify properties of in-
terest models (e.g., the number of searchers on machine) and 
queries (e.g., popularity, topic) for which ABP performs best. 

 Learn a model from properties of the query and the constructed 
interest models to accurately predict when to apply ABP on a 
per-query basis. We show that applying this model for our task 
of future interest prediction yields significant gains in person-
alization performance over models that use all search activity 
from the current machine or simply apply ABP to all queries. 

The remainder of this paper is structured as follows. Section 2 pre-
sents related work in areas such as personalization, activity attribu-
tion, and interest modeling. Section 3 describes our study, including 
research questions and methods. Section 4 characterizes multi-per-
son searching. Section 5 describes a comparison of machine- and 
person-based interest models for future interest prediction. Section 
6 explores the effect of query and model properties on ABP perfor-
mance, as well as introducing a classifier to enable the selective 
application of ABP on a per-query basis. We discuss our findings 
and their implications in Section 7, and conclude in Section 8. 

2. RELATED WORK 
Research in a number of areas relates to our work here: (1) improv-
ing search using behavioral data, (2) search personalization, (3) at-
tribution of search activity to individuals, (4) the construction of 
interest models, and (5) applications of these models for tasks such 
as recommending resources or predicting future searcher interests. 
Improving Search using Behavioral Data: Behavioral data from 
search engines has been mined extensively to improve search rele-
vance [1][21]. Radlinski and Joachims [28] proposed the use of 
query chains comprising connected sequences of queries to learn 
richer models of relevance that can capitalize on session behavior. 
Moving beyond individual queries, Radlinski et al. [29] model in-
tent from queries and clicks for direct consumption by Web search 
engines. Similarly, Downey et al. [15] examined relationships be-
tween search queries and search goals estimated from the terminal 
page within the search session. Bilenko and White [7] used signals 
from aggregate post-query navigation trails to learn result rankings. 
Search Personalization: The personalization of the search experi-
ence has received significant attention [5][19][23][33][39]. The po-
tential for personalization [41] quantifies the improvement in re-
trieval performance that is attainable via personalization versus the 
performance that is obtained from trying to meet many searchers’ 
needs. Long-term behavior has been applied to personalize search 
[35], focused on previous queries associated with the similar tasks 
over multiple search sessions [38]. Teevan et al. [39] showed that 
personalization improves as more data is available about the current 
searcher. Other signals such as short-term activity (e.g., in the same 
session) are also effective personalization signals [8][44][46]. 
Backing off from the activity of individual searchers, other signals 
such as physical location [4], the search activity of those engaged 
in similar tasks [48], or searchers similar along one or more other 
dimensions [43][50] have also been shown to be useful for person-
alization, especially when addressing “cold-start” scenarios where 
limited data can affect system performance [31]. 
Attribution of Search Activity: Truly personalizing the search ex-
perience relies on assigning observed search activity to an individ-
ual. At scale in search settings this is usually performed via an au-
tomatically-assigned unique identifier based on Web browser cook-
ies, or to a toolbar or browser instance. Dasgupta et al. [13] studied 
the challenge of connecting different cookies to track the same user 

over time. This is important since cookie based identifiers are sub-
ject to cookie churn. Similarly, there may also be user variations 
within the machine identifier. White et al. [47] used the same da-
taset as employed in this study and showed that observing multiple 
people searching on the same machine is common (i.e., 56% of ma-
chine identifiers comprised activity from multiple searchers). They 
presented models to accurately estimate the number of searchers on 
a machine and attribute new search activity to specific searchers. 
The search activity attribution challenge that White et al. identified 
shares characteristics with other related domains such as fraud de-
tection (to detect anomalous behaviors) [16] and signal processing 
(e.g., in blind signal separation, used to distinguish interleaved sig-
nal sources) [2][9]. However, there has been little attention (includ-
ing in [47]) on the application of attribution for personalization. To 
our knowledge, the only exception is an early study by Singla et al. 
[34], who experimented with attribution methods for personaliza-
tion, yielding some promising results. Since that study used a spe-
cific attribution method for a specific task (re-ranking results), the 
findings offer limited general insight about the potential utility of 
ABP. We address that shortcoming with the research in this paper. 
Building Interest Models: To personalize the search experience, 
systems need to build and apply models that represent searcher in-
terests. Interest models are common in user modeling and recom-
mendation. Models can be constructed based on online activity only 
(as is the case with the personalization that we target in this paper), 
or based on client-side data, which can provide more complete in-
sight into searcher preferences than is available from remote mon-
itoring alone [24][39]. Interest models can assume a number of 
forms, including the text of search queries [33][36], specific URLs 
or Web domains visited in search [20][42] or browsing [24][44], or 
topical representations [19][35] (including topics specified explic-
itly [11][23]). Searcher interest models are often stored remotely, 
although client-side storage has been adopted if there is a need to 
access local data [39] or to address privacy concerns [6].  
To reduce noise, personalization methods can target on-task activ-
ity only [5][38]. One extreme example is revisitation to the same 
URL for the same query. So called personal navigation [42], is also 
a powerful signal for search personalization and requires models 
comprising query-URL pairs mined from historic data. Personali-
zation methods traditionally use overlap between queries to detect 
activity on the same task [38]. Such on-task interest models can be 
constructed from activity at different timeframes (short-term or 
long-term), and there are noteworthy tradeoffs in personalization 
performance given these timeframes (e.g., long-term models typi-
cally perform better for the first query in a session, where there is 
no session history) [5]. Other factors, such as the click entropy of 
the query, can also impact personalization performance [14]. 
Recommendation and Prediction: Once searcher interest models 
have been constructed, there are different ways in which they can 
be applied for personalization purposes. The traditional application 
is to adjust the ranking of search results, either through generating 
a new result set tailored to the searcher [27] or through re-ranking 
the initial results returned by a search engine [5][35][39]. Other ap-
plications of interest models include predicting which search results 
searchers will click [26], which display advertisements they will 
select [30], or which Web pages or topics they will focus on next 
[45][46]. For this study, we target the challenge of predicting future 
interests given historic interest models. The log data used in our 
study only contained data about queries and clicks (i.e., no result 
lists). Therefore, we could not reliably reconstruct the top-ranked 
search results presented at query time, as has been possible in prior 
personalization studies, where top retrieved results appeared in the 
logs used [4][5]. We therefore focus on future interest prediction. 



Contributions: We extend prior work in many ways. First, through 
ABP, we focus on personalization at the sub-machine level, rather 
than assuming an exact correspondence between machine and indi-
vidual, as has traditionally been the case in personalization. Second, 
we perform an oracle study highlighting differences in interest 
models depending the identifier type (machine or person) associ-
ated with search activity. This differs from the work of Singla et al. 
[34], where the focus was on applying a particular automatic attrib-
ution method, limiting the generalizability of derived claims about 
the effectiveness of ABP. Third, we show that observed differences 
between machine- and person-based models are meaningful, in our 
case for the task of future interest prediction. Fourth, we identify 
scenarios where ABP is most effective. As part of that analysis, we 
built a classifier to accurately determine when to apply ABP for 
each query, yielding strong gains in personalization performance. 

3. EVALUATING ABP PERFORMANCE 
We now describe our oracle study to understand the potential value 
from ABP. We describe our research questions, the data used, the 
models created, and their application in predicting future interests. 

3.1 Research Questions 
We answer the following four questions with our research: 
RQ1 (Characterize interest models): What are some salient dif-
ferences in interest models constructed based on the search activity 
from different identifier types (machine and person)? 
RQ2 (Predict future interests): How accurately can we predict 
searchers’ future interests by applying interest models based on 
search activity associated with the different identifier types? 
RQ3 (Effect of interest model and query properties): What is 
the impact of properties of queries and interest models on the per-
formance of models built from historic person or machine activity? 
RQ4 (Automatically determine model source): Can we automat-
ically determine which model source to apply per query? If so, what 
is the impact of taking this action on future interest prediction?   
Answers to these questions help understand the value of ABP and 
useful scenarios for it. The answers can help search providers de-
cide whether to invest in ABP and when to apply it in practice. 

3.2 Data 
The data that we used for our study was provided under contract by 
the Internet analytics company comScore. They recruited an opt-in 
consumer panel that has been validated to be representative of the 
online population and projectable to the United States population 
[18]. Millions of panelists provide comScore with explicit permis-
sion to passively measure all of their online activities using moni-
toring software installed on their computers. In exchange for join-
ing the panel and providing search data, participants are offered a 
                                                                 
1 Although logs spanned two years, we only used six months of log 
data for this task since (i) it captures searchers’ recent interests, and 

variety of benefits, including computer security software, Internet 
data storage, virus scanning, and chances to win cash or prizes. 
The full dataset comprised unfiltered search queries on major Web 
search engines such as Google, Bing, and Yahoo!, collected over a 
two-year period from mid-2011 to mid-2013. The logs contained 
the text of queries, search result clicks, and the time that the events 
occurred (in the searcher’s local time). Importantly for our study, 
the comScore search logs also contained a machine identifier (as-
signed to the machine) and a person identifier (assigned to each 
person who used the machine). An application is installed on the 
machine to record search activity and searchers are required to in-
dicate to the logging software that they are searching at any given 
time. Machine-based identifiers are used in a range of online appli-
cations, either through Web browser cookies or other mechanisms 
such as search-provider toolbars; so their use in this study reflects 
the current state of the art. To remove variability caused by cultural 
and linguistic variation in search behavior, we only include log en-
tries from the English-speaking United States locale. An advantage 
of using these data beyond the availability of both person and ma-
chine identifiers, is that they can be purchased from comScore to 
replicate and extend many of our findings (although the costs of 
data access may be prohibitive to some). The use of these logs is an 
important distinction from many log-based studies reported in the 
research literature, which rely on proprietary search logs, analyzed 
only by employees of commercial search providers. A disadvantage 
of using these data is that it limits the applications that can be stud-
ied to those not requiring result lists, e.g., we target interest predic-
tion and not re-ranking since result lists are not available in this set. 
For our study, we divided our dataset into two subsets: (1) model 
building: six months of comScore search logs for use in model con-
struction (January 2013 to June 2013 inclusive)1, and (2) evalua-
tion: one month immediately following for use in evaluating the 
performance of the interest models at predicting future interests 
(July 2013). Activity (result clicks) from each person is used to con-
struct the person-based models. All individuals associated with a 
machine are used in building the machine models. To ensure that 
we had sufficient data for our analysis, we required that there were 
at least 100 clicks from the machine during the model building pe-
riod and at least 15 clicks from the same machine during the eval-
uation period. Note that searchers in our dataset only used a single 
machine; there was no movement of searchers between machines. 
Summary statistics on the two datasets are shown in Table 1. These 
include some basic descriptive statistics such as the total number of 
queries and clicks in each set. As part of the data cleaning process, 
we removed machine identifiers that exhibited signs of being auto-
mated traffic by issuing more than 1000 queries on any given day. 

3.3 Building Interest Models 
We constructed interest models for each of the identifier types (ma-
chine and person) based on topical categorization of the clicked 
URLs in the model building dataset. We represented interest mod-
els as a distribution across categories in the Open Directory Project 
(ODP, dmoz.org) topical hierarchy (as in [45]). This provides a 
consistent topical representation of page visits from which to build 
models. ODP categories can also be effective for reflecting topical 
differences in the search results for a query [3] or a search context 
[46]. Given the large number of pages in our log data, we used au-
tomatic classification techniques to assign an ODP category label 
to each page. Our classifier assigned one or more labels to the pages 
based on a lookup into the ODP hierarchy using a similar approach 

(ii) we wanted to retain sufficient data for the set of prediction ex-
periments described in Section 6.3. 

Table 1. Descriptive statistics of dataset. Model building based 
on six months of logs. Evaluation uses one month of logs. 

Statistic 
Dataset 

Model building Evaluation 
Total # machines 28,003 (of 490,754*) 
Total # searchers 68,908 49,869 
Total # queries 19,145,916 3,619,913 
Total # clicks 9,339,421 1,778,824 
Avg. # queries/machine 683.3 (stdev=756.2) 129.2 (stdev=157.9) 
Avg. # clicks/machine 333.3 (stdev=350.8) 63.5 (stdev=73.3) 

*Number of machines with queries in train/test period for number of clicks ≥ 0. 
 
 



to [32]. In this approach, classification begins with URLs in the 
ODP and incrementally prunes non-present URLs until a match is 
found or miss declared. Similar to [32], we excluded pages labeled 
with the Regional and World top-level ODP categories, since they 
are location-based and are typically uninformative for constructing 
models of searcher interests. Since a Web page can appear in mul-
tiple categories in ODP, there may be more than one category as-
signed for each page. For URLs that were not present via direct 
lookup into the ODP, we instead used the output of a content-based 
ODP classifier [3] applied by the Microsoft Bing search engine dur-
ing indexing. This combined approach resulted in coverage of 88% 
of all distinct clicked URLs in our dataset. The remaining 12% of 
URLs were not indexed by the search engine. Focusing on topics 
rather than URLs allowed us to build models with better coverage 
and were more semantically meaningful than might have been pos-
sible for models constructed from URLs or Web domains alone. 
Table 2 presents fictitious but representative interest models com-
prising ODP categories, based on patterns observed in our dataset. 
The search activity on this machine comprised the queries and 
clicks from three searchers: A, B, and C. The table presents the nor-
malized distributions for ODP categories for each individual. The 
table shows that the category distributions can be quite different 
between individual searchers and the machine, as well as between 
searchers. For example, Sports/Tennis receives most weight in the 
machine model, but is only highest weighted for one searcher (B) 
and is not an interest of searcher A. Some topics receive broad in-
terest, e.g., all searchers are interested in movies. Although this is 
only one example, it is representative of the types of differences 
that we observe in our data and provides motivation for targeting 
interest models to specific searchers. Such individualized models 
may more accurately capture searchers’ interests than combining 
all search activity associated with the machine into a single model. 

3.4 Applying Interest Models 
In this study, our chosen application of the interest models con-
structed during model building is in predicting future interests of 
searchers. Future interest prediction is employed in a variety of sce-
narios, including advertising [30], the development of relevance 
models [10], and recommending future content [45]. Given each of 
the queries in the one-month evaluation dataset, we focus on pre-
dicting the assigned ODP topic of the clicked URL given the inter-
est models as described in the previous section. We use the ODP 
category label (𝑝𝑙1) with the highest weight as the model predic-
tion. For example, returning to Table 2, highlighted in bold are the 
predicted ODP labels for all activity in the models associated with 
the machine identifier and with each of the three individuals. 
Task-relevant search activity: In addition to varying the identifier 
type (machine or person), we also varied the mechanism used for 
matching evaluation queries with those in interest model construc-
tion (i.e., the match type). We either used all historic activity or on-

task activity only. Given a query, we define the on-task historic ac-
tivity as clicks associated with queries with at least one non-stop-
word term in common with the provided query. Such a query 
matching methodology has been used in personalization to build 
focused, relevant models of searchers’ historic interests [5][38]. 
Prior to analyzing the predictive performance of the models con-
structed by grouping based on the four combinations of identifier 
type and match type, we characterize shared device searching. 

4. SHARED DEVICE SEARCHING 
For the task of characterizing shared device searching we analyze 
data in the model building set. We examine the prevalence of shared 
device searching, how queries are distributed within machines, and 
the impact of multi-person searching on the general diversity of 
topical interests captured in models constructed from these data. 

4.1 Prevalence 
Figure 2 shows the fraction of machine identifiers that comprised 
different numbers of searchers. To construct this plot, we use data 
from the model building dataset (i.e., with at least 100 search-result 
clicks from the machine identifier over the six-month duration of 
that set). The figure shows that a significant fraction (65.8%) of 
machine identifiers comprise the search queries of more than one 
person. To understand the sensitivity of these trends to the duration 
of the activity used in model building, we also computed the distri-
bution over one and three months of historic activity. In that data, 
44.3% and 56.7% of machine identifiers comprised the search ac-
tivity of multiple people for one and three months respectively. A 
core assumption in personalization is that all historic activity is as-
sociated with one person (the individual consumer of the service). 
The prevalence of shared device searching underscores the need to 
attribute search activity during model building and query handling. 

4.2 Distribution between Individuals 
Another important question relates to the distribution of queries be-
tween the individuals using a machine. For shared machines with 
more than one searcher (i.e., 𝑘 ≥ 2), we ranked searchers by the 
fraction of clicks and computed the average fraction of the total 

 
Figure 2. Fraction of machine identifiers in model building 
phase (6 months) with different numbers of searchers (𝒌). 

 
Figure 3. Distributions of queries per person across machines 

with different numbers of searchers (𝒌) (±SEM). 
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Table 2. ODP-category-based interest models from all historic  
activity from the machine identifier and for each individual 

(A, B, C) whose activity comprises the machine history.  
Highlighting denotes top category in each model (column). 

ODP Category Machine Individual searchers 
A B C 

Sports/Football 0.25 0.75 – – 
Sports/Tennis 0.33 – 0.70 0.30 
Shopping/Clothing 0.07 – 0.10 0.10 
Arts/Movies 0.18 0.25 0.10 0.20 
Society/Issues 0.17 – 0.10 0.40 

 



query volume associated with each person. Figure 3 reports the dis-
tribution of queries per person across machines with different num-
bers of searchers. Each individual is allotted a region on the stacked 
bar (searcher #1 is first in blue, searcher #2 is second in orange, 
etc.). Percentage values are shown for the three most active search-
ers for each 𝑘. Other percentage values are excluded given space 
constraints and to simplify the graph. Also shown in the figure are 
error bars denoting the standard error of the mean (SEM). Given 
concerns about data skew, we also report the median percentages 
for the dominant searcher (squares in Figure 3), with similar trends. 
The results show that for all values of 𝑘 ≥ 2 there is clearly a dom-
inant searcher on each machine. For example, when 𝑘=2, there is 
usually an 80/20 division between click volumes on the machine 
between the primary and the secondary searcher. Although these 
are shared machines, the sharing is clearly not happening evenly. 
As the value of 𝑘 increases, the query volume attributed to the dom-
inant individual decreases in relation to the others (decreasing to 
around 40% at 𝑘=9). It is interesting to note that we only observe 
large changes in the search query volume associated with the pri-
mary/dominant searcher; the contributions of all other searchers on 
the machine remains largely unchanged and in some cases even in-
crease with changes in 𝑘. The decrease in the contribution for the 
dominant searcher is also observed, even more markedly in fact, 
when we consider the median percentage of the query volume ra-
ther than the mean. These trends have implications for the effec-
tiveness of ABP. At lower 𝑘, much of the activity associated with 
a machine identifier is already connected to an individual, meaning 
that ABP may be less effective. Also, since query volumes for non-
dominant searchers are static or increase with 𝑘, there may be suf-
ficient activity from at least some non-dominant searchers, irre-
spective of 𝑘, to build reliable interest models. We study the impact 
of 𝑘 in the future interest prediction experiments reported later. 

4.3 Diversity of Topical Interests 
We were also interested in how 𝑘 affected the breadth of resources 
accessed. Personalization performance would largely be unaffected 
by activity attribution, perhaps even hindered given sparser profil-
ing data, if search intents were the same across different people. We 
computed the model entropies of the machine-based interest mod-
els, defined as − ∑ 𝑝(𝑐|𝑚) log(𝑝(𝑐|𝑚))𝑐∈𝐶 , where 𝑐 is a category 
drawn from the set of all ODP categories (𝐶) assigned to result 
URLs clicked on machine 𝑚. Figure 4 presents a box-and-whisker 
plot for of this value across different 𝑘 values. The horizontal seg-
ments inside the boxes represent the median, the top and bottom of 
the boxes denote the first and third quartiles, and the whiskers de-
note the maximum and minimum. The mean is denoted as a circle. 
Figure 4 shows that there is an increasing trend in the topical diver-
sity of interest models as the number of individuals associated with 
the machine increases (mean entropy = 4.83 at 𝑘=1 and 5.20 at 
𝑘=10, Pearson’s 𝑟 = 0.981, 𝑝 < 0.001). Interest models built based 

on historic data associated with the machine could therefore be 
more diverse and noisier if multiple people search on the machine. 
Turning our attention to comparing the person- and machine-based 
models, we examine the number of unique ODP categories and the 
interest model entropy. Figure 5 shows the distributions for each 
model type and highlights the differences between interest models 
constructed from machines or individuals. Models built from ma-
chine activity are generally more diverse, both in terms of the num-
ber of ODP categories assigned to clicks and the entropy of the nor-
malized distribution of ODP categories. The differences are appar-
ent visually and statistically (independent measures 𝑡-tests, both 𝑝 
< 0.001). We now explore whether the model differences are mean-
ingful for an important application: predicting future interests. 

5. PREDICTING FUTURE INTERESTS 
We now describe the prediction task, the method, and the results. 

5.1 Prediction Task 
The prediction task was to predict the ODP categories of the clicked 
results for queries in our evaluation set. For each query, a distribu-
tion of ODP categories was computed, at the same hierarchy level 
as used for model construction (see Section 5.4.1). The analysis is 
performed at the query level, with the clicks from the person issuing 
the query as ground truth to evaluate the model. To avoid skewing 
our metrics toward highly-active searchers, we filtered the evalua-
tion dataset to a maximum of 10 queries with result clicks per per-
son. The exact number of queries per person in the evaluation set 
varies based on additional filters described at the end of Section 5.3, 
including the requirement that result clicks be classifiable in ODP. 

5.2 Methodology 
Given our evaluation set of queries and clicks (𝑄) comprising one 
month of logs, we generate tuples comprising {timestamp, machine 
identifier, person identifier, query, {result clicks}} for each query 
(𝑞) in 𝑄. Given this set of test queries and associated result clicks, 
we then took the following steps:  
For each identifier type in {machine, person}: 
 For each match type in {all, on-task}: 

 

 
 Figure 5. Comparison of person- and machine-based interest 

models in terms of: (a) number of distinct ODP categories 
comprising interest models, and (b) entropy of the models. 
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Figure 4. Box-and-whisker plot of machine model entropy for  
machines with diff. 𝒌. Mean is dot. Median is horizontal line. 
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o For each 𝑞 ∈ 𝑄: 
 If identifier type == machine: 

 If match type == all: Obtain all historic queries 
from the machine from the model building dataset. 

 Else if match type == on-task: Find all historic que-
ries from the machine with ≥ 1 non-stopword terms 
in common with 𝑞 in the model building dataset. 

 Else if identifier type == person: 
 If match type == all: Obtain all historic queries 

from the searcher from the model building dataset. 
 Else if match type == on-task: Find all historic que-

ries from the searcher with ≥ 1 non-stopword terms 
in common with 𝑞 in the model building dataset. 

 Obtain the clicked results for each of the queries. 
 Assign ODP categories to the clicked results using the 

methods described in Section 3.3. 
 Build an interest model (𝑢) comprising the normalized 

distribution of ODP categories from the assignment. 
 Select top-weighted predicted label in 𝑢, denoted 𝑝𝑙1. 
 Compute the effectiveness of the method in relation to 

the ground truth (the normalized distribution of ODP  
categories across the URLs selected by the searcher). 

o Average metric values for matchtype across all 𝑞 ∈ 𝑄 to  
compute the overall performance metrics for each of the 
four combinations of identifier type and match type. 

Since we focus on shared device usage, we study devices with 𝑘 ≥ 
2 in the rest of our analysis. This is a reasonable assumption prac-
tically. ABP will only apply when 𝑘 ≥ 2 and prior work has shown 
that shared device searching can be predicted with high accuracy 
(86%) given access to long-term search activity on a machine [47]. 

5.3 Metrics 
We computed a number of metrics to assess the nature of the inter-
est models that were created and their performance in predicting 
future activity in the form of a normalized distribution over ODP 
categories of the results that were accessed. Specifically, the met-
rics were associated with prediction correctness (i.e., the match be-
tween the predicted and actual category label(s)), measured as: 
Precision (P): Precision was computed based on whether the top 
predicted label 𝑝𝑙1 equaled the actual label 𝑙1 (1 or 0). For pages 
with multiple categories or queries with multiple clicks, a match 
was determined if 𝑝𝑙1 equaled any of the true categories. This strat-
egy was adopted for the computation of the other metrics described 
in this section. Precision was averaged over all queries in the eval-
uation set to compute the final average precision value. 
Recall (R): Recall is 1 or 0 depending on whether 𝑙1 appears in the 
model, i.e., {𝑝𝑙1, … , 𝑝𝑙𝑝}, where the recall depth (𝑝) is computed 
based on the number of predicted categories in the model or 10 (the 
median number of predicted categories across all queries and inter-
est models), whichever is smaller. Limiting the depth of 𝑝 is im-
portant in ensuring that obtaining a recall of 1 is a non-trivial task. 

F1 score: This is the harmonic mean of P and R (i.e., 2 × (P × R) / 
(P + R)). F1 has been used in a range of similar settings including 
the KDD Cup [22], as well as in related studies on the efficacy of 
models to predict future interests in search and browsing [45][46]. 
Reciprocal rank (RR): This is a commonly-used measure in Web 
search evaluation tasks, e.g., [12]. To compute this measure, the 
𝑙1 for the actual category label was compared progressively down 
the ranked list of category label predictions. If 𝑙1 matched 𝑝𝑙𝑖, the 
score assigned was the reciprocal of the prediction rank position 
1 𝑖⁄ , and 0 otherwise. This was averaged across all queries evalua-
tion dataset to compute the mean reciprocal rank (MRR) score. 
Many of these metrics have been used previously in the assessment 
of search interest models [45]. They are computed for queries in the 
evaluation set for which we have: (1) clicks that can be classified 
in ODP, (2) a machine-based interest model from the search his-
tory, and (3) a person-based interest model from the search history. 
For the on-task variant, for (2) and (3) there needed to be at least 
one matching query in the search history from which to create in-
terest models. There were a total of 442,690 queries that met all of 
these criteria for the all-activity analysis and 135,075 queries for 
the on-task portion of the analysis. The queries in both sets were 
used to evaluate predictive performance, although the on-task set is 
used for more analysis since it allows us to control for task effects, 
which have been shown to significantly affect search behavior [15]. 

5.4 Results: Person vs. Machine Models 
We computed the range of metrics described in the previous section 
to compare the person and machine models. Table 3 reports the av-
erage metric scores for this comparison, for models built from all 
activity and on-task activity. The on-task models more accurately 
reflect the state-of-the-art in personalization [5][42]. The results re-
ported suggest that there is a large benefit from ABP. We observe 
significant gains in precision, F1, and RR for person-based models 
over machine-based models of 11-15% for all activity and 19-43% 
for on-task search activity (two-way multivariate analysis of vari-
ance (MANOVA) over the four metrics, with match type and iden-
tifier type as factors: 𝐹(4,2311056) = 10.22, 𝑝 < 0.001). All paired 
differences between machine and person were significant at 𝑝 < 
0.001 using Tukey post-hoc tests, with the exception of the recall 
comparison for on-task. Overall, the gain is higher from on-task 
activity. This reflects interests related to the current task, resulting 
in more focused interest models and better quality predictions. Re-
call is slightly higher for machine-based models for both match 
types, likely because these models are a superset of person-based 
models. Given the similar trends in our findings with the different 
metrics, we elect to focus on F1 for the remainder of our analysis. 
Focusing on F1 is useful since it considers both precision and recall, 
which are both important depending on the application. 
5.4.1 Handling Near Misses 
Since we rely on the structure of the ODP for our models, the met-
rics are sensitive to the match granularity. In particular, the metrics 
presented thus far rely on matching the full ODP labels in the inter-
est models with the full label in the ground truth. We penalize the 
interest models for any mismatch between the predicted and actual 
label. However, small differences in estimates of search interests 
may be unimportant to search and recommendation systems. For 
example, interests represented by the ODP category Sports/Foot-
ball/NFL could also be represented by Sports/Football with only a 
slight loss in precision. Using the matching approach described thus 
far, this would be regarded as a total miss, whereas it is actually a 
near miss. An amelioration strategy involves backing-off on all la-
bels in the ground truth and the predictions to a specified level. 
One-level back-off means convert all ODP category labels to their 

Table 3. Avg. metric values and percentage change for each 
combination of match type and identifier type. Bold = best. 

Match 
type 

Identifier 
type 

Metric 
P R F1 RR 

All  
activity 

Machine 0.179 0.820 0.294 0.307 
Person 0.206 0.781 0.326 0.343 

%  +15.1 –4.8 +10.9 +11.6 

On-task 
activity 

Machine 0.625 0.736 0.676 0.695 
Person 0.892 0.732 0.804 0.865 

%  +42.7 –0.5 +19.0 +24.5 
 
 



top level (e.g., Sports), and two-level back-off means convert all 
labels to their top two levels (e.g., Sports/Football). 
To understand the impact of such near misses on our experimental 
findings, we analyzed the percentage gain in F1 over the machine-
based models from restricting the ODP category labels in both 
model building and evaluation to the top one, two, or three levels 
in the ODP hierarchy. The results are shown in Table 4. The table 
show that the gains still persist across all levels of category back-
off, but the gains reduce in magnitude as we move up the hierarchy. 
As noted in the table, all differences remain significantly different 
(at 𝑝 < 0.001) at all levels of back-off. The reduction in perfor-
mance with higher ODP levels is interesting, and suggests that nu-
ances in searchers’ topical interests are important. These subtleties 
may be lost by backing off to higher levels in the hierarchy. This is 
also evident in Table 2, where the category Sports is insufficient to 
distinguish the preferences of person A for football from those of 
persons B and C, who favor tennis. For this reason, we utilize all 
hierarchy levels for the experiments in the remainder of the paper. 
The results presented in this section are promising. They show that 
ABP can improve the performance of search personalization. We 
hypothesized that there may be other characteristics of the models 
and queries that may contribute to the performance of ABP. 

6. IMPACT OF ADDITIONAL FACTORS 
We now present additional analysis of the performance of the in-
terest models for predicting future interests, conditioned on charac-
teristics of the machine-based models and queries. To control for 
task effects, which influences behavior and hence experimental 
outcomes, we focus on the on-task variant of the models. We report 
comparative performance against the machine-based baseline, the 
state-of-the-art in model construction for personalization. 

6.1 Effect of Model Properties 
We study the effect of model properties on the performance of the 
person-based models. We focus on three aspects: (1) the entropy of 
the machine models, (2) the relative size of the person-based mod-
els as a fraction of the machine-based models, and (3) the number 
of searchers on the machine. We consider each property in turn. 
6.1.1 Model Entropy 
We were interested in whether there were any effects from the en-
tropy of the machine models (defined in Section 4.3) on the relative 
performance of ABP. We hypothesized that if machine-based inter-
ests were diverse, then ABP would improve performance. We split 
machine entropy values into three equally-sized buckets (high, me-
dium, low) and computed the average percentage gain in perfor-
mance for each of the entropy groups. The results are reported in 
Figure 6a. The performance across all queries is shown with a dot-
ted line in the figure. Error bars denote standard error of the mean 
(SEM). Given the large sample sizes, the error bars in this and other 
figures in this section are frequently small. The results show clear 
differences in the predictive performance as a function of the en-
tropy of the machine model (one-way ANOVA, 𝐹(2,135072) = 

8.53, 𝑝 < 0.001). When the entropy is high, it is more likely that 
multiple searchers’ interests are reflected in the machine activity 
(as seen in Figure 4), and applying ABP will be more beneficial. 
6.1.2 Relative Model Size 
Another factor that may contribute to the relative differences in the 
performance of the person-based models is the relative model size. 
That is, the fraction of the number of clicks used to compute the 
person-based models compared to the total number of clicks for the 

 

 

 
Figure 6. Effect of model properties on relative performance of 
machine-based vs. person-based models (±SEM). Effect of: (a) 

machine model entropy, (b) fraction of machine model, and 
(c) number of searchers. Dotted line denotes the predictive 

performance across all queries (i.e., % gain: 19.02). 

 

 

 
Figure 7. Impact of query properties on relative performance 
of machine- vs. person-based models (±SEM). Effect of: (a) 

query click entropy, (b) query popularity, (c) ODP category. 
Dotted line denotes the gain across all queries (i.e., 19.02%). 
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(a) 

(b) 

(c) 

Table 4. Percentage change in F1-score at different hierarchy 
levels for person-based versus machine-based models (e.g., 1 = 
top level in ODP). Paired 𝒕-tests: ** 𝒑 < 0.001, *** 𝒑 < 0.0001. 

ODP  
hierarchy 

level 

Match type 
All  

activity 
On-task 
activity 

1 ++6.71%*** +10.25%*** 
2 ++8.02%*** +13.48%*** 
3 ++9.56%*** +17.87%*** 

All +10.92%*** +19.02%*** 
 
 



machine models. Since we focus on machines with multiple search-
ers and all searchers contribute clicks, this fraction is always in the 
range (0,1). We bucket these fractions by rounding down to the 
nearest decile and compute the percentage gain over the machine-
based models for each fraction. Figure 6b reports the percentage 
gain over the machine-based models for each of {0.0,…,0.9}. There 
are clear differences in the gains depending on the fraction of ma-
chine-based model that the person occupies (𝐹(9, 135072) = 3.55, 
𝑝 < 0.001). The gains from ABP are most apparent when there is 
no highly dominant searcher (in the range 0.4-0.6). In this region 
there may be sufficient data on each searcher’s interests—which 
may not be the case when there is a highly-dominant searcher and 
one or more non-dominant counterparts with less data. The perfor-
mance at 0.8 or above is similar to the baseline, likely because the 
machine and person models are more similar at high fractions. 
6.1.3 Number of Searchers 
Also related to the relative model size is the number of searchers 
on the machine, and in turn the number of searchers represented in 
the interest model. We speculated that more searchers lead to nois-
ier and more diverse machine models, and greater benefit from 
ABP. To estimate the impact of the number of searchers, we com-
puted the percentage gain in prediction performance of the person-
based model across the range of different numbers of searchers on 
the machine, from 2-10. Figure 6c visualizes the performance 
across this range. The findings show an increase of predictive per-
formance with a growth in the number of searchers (Pearson’s 𝑟 = 
0.913, 𝑝 < 0.01). The more searchers there are on the machine, the 
more likely the interests represented in the machine-based models 
are to be diverse, and the greater the benefit obtained from ABP. 

6.2 Effect of Query Properties 
In addition to properties of the interest models, we also examined 
the effect of query properties, namely: (1) click entropy, (2) popu-
larity, and (3) topic. We consider each of these properties in turn. 
6.2.1 Click Entropy 
We examine the predictive performance of the machine and person 
models by considering the click entropy for the query. Click en-
tropy measures the diversity in the clicks for the query [14]. To 
compute that statistic for the queries in our dataset, we used a sep-
arate set of query-click logs from the Microsoft Bing Web search 
engine, collected over a time period of two years overlapping fully 
the timeframe from the comScore logs. We did this since the search 
engine logs were much larger, enabling more reliable computations 
of click entropy and better query coverage than if we had used com-
Score logs alone. Indeed, 89% of the queries in our evaluation set 
appeared in the Bing logs, while only 65% appeared in comScore. 
Click entropy (𝐶𝐸) was divided into three buckets: (1) high (𝐶𝐸 ≥ 
2), (2) medium (1 ≤ 𝐶𝐸 < 2), and (3) low (𝐶𝐸 < 1), based on the 
click entropy thresholds used in a prior personalization study [40]. 
The average percentage gains over the machine-based models for 
each of the three query-click entropy buckets are shown in Figure 
7a. There are differences in click prediction performance between 
the three buckets (higher entropy is associated with higher gains for 
the person-based models, 𝐹(2,120079) = 9.21, 𝑝 < 0.001). Higher 
click entropy queries represent more diverse interests are more 
amenable to personalization [40]. For these high 𝐶𝐸 queries, ABP 
is over 20% more effective than the machine-based baseline. 
6.2.2 Popularity 
To obtain information about query popularity, we used the same set 
of queries from the Bing search engine used in the calculation of 
click entropy. The queries in this dataset were grouped into three 
popularity buckets: (1) low popularity-queries that occur fewer 
than 10 times, (2) medium popularity-queries that occur 10-10,000 

times, and (3) high popularity-queries that occur more than 10,000 
times. The average percentage gains over the machine-based mod-
els for each of the three query popularity buckets are shown in Fig-
ure 7b. Although there are significant differences between the 
groups (𝐹(2, 120079) = 4.62, 𝑝 = 0.01), perhaps expected given the 
sample size), the effect size was small (partial eta squared () = 
0.01) suggesting that differences are less meaningful. One explana-
tion is the bucketing criteria (although our experiments with varia-
tions in the thresholds did not dramatically affect the results), or 
that raw popularity is not a good discriminator of queries for which 
person-based models may help (e.g., there may still be individual 
preferences for search results even within popular queries [42]). 
6.2.3 Topic 
As a final aspect of the analysis of query properties, we also exam-
ined the effect of the query topic on the performance of person-
based models vs. machine-based models. For our analysis, the topic 
of the query was taken from the ODP category assigned to the top 
result returned for that query by the search engine whose logs were 
used to obtain entropy and popularity estimates. To simplify the 
analysis, we focus on the 15 top-level categories (again World and 
Regional were removed). Figure 7c shows the percentage gain for 
each of the topics. The topics are ordered on the 𝑥-axis in ascending 
order of gain with respect to the machine-based model. We see that 
although performance for many of topics was similar to the base-
line, there were some topics that performed much better or worse 
than the machine-based baseline (𝐹(14,1004008) = 3.20, 𝑝 < 
0.001). In the cases where the benefit was lowest (Adult and Kids 
& Teens) it is likely that only a subset of the household is interested 
in that content, so the machine-based approach is sufficient. For 
topics where the gain from ABP was highest (News and Society), 
there may be more general interest across searchers, and also more 
diversity in searcher preferences. 
Although we examined the properties separately, there are likely to 
be interactions between these and other factors that influence the 
effectiveness of ABP. One way to understand this is to learn and 
inspect a classifier to predict when to use ABP on a per-query basis. 

6.3 Applying Model and Query Properties 
We used a separate set of 132,887 evaluation queries from 2,549 
people (1,000 machines) taken from one month of comScore logs. 
We constructed on-task interest models from the six months prior 
(as before). These sets did not overlap in machines or time with the 
sets used in Sections 4 and 5. We featurized each model and query 
property described in the previous two subsections, namely: 
 MachineModelEntropy: Entropy of the interest model con-

structed from activity on the current machine. 
 RelativeModelSize: Fraction of machine interest model occu-

pied by classified historic clicks from the current searcher. 
 NumberOfSearchers: Number of distinct searchers whose ac-

tivity is used in building the machine-based interest model. 
 QueryClickEntropy: Click entropy for the query, computed 

based on the held-out Bing search log data (see Section 6.2.1). 
 QueryPopularity: Popularity of the query, computed based on 

the number of instances in the same held-out search log. 
 QueryTopic: Top-level ODP category of the top result for the 

query from the same search engine for the held-out data. 
In practice, these features could be computed automatically for the 
query. Individual interest models for each searcher and the number 
of searchers can already be estimated from search histories [47]. 
For each of the queries in the 1000-machine dataset, we compared 
the F1 score of predictions using the machine- and person-based 
models. The prediction task is defined as predicting when to apply 



ABP (vs. sticking with the machine-based model). In the dataset 
used for training (six months) and testing (one month), if the pre-
diction based on the person-based model was more accurate (higher 
F1), then that was a positive example; if the prediction based on the 
machine-based model was more accurate, then it constituted a neg-
ative. Ties were treated as negative examples since in practice this 
would mean that ABP would not be applied by the search engine. 
We used the featurized properties and these positive and negative 
labels to learn a binary classifier to determine when to apply ABP 
on a per-query basis. We applied a Multiple Additive Regression 
Trees (MART) [17] classifier to perform the prediction. MART 
uses gradient tree boosting methods for regression and classifica-
tion. Advantages of MART include model interpretability (e.g., a 
ranked list of features is generated), facility for rapid training and 
testing, and robustness against noisy labels and missing values. 
We employed ten-fold cross validation, stratified on the person 
identifier, so that queries from a person were either in train or test, 
but not both at the same time. We ran the experiment 100 times, 
each with a random assignment of searchers to folds, and compute 
the average F1 across all 100 runs. The findings of our experiments 
show that we can predict when to apply ABP with good accuracy. 
The average accuracy of the classifier (0.9179) exceeds the mar-
ginal baseline (0.7912) of always predicting the application of the 
machine-based interest models (the dominant class since in only 
20.88% of queries ABP performs best; in 8.78% of queries the ma-
chine-based interest models perform best, and in the remaining 
70.34% of queries the performance is tied). The gains over the mar-
ginal model are significant using a paired 𝑡-test (𝑡(999) = 4.73, 𝑝 < 
0.001). Figure 8 shows the precision-recall curve generated by the 
model averaged across 10 folds for one experimental run. Examin-
ing the model in more detail, the most important features ranked 
based on their evidential weight are MachineModelEntropy (max), 
RelativeModelSize (0.699 of max), and QueryTopic (0.441 of max). 
The breadth of the topical interests on the machine, the contribution 
of the individual to the overall machine activity using in interest 
model construction, and the search topic of the query most affects 
the reliability of predictions about when to apply ABP. 
While the strong classification performance is welcome, the test of 
true utility lies whether this will lead to gains in the accuracy of 
future interest prediction when the classifier is applied. To test this, 
we re-ran the prediction experiment described in Section 5, using 
the output of our classifier to determine whether we should apply 
ABP for each query. The results are reported in Table 5. The table 
shows clear gains from selective application over both models for 
all activity and on-task activity (all gains significant, 𝑝 < 0.001). To 
help frame the magnitude of the observed gains, Table 5 also re-
ports the performance of an oracle model (upper bound) that selects 
the best model source (machine or person) for each query in the 

evaluation set based on F1. We see that applying our classifier leads 
to ABP performance that is 88-96% of the oracle, a significant in-
crease over always applying the person-based model and demon-
strating the benefits of intelligently applying ABP for each query. 

7. DISCUSSION AND IMPLICATIONS 
Shared searching on devices is common. Our oracle study, with 
perfect knowledge of the identifier (machines and people) to which 
actions were attributed, demonstrated clear utility from ABP. Con-
ditioning on query and interest model properties showed that there 
are particular attributes that can help determine when to apply ABP 
for each query. We used the insights from our analysis to learn a 
model to accurately predict this type, and from its application, 
strong gains in personalization were realized. The effectiveness of 
ABP has significant implications for personalization, and heralds a 
new frontier for research in individualizing the search experience. 
Before proceeding, we should discuss some limitations of the work 
as presented. This is a log-based analysis, meaning that we had lim-
ited insight into the intentions and interests of the searchers whose 
activity was examined. Interest prediction has been the focus of this 
and previous studies [45][46], but other applications such as re-
ranking need to be studied (but could not be studied here given the 
lack of results lists in our logs). Although our study demonstrated 
the potential of attribution-based personalization, we only explored 
one implementation (via distributions of ODP categories). Experi-
ments with other representations (e.g., page URLs or domains) and 
sources (e.g., query text or browsing behavior) are also needed. Fi-
nally, our focus is on long-term personalization and for queries with 
non-empty historic models for machine and person (i.e., only que-
ries with some related history, a limitation of personalization gen-
erally [5]). Prior work has also employed within-session activity 
[8][44]. However, within session usage by multiple individuals is 
much less common: 97% of the search sessions in our logs are from 
one person. The remaining 3% are related to noise in using an in-
activity timeout (30 mins, as in [46]) to demarcate search sessions. 
Performing this oracle study required ground truth with both person 
and machine identifiers. This was needed to measure the value of 
ABP independent of the specific attribution method. Previous work 
has shown that the accurate automatic attribution to individuals is 
quite feasible [47]. We need to understand how ABP performance 
changes with such automated attribution. In addition, self-identifi-
cation approaches (e.g., sign-in) need to be explored in this context, 
as do trends toward closer associations between people and their 
devices, which affects the prevalence of shared device usage. 

8. CONCLUSIONS 
We introduced attribution-based personalization and performed an 
oracle study to quantify the potential benefit of using it for future 
interest prediction. We show that there are significant opportunities 
to enhance search personalization via models tailored to individu-
als. We observe an increased accuracy in future interest predictions 
(11-19% in F1-score, depending on the match type) by applying 
this approach. The gains vary when we study particular properties 

Table 5. Percentage change in F1 for selectively applying  
ABP models vs. always applying the machine-based model  

(all diffs sig. at 𝒑 < 0.001, using paired 𝒕-tests). 

Attribution 
Method 

Match type 
All 

activity 
On-task 
activity 

Always ABP +10.90% +19.02% 
Learned +14.13% +23.00% 
Oracle +18.64% +26.11% 

 
 

Figure 8. Precision-recall curve for the prediction of when  
to selectively apply attribution-based personalization. Values 

in the curve are averaged across ten folds for one run (±SEM). 
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of the interest models and the queries. We also show that further 
gains are obtainable by selectively applying ABP. Our findings 
show that ABP has strong potential, and we hope that they will in-
spire future work in this area. Our own future work will explore the 
application of automated attribution methods (building on [47]) to 
develop individualized interest models and combine these methods 
with our models to selectively apply ABP. Overall, it is clear that 
ABP could facilitate the delivery of more personalized results and 
recommendations to those searching on shared devices. 
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