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ABSTRACT
Supervised machine-learning algorithms are used to solve classifi-
cation problems across the entire spectrum of computing platforms,
from data centers to wearable devices, and place significant de-
mand on their computational capabilities. In this paper, we propose
scalable-effort classifiers, a new approach to optimizing the energy
efficiency of supervised machine-learning classifiers. We observe
that the inherent classification difficulty varies widely across inputs
in real-world datasets; only a small fraction of the inputs truly re-
quire the full computational effort of the classifier, while the large
majority can be classified correctly with very low effort. Yet, state-
of-the-art classification algorithms expend equal effort on all in-
puts, irrespective of their complexity. To address this inefficiency,
we propose a systematic approach to design scalable-effort classi-
fier that dynamically adjust their computational effort depending
on the difficulty of the input data, while maintaining the same level
of accuracy. Our approach utilizes a chain of classifiers with in-
creasing levels of complexity (and accuracy). Scalable effort ex-
ecution is achieved by modulating the number of stages used for
classifying a given input. Every stage in the chain is constructed
using an ensemble of biased classifiers, which is trained to detect
a single class more accurately. The degree of consensus between
the biased classifiers’ outputs is used to decide whether classifica-
tion can be terminated at the current stage or not. Our methodology
thus allows us to transform any given classification algorithm into a
scalable-effort chain. We build scalable-effort versions of 8 popular
recognition applications using 3 different classification algorithms.
Our experiments demonstrate that scalable-effort classifiers yield
2.79× reduction in average OPS per input, which translates to 2.3×
and 1.5× improvement in energy and runtime over well-optimized
hardware and software implementations, respectively.

1. INTRODUCTION
For many computational systems, all inputs are not created equal.
Consider the simple example of 8-bit multiplication; intuitively,
computing the product of 02h and 01h should be easier than multi-
plying 19h and 72h. Similarly, compressing a picture that contains
just the blue sky should take less effort than one that contains a
busy street. Ideally, to improve both speed and energy efficiency,
algorithms should expend effort (computational time and energy)
that is commensurate to the difficulty of the inputs. Unfortunately,
for most applications, discriminating easy inputs from hard ones at
runtime is challenging. Thus, hardware or software implementa-
tions tend to expend constant computational effort as determined
by worst-case inputs or a representative set of inputs. In this pa-
per, we focus on a specific, important class of algorithms - machine
learning classifiers - and show how they can be constructed to scale
their computational effort depending on the difficulty of the input
data, leading to faster and more energy-efficient implementations.

Machine-learning algorithms are used to solve an ever-
increasing range of classification problems in recognition, vision,
search, analytics and inference across the entire spectrum of com-
puting platforms [1]. Machine learning algorithms operate in two
phases: training and testing. In training, decision models are con-
structed based on a labeled training data set. In testing, the learnt
model is applied to classify new input instances. The intuition be-
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Figure 1: (a) Traditional approach: learn one (complex) model;
apply to all instances. (b) Proposed approach: learn multiple
models; apply one or more depending on difficulty of input.

hind our approach is as follows. During the training phase, instead
of building one complex decision model, we construct a cascade or
series of models with progressively increasing complexity. During
testing, depending on the difficulty of an input instance, the num-
ber of decision models applied to it is varied, thereby achieving
scalability in time and energy.

Fig. 1 illustrates our methodology through a specific machine
learning algorithm namely a binary support-vector machine (SVM)
classifier. In the traditional approach shown in Fig. 1(a), input train-
ing examples are used to build a decision boundary (model X) that
separates data into two categories or classes. At test time, data in-
stances are assigned to one class or the other depending on their
location relative to the decision boundary. The computational ef-
fort (in terms of energy and time) to process every test instance de-
pends on the complexity of the decision boundary, e.g., non-linear
boundaries typically cost more than linear ones. In the example
of Fig. 1(a), a single model (X) clearly needs to use a non-linear
boundary in order to separate the classes with high accuracy. How-
ever, this leads to high computational effort for not only the hard
test data instances (points close to the decision boundary) but also
the easy test data instances (points far removed from the decision
boundary). In contrast, Fig. 1(b) shows our approach, where we
create multiple decision models (Y and Z) with varying levels of
complexity. In the simpler model (Y), two different linear decision
boundaries (dashed lines) are used to classify the easier training in-
stances, while leaving a subset of training instances unclassified.
The complex model (Z) is employed only for instances that cannot
be classified by the simpler model. This approach can save time
and energy, since all data instances need not be processed by the
more complex non-linear decision model.

The amount of computational time and energy saved depends on
the application at hand. Fortunately, in many useful applications,
lots of test data is easy. For instance, while detecting movement
using a security camera, most video frames contain only static ob-
jects. We quantify this intuition for the popular MNIST handwrit-
ing recognition dataset [2]. Fig. 2 shows statistics from the dataset
(inset shows some representative hard and easy instances). Observe
that only 5-30% of the data is close to the decision boundary.

We generalize the approach described above for any machine
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Figure 2: MNIST dataset: only 5-30% of instances are hard.
learning classifier by constructing a cascaded series of classifica-
tion stages with progressively increasing complexity and accuracy.
We also show how to construct simpler models for each stage by
using an ensemble of biased classifiers.

How do we determine the difficulty of an instance at runtime?
Besides model partitioning, this is another challenge that we ad-
dress in the paper. We determine the hardness of each test data
instance implicitly. The top portion of Fig. 1(b) illustrates our ap-
proach. We process test instances through the decision models in
a sequence starting from the simplest model. After the application
of every model, we estimate the confidence level of the produced
output (i.e., the class probability or classification margin). Con-
structing each model as an ensemble of biased classifiers further
facilitates this, since their consensus may be used to indicate the
confidence of classification. If the confidence is above a threshold,
we accept the output class label produced by the current model and
terminate the classification process. Simpler data instances get pro-
cessed through only the initial few (simpler) models, while harder
instances need to go through more models. Thus, our approach pro-
vides an inbuilt method to scale computational effort at test time.

In summary, we make the following contributions:
• Given any machine learning classifier, we propose a system-

atic approach to construct a scalable-effort version thereof
by cascading classification stages of growing accuracy and
complexity. The scalable-effort classifier has accuracy
comparable to the original one, while being faster and more
energy efficient.

• To construct the stages of the scalable effort classifier, we
propose ensembles of biased classifiers and a consensus
operation that determines the confidence level in the class
labels produced by the classification stage.

• We present an algorithm to train a scalable effort classifier
that trades off the number of stages, complexity of each
stage, and fraction of inputs classified by each stage, to op-
timize the overall computational effort spent in classification.

• Across a benchmark suite of eight applications that utilize 3
classification algorithms, we show that scalable effort clas-
sifiers provide 1.5× average reduction in runtime. Through
hardware implementations in a 45nm SOI process, we also
demonstrate an average of 2.3× reduction in energy.

The rest of the paper is organized as follows. In Section 2, we
present related work. In Section 3, we describe our approach to
the construction of scalable-effort classifiers. In Section 4, we de-
scribe a methodology to construct such classifiers. In Section 5, we
describe our evaluation methodology and benchmarks. We present
experimental results in Section 6 and conclude in Section 7.

2. RELATED WORK
Most previous efforts in building input-aware computational sys-
tems have considered application-specific solutions [3, 4]. Gen-
eralizing such approaches to arbitrary circuits, or even classes of
applications as we attempt, is non-trivial.

In a broad sense, approximate computing [5–11], which exploits
the resilience of applications to approximate or inexact execution
of their underlying computations, also leverages the fact computa-
tional effort can be scaled at different levels of abstraction [5, 6].
However, these techniques usually provide an explicit tradeoff be-
tween efficiency and quality of results. In contrast, our approach
provides energy savings, while maintaining classification accuracy.
Thus, these existing methods are complementary to the concept of
scalable-effort classifiers.

On the algorithmic front, using multiple classifiers for increasing
learning accuracy is an active area of research [12]. However, using
them to reduce energy and runtime has only received limited atten-
tion. The closest related approach is the method of cascaded classi-
fication [13]; the Viola-Jones algorithm used for face detection is a
classic example [14]. It comprises a 21-stage cascade of simple de-
tectors that operate on multiple patches of an image. At each stage,
if an image patch matches a particular pattern, it is passed on to the
next stage for classification; if not, it is rejected early in the chain.
Thus, cascaded classifiers provide a limited form of one-class scal-
ability (i.e., for instances belonging to the non-face class). For an
image to be deemed belonging the face-class, however, it has to
pass through all stages, resulting in fixed computational effort [15].
Another recent attempt employs a tree of simple classification mod-
els [16], which again exhibits scalable effort in a limited form.

The methodology that we propose in this paper builds upon the
concept of cascading classifiers. Unlike existing work, which ap-
plies to only faces, our methodology is generic and applicable to
any given classification algorithm and dataset. Further, unlike ex-
isting work, which allows only early rejects, our approach allows
early class labeling (including multi-class labels) at any stage along
the scalable-effort chain. Aditionally, we explore new insights into
the micro-architecture of the classifier, including the associated
energy-accuracy trade-offs.

3. SCALABLE-EFFORT CLASSIFIERS
In this section, we present our structured approach to design scal-
able effort classifiers. Fig. 3 shows the conceptual view of a
scalable-effort classifier. Given any classification algorithm, differ-
ent models are learnt using the same algorithm and training data.
These models are then connected in a sequence such that the initial
stages are computationally efficient but have lower classification
accuracies, while the later ones have both higher complexities and
accuracies. Further, each stage in the cascade is also designed to
implicitly assess the hardness of the input. During test time, data is
processed through each stage, starting from the simplest model, to
produce a class label. The stage also produces a confidence value
associated with the class label. This value determines whether the
input is passed on to the next stage or not. Thus, class labels are
produced earlier in the chain for easy instances and later for the
hard ones. If an instance reaches the final stage, the output label is
used irrespective of the confidence value. Next, we present more
details on how each stage of Fig. 3 is designed.

3.1 Structure of Classifier Stages
First, we consider the case of a binary classification algorithm with
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Figure 3: A scalable-effort classifier comprises a sequence of
decision models, which grow progressively complex.



Scalable effort classifier, Stage i

C+(Ii)

Stage 
Inputs

Next Stage 
Inputs (Ii+1)

C-

C+ + + - -
C- + - + -

Out + NC NC -

Con-
sensus

NC

C

NC

C

X

X
Class 
Labels

(a)
Feature 1 

Fe
at

u
re

 2
 

NC

Classified 
Inputs

-

+
+ +

++
+

+
+

+
+

-
-
-
-
-

-
-
- -

- -- --- -
-

- --

-

- -

-

- --- --- - -

+
++ +

+
+

+

++
+

+

+
+

C-

C+

Next-stage 
Inputs

(b)

Figure 4: (a) Each stage comprises of two biased classifiers and
a consensus module. (b) The stage produces labels or next-stage
inputs depending on the consensus.

two possible class outcomes + and -. In such a scenario, each stage
comprises two biased classifiers at the core; biased classifiers are
those that are trained to detect one particular class with high accu-
racy. For instance, if a classifier is biased towards class + (denoted
by C+), it frequently mispredicts inputs from class - but seldom
from class +. Besides the biased classifiers, the stage also contains
a consensus module, which determines the confidence value of the
class label assigned to every test instance. Fig. 4(a) shows the block
diagram of a classifier stage. The consensus module of the ith stage
makes use of the output from the two biased classifiers to produce
either the class labels or inputs to the next stage (denoted by Ii+1).
This decision is made based on the following two criteria:

1. If the biased classifiers predict the same class i.e., ++ or - -,
then the corresponding label i.e., + or - is produced as output.

2. If the biased classifiers produce no consensus (NC) i.e., +-
or -+, the input is deemed to be difficult to classify by the
stage and the next-stage inputs are produced.

To better understand how each stage functions, consider the exam-
ple shown for a binary SVM in Fig. 4(b). The two biased classifiers
used (i.e., C+ and C−) are linear SVMs, which are computationally
efficient. Observe how the decision boundaries for the two classi-
fiers are located such that they do not misclassify instances from
the class towards which they are biased. For all input test instances
that lie in the hatched region, both biased classifiers provide iden-
tical class labels (i.e., consensus). However, there is no consensus
on input instances that lie in the grayed-out region. Test instances
in this latter region are thus passed on as inputs to the next stage.

Since the end-to-end scalable-effort classifier comprises many
such individual stages in a sequence, the following two factors de-
termine its the overall runtime and accuracy: (1) the number of
connected stages and (2) the fraction of training data that is pro-
cessed by each stage. These factors present an intertwined tradeoff
in the design of the scalable-effort classifier, which we explain next.

3.2 Runtime and Accuracy Optimization
The consensus operation and method of biasing component classi-
fiers in each stage directly control the number of stages and frac-
tion of training data processed by each stage. In this section, we
describe their design. In order to better understand the implications
of these parameters, we first provide some mathematical insight
that goes into the selection of each classifier stage.

For every stage i, with cost γi per instance, let Ii be the fraction
of inputs that reach stage that stage. If γi+1 is the cost per instance
of the next stage, then the following condition should be satisfied
to admit stage i into the sequence:

γi · (Ii − Ii+1) + γi+1 · Ii+1 < γi+1 · Ii (1)

The left-hand side in the above equation represents the cost when
the stage is present, which is given by the sum of the costs incurred

due to the fraction of inputs that the stage classifies (i.e. Ii−Ii+1) and
the costs incurred by the next stage due to the fraction of inputs that
the stage does not classify (i.e., Ii+1). This cost should be lower than
the cost that would be incurred if all Ii instances were processed by
the next stage [i.e., the right-hand side of Eq. (1)].

In the SVM example presented in the previous section, we de-
scribed how identical labels from the two biased classifiers imply
consensus and contradicting labels mean NC. In reality, however,
the component classifiers produce labels based on the class prob-
abilities associated with the labels. This allows us to design a
slightly different consensus measure (or confidence value) called
the consensus threshold, which controls the number of instances
processed by a stage. Further, the cost associated with a stage can
be modulated depending on the method of biasing the component
classifiers. We describe these two design parameters next.

3.2.1 Choice of Consensus Threshold
Since the biased classifiers produce class probabilities, we combine
the component classifier outputs over a continuum to either relax or
tighten the consensus operation. To help us achieve this flexibility,
we employ a tweakable parameter called the consensus threshold
(denoted by δ). Fig. 5 illustrates the impact of different choices of
δ for a stage; for larger values, the fraction of the input examples
classified by a stage diminishes and vice versa. For negative values
of δ, inputs can be labeled by a stage even if the classifiers disagree
on the individual class assignments provided their confidence in the
contradictory predictions is jointly greater than δ. Thus, δ directly
controls the fraction of inputs classified by a stage. To achieve
computational efficiency, we optimize for the value of δ at training
time such that it minimizes the total number of misclassifications.

3.2.2 Biasing the Component Classifiers
In Eq. (1), while δ controls the number of input instances processed
by a stage, the method of biasing the component classifiers controls
the computational cost. Observe that the total cost of each stage
is the sum of the costs associated with the two biased classifiers.
The following options are available to design the biased component
classifiers:
• Asymmetric weighting: We bias classifiers by assigning

misclassification penalties to training instances depending
on the associated class labels. For instance, while buliding
C+, we assign higher weights to instances from the + class,
which encourages them to be classified correctly at the cost
of misclassifying instances from the - class.

• Resampling and sub-sampling: To bias a classifier towards
a particular class, we generate additional examples in that
class by adding some uniform noise to the existing instances
or sub-sampling instances from the opposite class. This
provides a way of implicitly weighting the instances.

• Tweaking algorithmic knobs: Many classification algo-
rithms provide parameters that control their complexity and
bias. Some examples include changing the kernel function
from a linear to a non-linear function in an SVM and the
number of neurons and layers in a neural-network.
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Figure 5: δ controls the fraction of inputs classified by a stage.
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Most algorithmic knobs significantly impact the classifier complex-
ity but provide less control over biasing. Thus, we make limited use
of this approach. On the other hand, the first two approaches above
are complementary and provide much more control over biasing.
Thus, we employ them jointly in our design.

3.3 Multi-way Scalable-effort Classifiers
We extend our approach to multi-class problems by employing a
well-known strategy called one vs. rest classification, which re-
duces the computation to multiple binary classifications. The strat-
egy involves training one classifier per class, with samples from
that class regarded as positive (i.e., +) while the rest as negative
(i.e., -). At test time, the highest confidence values across multiple
such one vs. rest classifiers determines the final class assignment.

Fig. 6(a) shows the design of a stage of a scalable-effort multi-
way classifier. It comprises several binary classification units, each
containing a pair of biased classifiers and a local consensus (LC)
module similar to the one shown in Fig. 4(a). It also contains a
global consensus (GC) module, which aggregates outputs from all
LC modules in the stage. The functionality of GC is illustrated in
Fig. 6(b). If there is positive consensus (i.e., ++) in exactly one
LC module, then the GC outputs a class label corresponding to the
consenting binary-classification unit. If more than one LC module
provides consensus, then the next stage is invoked.

Another feature of multi-way scalable-effort classifiers is class
pruning, i.e., even if a stage does not classify a given input, it can
eliminate some of the classes from consideration in the next stage.
Specifically, if there is no consensus in the GC module and if the LC
output shows negative consensus (i.e., - -) then binary classification
units corresponding to that particular class need to be evaluated in
subsequent stages. Thus, only class that produce positive consensus
or NC are retained down the chain. This early class pruning leads
to increased computational efficiency.

4. DESIGN METHODOLOGY
In this section, we describe the procedure for training and testing
scalable-effort classifiers.

4.1 Training Scalable-effort Classifiers
Algorithm 1 shows the pseudocode for training. The process takes
the original classification algorithm Corig, training data Dtr, and
number of classes M as input. It produces a scalable-effort version
of the classifier Cse as output, which includes the biased classifiers
C+/− and consensus thresholds δ for each stage.

First, we train Corig on Dtr and obtain its cost γorig (line 1). Then,
we iteratively train each stage of the scalable-effort classifier Cstg
(lines 2-22). The algorithm terminates if a stage does not improve
the overall gain Gstg beyond a certain threshold ε (line 3). Next, we
describe the steps involved in designing each stage of Cse.

To compute Cstg, we initialize Gstg and complexity parameter λstg
to +∞ and −∞, respectively (line 2). Then, we obtain C+/− (line 5).

We follow-up by assigning the smallest value of δ that yields an
accuracy of ∼100% on Dtr to be the consensus threshold for the
stage δstg (line 6). Once, we determine C+/− and δstg for all classes,
we proceed to estimate the number of inputs classified by the stage
∆Istg by iterating over Dtr (line 9-17). During this time, we compute
LC and GC values for each instance in Dtr (lines 10-11). For any
instance, if global consensus is achieved (line 12), we remove it
from Dtr for subsequent stages and increment ∆Istg by one (line 13).
If not, we add a fractional value to ∆Istg, which is proportional to the
number of classes eliminated from consideration by the stage (line
15). After all instances in Dtr are exhausted, we compute Gstg as
the difference between the improvement in efficiency for the inputs
it classifies and the penalty it imposes on inputs that it passes on
to the next stage (line 18). We admit the stage Cstg to the scalable-
effort classifier chain Cse only if Gstg exceeds ε (line 19). Since
instances that are classified by the stage are removed from Dtr used
for subsequent stages, one or more classes may be exhausted. In
this case, we terminate the construction of additional stages (line
20) and proceed to append the final stage (line 23). The complexity
of the classifier is increased for subsequent stages (line 21).

Algorithm 1 Methodology to train scalable-effort classifiers
Input: Original classifier Corig, training dataset Dtr, # classes M
Output: Scalable-effort classifier Cse (incl. δ and C+/− ∀ stages)
1: Train Corig using Dtr and obtain classifier cost γorig
2: initialize stage gain Gstg = +∞, complexity param. λstg = −∞,

and allClassesPresent = true
3: while (Gstg > ε and allClassesPresent) do
4: for currentClass :=1 to M do // evaluate stage Cstg
5: Train C+/− biased towards currentClass using Dtr and λstg
6: δstg ← minimum δ s.t. training accuracy = 100%
7: end for
8: initialize # input instances to stage Istg = # instances in Dtr

and # instances classified by stage ∆Istg = 0
9: for each trainInstance ∈ Dtr do // compute ∆Istg for Cstg

10: Compute local consensus LC ∀M classes
11: Compute global consensus GC
12: if GC← true then
13: remove trainInstance from ∈ Dtr and ∆Istg ← ∆Istg + 1
14: else
15: ∆Istg ← ∆Istg + # negative LCs / M
16: end if
17: end for
18: Gstg = (γorig − γstg) · ∆Istg − γstg · (Istg − ∆Istg)
19: if Gstg > ε then admit stage Cstg into Cse
20: if any class is absent in Dtr then allClassesPresent← false
21: λstg + + // increase classifier complexity for next stage
22: end while
23: append Corig as the final stage of Cse

4.2 Testing Scalable-effort Classifiers
Algorithm 2 shows the pseudocode for testing. Given a test in-
stance itest, the process obtains the class label Ltest for it using Cse.
First, the list of possible outcomes is initialized to the set of all
class labels (line 1). Each stage Cstg is invoked iteratively (lines 2-
15) until the instance is classified (lines 2). In the worst case, Corig
is employed in the final stage to produce a class label (lines 3-4). In
all other cases, the following steps are carried out. At each active
stage, C+/− are invoked to obtain an estimate of LC (line 6) and
GC (line 7). If global consensus is achieved, i.e., one LC output is
positive and the rest are negative (lines 8-10), then the instance is
predicted to belong to the class with the highest LC value (line 9).
If not, the list of active classes is pruned by removing the classes for
which LC is negative (line 11). Subsequent stages are then invoked
with the reduced set of possible outcomes (line 14).

In summary, Cse implicity distinguishes between inputs that are



easy and hard to classify. Thus, it improves the overall efficiency of
any given data-driven classification algorithm. Next, we describe
our experimental setup, which helps us evaluate the performance of
scalable-effort classifiers.

Algorithm 2 Methodology to test scalable-effort classifiers
Input: Test instance itest, scalable-effort classifier Cse, # stages Nse

in Cse, and # possible classes M
Output: Class label Ltest
1: initialize possibleClassesList = {1,2,. . .,M}, currentStage = 1,

and instanceClassified = false
2: while instanceClassified = false do
3: if currentStage = Nse then // apply Cse to itest
4: Ltest ← Cse [itest]; instanceClassified← true
5: else
6: Compute local consensus LC ∀M classes
7: Compute global consensus GC
8: if GC ← true then // global consensus achieved
9: Ltest ← label ∈ max (LC); instanceClassified← true

10: else
11: ∀ LC = -1, delete labels from possibleClassesList
12: end if
13: end if
14: currentStage← currentStage + 1
15: end while

5. EXPERIMENTAL METHODOLOGY
Using scalable-effort classification, we demonstrate improvements
in both software runtime and hardware energy consumption.

Application benchmarks. Table 1 shows the benchmarks and
datasets that we use in our experiments. We evaluated 8 applica-
tions with over 9000 features and up to 10 classes. Between them,
they utilize three common supervised machine-learning algorithms,
namely the SVM, neural networks, and decision trees (J48 algo.).

Table 1: Application benchmarks used in our experiments

Algorithm Application Dataset
[17]

Features
/ Classes

Support-
vector
machines

Handwriting reco. MNIST [2] 784 / 10
Human activity reco. Smartphones 561 / 6
Eye detection YUV faces 512 / 2
Text classification Reuters 9947 / 2

Neural
networks

Enzyme classification Protein 356 / 3
Census data analysis Adult 114 / 2

Decision
trees-J48

Game prediction Connect-4 42 / 3
Census data analysis Adult 114 / 2

Energy and runtime evaluation. We implemented scalable-
effort versions of each of the above in C#. We also integrated
WEKA, a machine-learning toolkit, as a backend to our soft-
ware [18]. This helped us rapidly train and evaluate different
component classifiers. We measured runtime for the applications
using performance counters on a commodity Intel Core i5 note-
book with a 2.5 GHz processor and 8 GB of RAM. For the energy
measurements, we implemented each classifier as an accelerator at
the register-transfer logic (RTL) level to the many-core machine-
learning architecture described in [11]. We used Synopsys design
compiler to synthesize the integrated design to a 45 nm SOI process
from IBM. Finally, we used Synopsys power compiler to estimate
the energy consumption at the gate level.

6. RESULTS
In this section, we present experimental results that demonstrate the
benefits of our approach.

6.1 Energy and Runtime Improvement
Fig. 7 shows the normalized improvement in efficiency with scal-
able effort classifiers designed to yield the same classification accu-
racy as the single-stage classifier (which forms the baseline) for all
applications. We quantify efficiency in terms of three metrics: (i)
average number of operations (or computations) per input (OPS),
(ii) energy of hardware implementation, and (iii) execution time
of software. We observe that scalable effort classifiers provide be-
tween 1.2×-9.8× (geometric mean: 2.79×) improvement in average
OPS/input compared to the baseline. Note that the benefits vary
depending on the fraction of hard-to-classify inputs in the dataset
and the complexity of the classifier stages. For instance, the CON-
NECT application, in which we obtain the least improvement, fil-
ters only 25% of the inputs, while the complexity of the stages
amount to 10% of the original classifier. On the other extreme, the
EYES application classifies 90% of the inputs at a cost of 0.2%
of the baseline. In the case of hardware and software implementa-
tions, the reduction in OPS/input translates on an average to 2.3×
and 1.5× improvement in energy and runtime, respectively. While
still substantial, due to the control and memory overheads involved,
the benefits in energy and runtime for some applications are lower
than that in OPS/input. In particular, the impact of implementation
overheads is pronounced in the case of applications with smaller
feature sizes and datasets.
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Figure 7: Improvement in average OPS/input, energy, and run-
time for different applications compared against the baseline.

6.2 Impact of Hard Inputs on Efficiency
In this section, we examine the impact of hard-to-classify inputs
on the overall efficiency of the scalable-effort classifiers. Towards
this end, we identify inputs that are closer to the decision bound-
ary of the original classifier and vary their proportion in the test
dataset. Fig. 8(a) shows the normalized OPS required for different
fractions of hardware inputs for three applications. Naturally, as the
fraction of hard inputs increases, the benefits of scalable-effort ex-
ecution are lowered. In fact, when the fraction increases beyond a
certain level, scalable-effort classifiers become inefficient depend-
ing on the application and the complexity of the classifier stages.
Fig. 8(b) shows the normalized complexity of the corresponding
classifier stages. In the case of EYES, where the stage complexity
is only 0.2%, scalable-effort design is desirable even when more
than 99% of the inputs are hard [dashed vertical line in Fig. 8(a)].
As the stage complexity increases to 10% and 26%, as in the case
of CONNECT and ADULT-NN, the break-even point occurs earlier
at 85% and 72% of hard inputs respectively. The default fraction
of hard inputs in these applications are also marked in Fig. 8(a),
which corresponds to the benefits reported in Sec. 6.1.

6.3 Optimizing the No. of Classifier Stages
Choosing the right number of stages is critical to the efficiency of
the scalable-effort architecture. We study the impact of this choice
by varying the number of stages for the ADULT-J48 application.
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Figure 8: (a) Benefits are lowered when there are more hard-
to-classify inputs. (b) Classifier complexity varies across apps.

The normalized OPS of the overall classifier split amongst each
stage is shown in Fig. 9(a) – the original classifier has a stage count
of one. When the number of stages is increased to 2, we see a large
drop in total OPS, as the stage adds a small overhead, while sig-
nificantly reducing the OPS contributed by the final stage. As we
add a 3rd stage, we observe only a slight improvement. Though
the stage decreases the number of final stage OPS, its added com-
plexity nearly balances the reduction. Ultimately, the 4th stage is
unfavorable as it increases the overall OPS. To gain additional in-
sight, consider the normalized stage complexity and the fraction of
inputs classified at each stage shown for the 4-stage classifier in
Fig. 9(b). As expected, stage 1 is quite simple (5% complexity)
and classifies a disproportionately large number (53%) of inputs.
Stage 2 is balanced, with 24% complexity and 29% classification
rate. The trade-off is reversed for the third stage, whose complexity
is 53%, but classifies only 18% of additional inputs. This behavior
is also reflected in the gain of each stage quantified by our design
methodology in Fig. 9(b).

0

0.2

0.4

0.6

0.8

1

1 2 3 4

N
or

m
. O

PS
 Æ

No. of Stages (incl. final clf)  Æ

St. 1

St. 2

St. 3

St. Final

Total

1

0.47

0.18
0.06 00 0.05

0.24

0.53

1

0

0.4

0.8

1.2

0

0.4

0.8

1.2

0 1 2 3 4

N
or

m
. C

om
pl

ex
ity

 Æ

Fr
ac

. I
np

ut
s Æ

Stage ID  Æ

Inputs
Complexity

Final

Gain 0.48 0.05 -0.41 ---

(a) (b)

Figure 9: Normalized reduction in OPS with different number
of classifier stages for ADULT-J48 application

6.4 Efficiency-Accuracy Tradeoff using δ
The consensus threshold δ provides us a powerful knob to trade
accuracy for efficiency. Fig. 10 shows the variation in the normal-
ized energy and accuracy of the scalable-effort classifier with differ-
ent values of δ for two applications. In the case of MNIST, when
δ = 0, the accuracy is ∼ 5% lower than the baseline, with over
10× improvement in energy. To reach the same level of accuracy, δ
should be increased at the cost of higher energy consumption, since
now more inputs will reach the final classifier stage. Decreasing δ
improves efficiency, but further degrades accuracy. For the EYES
application, we find that even when δ = 0, the accuracy is on par
with the original classifier and has 3.5× lower energy. Therefore, if
we lower δ to −0.5, energy efficiency increases to 9× with minimal
loss in accuracy. Further decreasing δ still leads to only a slight
degradation in accuracy; 3% lower for 30× energy improvement
for δ = −1. Thus, the efficiency and accuracy of scalable-effort
classifiers is a strong function of δ, which can be easily adjusted at
runtime to an appropriate value.
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Figure 10: Energy v.s. accuracy trade-off by modulating con-
sensus threshold

7. CONCLUSION
Supervised machine-learning algorithms play a central role in the
realization of various prominent applications and place significant
demand on the computational capabilities of modern computing
platforms. In this work, we identify a new opportunity to optimize
machine learning classifiers by exploiting the significant variabil-
ity in the inherent classification difficulty of its inputs. Based on
the above insight, we propose the concept of scalable effort classi-
fiers, or classifiers that dynamically scale their effort to match the
complexity of the input being classified. We develop a systematic
methodology to design scalable effort versions for any given classi-
fier and training dataset. We achieve this by combining biased ver-
sions of the classifier that progressively grow in complexity and ac-
curacy. The sclable-effort classifier is equipped to implicitly modu-
late the number of stages used for classification based on the input,
thereby achieving scalable effort execution. To quantify the po-
tential of scalable effort classification, we build scalable effort ver-
sions of 8 recognition and computer vision applications, utilizing 3
popular machine learning classifiers. Our experiments demonstrate
2.79X reduction in average OPS per input, which translates to 2.3X
and 1.5X improvement in energy and runtime over well-optimized
hardware and software implementations of the applications.
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