
Composing Concurrency Control

Ofri Ziv
Tel Aviv University, Israel

ofriziv@tau.ac.il

Alex Aiken
Stanford University, USA
aiken@cs.stanford.edu

Guy Golan-Gueta
Tel Aviv University, Israel

ggolan@tau.ac.il

G. Ramalingam
Microsoft Research, India
grama@microsoft.com

Mooly Sagiv
Tel Aviv University, Israel

msagiv@tau.ac.il

Abstract
Concurrency control poses significant challenges when composing
computations over multiple data-structures (objects) with differ-
ent concurrency-control implementations. We formalize the usually
desired requirements (serializability, abort-safety, deadlock-safety,
and opacity) as well as stronger versions of these properties that
enable composition. We show how to compose protocols satisfying
these properties so that the resulting combined protocol also satis-
fies these properties. Our approach generalizes well-known proto-
cols (such as two-phase-locking and two-phase-commit) and leads
to new protocols. We apply this theory to show how we can safely
compose optimistic and pessimistic concurrency control. For ex-
ample, we show how we can execute a transaction that accesses
two objects, one controlled by an STM and another by locking.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords composable concurrency

1. Introduction
Current approaches to designing concurrent software tend to as-
sume that whatever concurrency control mechanism is selected,
that one mechanism will be used exclusively throughout the sys-
tem. In reality, large systems are usually assembled from existing
small ones that were often designed separately, and most real sys-
tems that we are familiar with have a variety of concurrency con-
trol protocols that are occasionally intermingled in complex ways.
In this paper, we develop a theory that allows us to reason about
and prove the correctness of compositions of different concurrency
control protocols. Our results provide a framework for understand-
ing when and why certain combinations of concurrency control
strategies are correct or incorrect. In addition, while the focus of
this paper is on the theoretical foundations, our approach opens up
the possibility of intentionally designing systems that mix different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, , June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737970

concurrency control protocols to take advantage of their different
strengths with respect to performance and semantics.

Motivation Figure 1 shows a simplified version of the Intruder
benchmark from Jstamp (a Java version of the STAMP library [6]).
Intruder is a Java program that consists of many threads, each

main() {
while p = T1() do { T2(p); T3(); }

}
T1() {

[1
packet = packet q.deq();

]1
return packet ;

}
T2(packet) {

[2
if flows m.has key(packet.flowID) {

l = flows m[packet.flowID];
l.add(packet);

} else {
l = new List(packet);
flows m[packet.flowID] = l;

}
if packet.fragments == list.size() {

s = l.toString();
flows m.remove(packet.flowID);

[3
} * Overlap Point *\

]2
if null != s {

complete q.enq(s);
}

]3
}
T3() {

[4
data = complete q.deq();

]4
print isAttack(data);

}

Figure 1. An example with three atomic transactions. Intervals
of the form [i· · ·]i denote “synchronization windows” which are
explained in the sequel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3468-6/15/06...$15.00

http://dx.doi.org/10.1145/2737924.2737970

240

Figure 2. The performance of the Intruder benchmark under three synchronizations. The dotted line represents two-phase locking. The
dashed line represents ScalaSTM [4]. The solid line represents a combination (composition) of the previous two techniques. Measurements
were performed on a Xeon E5620 machine with 2 quadcore CPUs, each core featuring two hardware threads (i.e., 16 hardware threads
overall).

executing the main procedure which invokes three other procedures
T1, T2, and T3, each of which is required to execute atomically, as
a software transaction. These transactions manipulate three shared
data structures packet q (a queue), complete q (another queue), and
flows m (a map).

We first consider two well-known ways of ensuring that each of
the procedures T1, T2, and T3 executes atomically.

Pessimistic Locking: One approach is to associate a distinct
lock with each of the data-structures (packet q, flows m and com-
plete q). T1 is realized by invoking lock and unlock operations on
packet q before and after the deq operation (at the points in the
code indicated by [1 and]1). Similarly, for T3, we replace [4/]4 by
lock/unlock operations on complete q’s lock. Since T2 accesses
two data-structures, we use the two-phase-locking protocol within
T2. This protocol requires each thread to execute in two phases: a
“growing” phase where the thread may acquire locks but not re-
lease locks, followed by a “shrinking” phase in which the thread
may release locks but cannot acquire locks. Two-phase-locking can
be enforced in T2 by replacing [2/]2 by lock/unlock operations
on flows m and [3/]3 by lock/unlock operations on complete q.

Optimistic STM: An alternative approach is to use an opti-
mistic STM [17] that wraps each transaction with a begin transaction
and end transaction. For instance, we could replace [1, [2 and [4 by
begin transaction and]1,]3 and]4 by end transaction (the brackets
[3/]2 are simply discarded in this case). An optimistic STM imple-
mentation allows transactions to execute without acquiring locks,
but checks for potential conflicts, e.g., when a transaction tries to
commit. In the presence of conflicts, some transactions are aborted
and retried.

Locking + Optimistic STM: We could also consider a third,
more aggressive and speculative, approach: We could choose the
concurrency control solution for each data-structure independently.
For instance, since operations on packet q and complete q involve
a relatively high fraction of write operations, we can choose to
use lock-based concurrency for these data structures. Since ac-
cesses to flows m are read-heavy we may want to use an opti-
mistic STM. (This solution can be achieved by replacing [2/]2 by
begin transaction and end transaction, and by replacing all other
[i/]i by lock/unlock operations on corresponding locks. Explain-
ing how we can compose distinct choices of concurrency control
for different parts of a program is the contribution of this paper.

There are compelling reasons to consider the use of multiple
concurrency control protocols within the same transaction, as ex-
plained below.

Convenience and Expressiveness. A common scenario is that a
project needs to use an existing library whose concurrency control

properties have already been chosen. Perhaps the library uses locks,
or perhaps the library is not even thread-safe and needs to be
wrapped in STM atomic blocks, or perhaps the library is based
on lock-free data structures. A flexible approach that allows us to
combine different concurrency control protocols is obviously very
convenient.

Performance. As Figure 2 illustrates, combining locking with
STM yields better performance than using just a locking-based or
an STM-based solution for the Intruder benchmark. In fact, paral-
lelism yields almost no benefits with the locking-based or STM-
based approaches, because using either choice exclusively is a very
poor fit for some operations: The queue data-structures (packet q
and complete q) are more efficient with locking as they have high
contention writes to the head and tail of the queue, whereas the
map data-structure flows m has an overall very low contention and
so is better suited to optimistic concurrency. In general, the ability
to compose different concurrency control strategies leads to more
implementation choices, with potential performance benefits.

Here is another example to motivate flexible composition of
concurrency protocols and the need for a general theory to en-
able it. Since T3 consists of a single operation on complete q, is
it safe to use an off-the-shelf optimized linearizable queue imple-
mentation (without any extra concurrency control) for this queue?
The answer depends on the choices made for the other data struc-
tures. Since T2 accesses both flows m and complete q, the choices
made for flows m and complete q must be compatible with each
other. A pessimistic flows m that guarantees never to abort a trans-
action is compatible with a linearizable complete q, but an opti-
mistic flows m that may abort is not compatible with a linearizable
complete q.

Contributions The main contribution of our work is a theory for
correctly composing concurrency control protocols. In Section 2,
we introduce a uniform formalism and framework that allows us to
precisely formulate the problem. We refer to a shared data-structure
used within a transaction, associated with its own concurrency
control protocol, as an object. The concurrency control protocol
on an object prescribes how a client (a transaction over that single
object) must execute a sequence of operations on that object to
ensure that the sequence appears to execute atomically.

In Section 3, we present the first key component of our theory.
Protocols usually guarantee serialization windows: an interval in
the sequence of operations performed on the underlying object
such that any point in the interval can serve as a serialization point
for the transaction (for that object). Intuitively, a transaction that
accesses multiple objects is serializable if the serialization windows
for all accessed objects overlap, guaranteeing they have at least
one serialization point in common. An interesting aspect of our

241

formalism is that it generalizes and subsumes two-phase-locking
(which can be seen as a composition of multiple objects that each
use their own locks) as well as two-phase-commit (which can be
seen as a composition of multiple objects that use protocols that
may abort).

In Section 4, we address the challenges introduced by protocols
that may abort. In Section 5, we consider the problem of avoiding
deadlocks.

In Section 6 we consider a more subtle and challenging issue. A
transaction that reads an inconsistent state (i.e., a state not expected
when all transactions truly execute atomically) may become non-
terminating because of this inconsistency. Avoiding such behavior
requires a stronger property called opacity [15], which requires that
all transactions, including those that may be aborted, see only a
consistent state. In this section, we show that the overlapping win-
dow condition presented earlier is insufficient to guarantee opacity.
We present stronger conditions that are sufficient to ensure that the
composed protocol enjoys the opacity guarantee. These conditions
are sufficient, e.g., to show that if every serial execution of a client
of a protocol terminates, then every interleaved execution will ter-
minate as well.

Section 7 presents a preliminary evaluation of the benefits of
composing different kinds of concurrency control protocols in a
single application. As mentioned previously, our primary aims are
foundational and we do not attempt to undertake a thorough evalu-
ation of the benefits of mixing concurrency control strategies. Our
purpose with these experiments is merely to demonstrate for the
reader that combining different concurrency control strategies has
potential applications to improve software development (such as
providing a way to combine STMs with I/O operations) while also
opening up more possible implementation strategies with a wider
range of performance characteristics. Section 8 discusses related
work.

Proofs and other extra material can be found in the technical
report [25].

2. Preliminaries
In this sectionwe formalize the standard notions of histories, object
specifications, synchronization protocols and serializability.

Objects and Events We refer to data-structures such as the maps
and queues in Figure 1 as objects. An object o exposes a set of
methods. An operation is a tuple of the form m(v1, . . . , vk) where
m is an object method name and v1, . . . , vk are its arguments. For
an operation with no arguments we omit the parentheses and write
only m. An event is a tuple 〈t, o, op, r〉 where t is a transaction
identifier, o is an object, op is an operation, and r is a return value (r
is sometimes omitted, if the operation does not have a return value).
An event captures both an operation invocation as well as its return
value. This is a convenient simplification — where necessary, we
will distinguish the invocation and return events. We assume that
each (primitive) object is an unit of encapsulation: no mutable state
is shared by different objects, and the state of an object can be
accessed only through its methods.

Histories A sequential history (or history) is a finite sequence of
events (along with a unique id for each event to identify it, which
we usually omit). We use the following notations:

• For two events ei and ej in a history h = [e1, . . . , en], we write
ei ≤h ej when i ≤ j.

• h | o is the subhistory of h consisting of all events in h on
object o.

• h | O is the subhistory of h consisting of all events on objects
in the set of objects O.

• h | t is the subhistory of h consisting of all events executed by
transaction t.

• h | T is the subhistory of h consisting of all events executed by
some transaction t ∈ T .

• h \ t is the subhistory of h obtained by omitting all events
executed by transaction t.

• hh′ is the concatenation of history h′ to the end of history h.
• α(h) is the set of objects appearing in history h.
• α(P) is the set of objects appearing in the set of histories P .
• Γ(h) is the set of transactions t such that h | t is non-empty.

A t-history is a history where all events are executed by transac-
tion t (a t-history may also be empty). We say two histories h and
h′ are equivalent histories if for every transaction t, h | t = h′ | t.
A history is non-interleaved if its transactions are not interleaved
— if h = (h | t1)(h | t2) · · · (h | tk) where Γ(h) = {t1, · · · tk}.

Let S1 and S2 be two sets of histories such that α(S1) ∩
α(S2) = ∅. We define S1 ? S2 to be

{h | (α(h) ⊆ α(S1)∪α(S2))∧(h | α(S1) ∈ S1)∧(h | α(S2) ∈ S2)}.
This definition represents the unconstrained composition of S1 and
S2 and reflects the fact that different objects share no state and
operations on one object do not affect other objects.

Specifications and Protocols We define a specification to be a
prefix-closed set of histories. A history is legal if the specification
contains it. We denote the specification of a single object o by
Ho which must satisfy α(Ho) = {o}. Note that a specification
combines both preconditions (to be satisfied by clients that use
an object) and postconditions (guarantees provided by the object
implementation).

Example 1. Consider a sequential queue Q that provides methods
enq and deq to, respectively, enqueue and dequeue an item from
the queue. The specification HQ of the queue captures the FIFO
semantics of the queue in the obvious way (but ignores the trans-
action identifiers). As another example, the specification HL of a
lock L that provides methods acquire and release can capture the
usual semantics of locks: HL consists of all prefixes of histories
with strictly alternating acquire and release events, with the acquir-
ing transaction releasing a lock before any transaction can acquire
the lock again.

Let h[o1 7→ o, o2 7→ o] denote the history obtained from h
by replacing every occurrence of objects o1 and o2 in h by o. We
extend this notation to any set of histories. We define the composite
object o1 × o2 to be a new object o whose specification is given by
(Ho1 ? Ho2)[o1 7→ o, o2 7→ o]. The composition is defined only if
the objects have no method names in common. Every (composite)
object represents a set of primitive objects. We say that two objects
are disjoint if the underlying sets of primitive objects are disjoint.

Let O = { o1, · · · , ok } be a set of objects. We define the
specificationHO by:

HO = Ho1 ? Ho2 ? · · · ? Hok .

We define a (synchronization) protocol P over a set of objects
O (with given specifications) to be a prefix-closed subset of HO .
Thus, a protocol enforces additional constraints on how the objects
may be used beyond the individual specifications of the objects.

Example 2. We now formalize a (well-known) locking protocol
that utilizes a lock L to synchronize concurrent accesses of the
sequential queue Q. Let QL denote the composite object Q × L.
We define the protocol SLQ (Single Lock Queue) to be the set of all
histories in HQL that are prefixes of well-locked histories, where
a multi-transaction history h is said to be well-locked if for every

242

Figure 3. Serialization point mapping examples. hm, hm′ are the
histories induced by applying the functionsm,m′ (respectively) on
the history h.

transaction t in h, h | t is well-locked, and a single-transaction
history h is said to be well-locked if it consists of an acquire event,
followed by a sequence of enq/deq events, followed by a release
event.

3. Abort-Free Serializability
We now present the first component of our theory for composing
protocols, which generalizes the essence of two-phase locking. We
will restrict ourselves to histories without aborted transactions in
this section.

Definition 1 (Serializability). A history h is said to be abort-
free serializable with respect to a set of histories S if there is a
non-interleaved history h′ ∈ S that is equivalent to h. We say
that a protocol P over a set of objects O guarantees abort-free
serializability if every history in P is abort-free serializable (with
respect toHO).

Single-Object Histories We begin by considering histories and
transactions over a single object. We first formalize the notion of a
serialization point for a transaction. Intuitively, it is a point in time
where the transaction appears to take place atomically (analogous
to the notion of a linearization point in linearizability).

Definition 2 (Serialization Point Mapping). Let h be a history
and let Γ(h) = {t1, · · · , tk}. Let m be a function that maps ev-
ery transaction in h to an event in h. Function m is said to be
a serialization point mapping for h (with respect to a specifica-
tion S) if (h|ti1)(h|ti2) · · · (h|tik) is legal for any permutation
(ti1 , · · · , tik) of Γ(h) that satisfiesm(ti1) ≤h m(ti2) ≤h · · · ≤h

m(tik).

In other words, a functionm is a serialization point mapping for
a history h if any non-interleaved ordering of the transactions of h
consistent with the order induced by m is visibly legal.

Example 3. Figure 3 shows a history h ∈ Q containing 3
transactions t1, t2, t3, and two functionsm,m′ from h transactions
to its events such that: m(t1) = 3,m(t2) = 2,m(t3) = 4 and
m′(t1) = 1,m′(t2) = 2,m(t3) = 4. The histories hm, hm′

are obtained by applying m,m′ on h’s transactions, respectively.
Since hm ∈ HQ, m is a serialization point mapping for h. On the
other hand hm′ /∈ HQ (as the deq operations invalidate the queue
specification), thereforem′ is not a serialization point mapping for
h.

Given any history h = [e1, · · · , en], we define a window in
h to be a pair of events [ei, ej] where ei ≤h ej . A window
identifies a non-empty sequence of consecutive events in h. Two

windows [ei, ej] and [ei′ , ej′] in a history are said to overlap if
there exists an event ek such that ei ≤h ek ≤h ej and ei′ ≤h

ek ≤h ej′ . Protocols typically guarantee that every transaction
has a corresponding window such that we can pretend that the
transaction executes atomically at any point within the window. We
formalize this notion below.

Definition 3 (Single-History Serialization Window-Mapping). Let
h be a history. A window mapping for h is a function w that
maps every transaction in h to a window in h. We say that w is a
serialization window mapping for h (with respect to a specification
S) if every function m that maps every transaction t in h to some
event in w(t) is a serialization point mapping for h (with respect to
S).

Note that a serialization window mapping may be seen as a rep-
resentation of a set of valid serialization-orderings of the trans-
actions in a history. Looking back at protocol Q and the his-
tory h ∈ Q (described in Figure 3), the function wq defined
by wq(t1) = [3, 3], wq(t2) = [1, 2], wq(t3) = [4, 5] is a se-
rialization window mapping for h. The function w′q defined by
w′q(t1) = [1, 5], w′q(t2) = [1, 2], w′q(t3) = [3, 5] is not a seri-
alization window mapping for h, as m′, defined earlier, maps h’s
transactions to events in wq windows but is not a serialization point
mapping.

Example 4. Every history h in the Single Lock Queue protocol
has a serialization window mapping w defined by w(t) = [ei, ej]
where:

• ei is the acquire method executed by t;
• if h|t contains a release method, then ej is the release method

executed by t, otherwise ej is the last event in h.

The following result holds trivially:

Theorem 1. Any history with a serialization point mapping (or a
serialization window mapping) is serializable.

We now extend the preceding formalism and results (presented
for single histories) to protocols (sets of histories).

Definition 4 (Window-Serializable Protocols). We say that (P,w)
is a window-serializable protocol if P is a protocol and w is
a function that maps every history h ∈ P to a single-history
serialization window mapping for h. In this case, we refer to w as
a serialization window mapping for P . We will abbreviate w(h)(t)
to w(h, t).

An example of window-serializable protocol is the Single Lock
Queue with the window mapping function presented in Example 4.

Theorem 2. If (P,w) is a window-serializable protocol, then P is
serializable.

Composing Window-Serializable Protocols. Let (P1, w1) and
(P2, w2) be window-serializable protocols for two distinct objects
o1 and o2, respectively. We now consider how we can ensure seri-
alizability of histories over o1 and o2.

Consider any history h ∈ P1 ? P2 (the unconstrained composi-
tion of P1 and P2). Such a history correctly follows the protocols
P1 and P2 for both objects o1 and o2. However, this is not sufficient
to guarantee that h is serializable. It simply implies that we can find
a suitable serialization ordering for each object independently, but
there may not be a single consistent serialization ordering that is
valid for both objects.

We abuse notation and extend each wi to be a (partial) window-
mapping function for P1 ? P2. Specifically, we define the window
wi(h, t), where h ∈ P1 ? P2 and t ∈ h, to be the window
determined by wi if t accesses oi (and wi(h, t) is undefined if t
does not access oi).

243

Definition 5 (Overlapping Mapping). Let h be a history (over the
two disjoint objects o1, o2). Let wo1 and wo2 be two serialization
window mappings for h | o1 and h | o2, respectively. We say
that h has overlapping windows if for every transaction t in h that
accesses both o1 and o2, the windows wo1(t) and wo2(t) overlap.

Theorem 3. Any history that has overlapping windows is serializ-
able.

We now show how we can compose two window-serializable
protocols to obtain another window-serializable protocol over the
composite object.

Definition 6 (Overlapping Protocol Composition). Let (P1, w1)
and (P2, w2) be two window-serializable protocols for two distinct
objects o1 and o2. We define (P1, w1) ⊗ (P2, w2) to be the pair
(P,w), where P is the set of all h ∈ P1 ? P2 such that h has
overlapping windows (with respect to w1 and w2) and w is a
window mapping function for P defined as follows:

w(h, t) =

 w1(h, t) if α(h|t) = {o1}
w2(h, t) if α(h|t) = {o2}
w1(h, t) ∩ w2(h, t) otherwise

Theorem 4. Let (Q1, w1) and (Q2, w2) be window-serializable
protocols (for disjoint objects). Then, (Q1, w1) ⊗ (Q2, w2) is a
window-serializable protocol.

Note that any subset of a window-serializable protocol is also
window-serializable. Theorem 4 provides a sufficient condition
to prove a protocol is window-serializable. We can now deduce a
protocol P is window-serializable if it is a subset of the overlap-
ping composition of two protocols. Furthermore, Definition 6 also
provides us with an overlapping mapping for P . Intuitively, one
can think of 2PL protocol on two objects as a composition of two
Single-Lock protocols.

Example 5 (Two-phase locking). Let QL1, QL2 be two different
objects Q × L (each with a different pair of lock and queue). The
two-phase locking protocol (2PL) consists of the prefixes of every
history h ∈ H{QL1,QL2} that for every transaction t and object
o the following conditions are satisfied: (i) h|t does not contain a
release that precedes an acquire; (ii) h|t|o is well-locked.

Theorem 5. Let (SL1, w1) and (SL2, w2) be two window-
serializable Single Lock protocols on QL1 and QL2, respectively.
(2PL,w) = (SL1, w1) ⊗ (SL2, w2), where w is the window
mapping induced by (SL1, w1)⊗ (SL2, w2).

Theorem 4 can be used to prove the correctness of existing
protocols such as 2PL, but its bigger contribution is enabling us
to prove the correctness of new synchronization protocols. For
example, assume we have a program where the best protocol for
some shared data-structure is Rooted Tree-Locking, while 2PL is a
better fit for another shared data-structure. If the program requires
an atomic transaction involving both data-structures, the theorem
shows how we can ensure atomicity. By Theorem 4, the atomicity
of a transaction combining TL and 2PL is guaranteed if the TL
serialization window (between the root object acquire and release)
overlaps with the 2PL serialization window.

In the technical report we present the Tree-Locking (TL) syn-
chronization protocol and demonstrate our composition technique
to compose a Single-Lock Queue (SLQ) with a Tree-Locking Tree
(TL).

Multi-Object Histories. The preceding approach can be directly
used to create window-serializable protocols over more than two
objects by iteratively composing protocols over each individual ob-
ject (since the overlapping composition of two window-serializable
protocols is a window-serializable protocol over the composite ob-
ject). Such an approach yields, for example, the 2PL protocol over
n objects QL1, · · · , QLn, each protected by a lock.

4. Abortable Serializability
Optimistic protocols permit potentially conflicting transactions to
execute concurrently and resolve this conflict by aborting one of
these transactions. Such aborts complicate protocol composition.
Consider a transaction over two objects in which one of the ob-
jects aborts the transaction. The only viable option in this case is
to have the other object abort the transaction as well. This imposes
constraints on the histories we should permit if one of the proto-
cols cannot support aborts at arbitrary points during execution. We
formalize these constraints in this section.

4.1 Theory
An operation invocation may return a special value aborted to
indicate that the transaction has been aborted. An event is said to
be an aborted event if its return value is aborted. t is said to be an
aborted transaction in h iff h | t contains an aborted event. We
assume a special (last) operation that is called by each transaction
to indicate its completion. A transaction is said to be complete if
it has called this operation and a history is said to be complete if
all its transactions are complete. We refer to a completed, but not
aborted, transaction as a committed transaction.

Definition 7 (Serializability). A history h is said to be serializable
(with respect to a specification S) if there exists some set of trans-
actions T that includes all of h’s committed transactions but none
of its aborted transactions such that h|T is abort-free serializable.
A protocol P is said to be serializable (with respect to S) if every
history in P is serializable.

Example 6. We now describe an optimistic map object OM. This
object provides the usual map operations get and add, which, re-
spectively, retrieves the value associated with a key and updates
the value associated with a key in the map. In addition, the map
provides the methods begin-transaction and commit. The commit
method returns a value success or aborted. The operations get and
add can also return the value aborted in addition to the usual val-
ues. This allows early detection of inconsistency and is important,
as will become clear later. In a serializable protocol OMP over OM
every transaction is required to first execute the begin-transaction
method, then execute any sequence of get and add, and end by in-
voking the commit method. An implementation of such a protocol
can be realized by wrapping an STM such as TL2 [8] around a
sequential map implementation, but these details are beyond the
scope of this paper.

Visibility Status To compose protocols, in the presence of aborts,
we need extra information about the protocols. This takes the form
of a function that lets us constructively identify the existentially
quantified set T of transactions in the above definition of serializ-
ability. A status mapping, for a protocol P , is a function that maps
every (h, t) pair where h ∈ P and t ∈ h to one of three values
invisible, visible, or dual, with the restriction that it map committed
transactions to visible or dual and aborted transactions to invisi-
ble. Essentially, the status invisible indicates that the transaction
should be excluded, and the status visible indicates that the trans-
action should be included, while the status dual indicates that it is
okay to either include or exclude the transaction. We further re-
quire that (a) the status of a transaction can be determined using
just its sub-history: i.e., for any h1, h2 ∈ P , if h1|t = h2|t, then
f(h1, t) = f(h2, t), and (b) The status of a visible transaction does
not change: for any h1, h2 ∈ P , if h1 is a prefix of h2 and f(h1, t)
is visible, then f(h2, t) must also be visible.

We now generalize our earlier definition of window serializable
protocols: in the generalized setting, the window mapping function

244

needs to define a serialization window only for transactions labelled
visible or dual.

Definition 8. Given a status mapping function f and a history h,
we define the set witness(h, f) to be the set of all T ⊆ Γ(h) such
that T includes all the visible transactions, but none of the invisible
transactions.

Definition 9. We say that (P,w, f) is an abortable ws-protocol if
P is a protocol, f is a status mapping function for P , and w a
serialization window mapping for the set of histories {h|T | h ∈
P, T ∈ witness(h, f)}.
Lemma 1. If (P,w, f) is an abortable ws-protocol, then P is
serializable.

Example 7. The definitions of w and f for an STM-based imple-
mentation of an object depend on the STM. For a TL2-based im-
plementation of the optimistic map OM, the following definitions
work. The status mapping function f is fairly simple: f(h, t) is vis-
ible if t has successfully committed in h, and invisible otherwise.
Every completed history h has a serialization window mapping w
defined by w(t) = [ei, ej] where:

• If t is a read-only transaction (no add operation was executed
by t), then ei is the begin-transaction executed by t and ej is
the first get method executed by t or the last event in h if no get
method was invoked by t.

• Otherwise, if t executed a successful commit, then ei and ej are
both the commit method executed by t;

Let OMP ′ denote (OMP,w, f). OMP ′ is an abortable ws-
protocol. The rationale for this definition is the way TL2 works:
TL2 validates read operations when they occur and again before
commit. Write operations, however, update only a local copy — the
write operations are validated and the original locations updated
only at commit time. However, read-only transactions are not vali-
dated again at commit time as an optimization.

Composition Now we define the conditions for composing two
abortable protocols. Let (P1, w1, f1) and (P2, w2, f2) be two
abortable ws-protocols for two different objects o1 and o2, respec-
tively. We abuse notation and extend each fi to be a (partial) status
mapping function for P1 ∗ P2. Specifically, we define fi(h, t),
where h ∈ P1 ∗ P2 and t ∈ h, to be the status determined by fi if
t accesses oi (and fi(h, t) is dual if t does not access oi).

We say that a history h ∈ P1 ? P2 is compatible if for every
transaction t in h, (a) Either f1(h, t) = f2(h, t) or one of f1(h, t)
and f2(h, t) must be dual, and (b) Ifw1(h, t) andw2(h, t) are both
defined, then they overlap.

Let P denote the set of all h ∈ P1?P2 such that h is compatible.
We define a window-mapping function w as follows: w(h, t) is
w1(h, t) ∩ w2(h, t) if both w1(h, t) and w2(h, t) are defined,
w(h, t) is wi(h, t) if α(h|t) = {oi} (for i = 1, 2), and w(h, t)
is undefined otherwise. We define a status-mapping function f
(for compatible histories only) as follows: f(w, t) is f1(w, t) if
f2(w, t) is dual, f(w, t) is f2(w, t) if f1(w, t) is dual, and f(w, t)
= f1(w, t) (= f2(w, t)) otherwise.

We define (P1, w1, f1)� (P2, w2, f2) to be (P,w, f).

Theorem 6. If (Q1, w1, f1) and (Q2, w2, f2) are abortable ws-
protocols (for disjoint objects), then (Q1, w1, f1) � (Q2, w2, f2)
is an abortable ws-protocol.

Note that any subset of an abortable ws-protocol is also an
abortable ws-protocol. Theorem 6 provides a sufficient condition
to prove a protocol is an abortable ws-protocol.

Note that the status compatibility condition (in the composition)
implicitly encodes the constraint that if one object in a transaction
aborts, then the other object must abort too. (Otherwise, when
the transaction ends, one object will be labelled invisible, while

the other object will be labelled visible, and such a history is not
compatible and is not permitted in the composed protocol.)

This typically requires objects to support an explicit (client-
initiated) abort operation. Many optimistic protocols can easily
support such a client-initiated abort. However, pessimistic proto-
cols, such as SLQ, typically do not support aborts. So, how can we
compose such protocols? We now show how we can explain the
correctness of composing optimistic and pessimistic protocols in
examples such as Figure 1 using our preceding theorem.

Example 8. We define a status-mapping function f for the SLQ
protocol as follows: f(h, t) is dual if t has performed no queue
operation (enq or deq) and visible otherwise. The window-mapping
function w is defined for SLQ as usual (see Example 4). Let SLQ′

denote (SLQ,w, f). It can be shown that SLQ′ is an abortable
ws-protocol. This definition captures the fairly simple intuition that
a pessimistic object can indeed support an abort by a transaction t
if t has not performed any updates yet. While simple, it suffices to
enable the composition of protocols in examples such as Figure 1,
as shown below.

The following is an example of a protocol composed of TL2 and
Single Lock protocols:

Example 9 (OM+SLQ). Consider the abortable ws-protocols
SLQ′ and OMP ′ defined in Example 8 and Example 7. We now
present a sufficient condition for correctness of transactions over
these two objects. Consider a set of histories AT ⊆ SLQ ? OM
such that every h in AT satisfies the following conditions for every
transaction t that accesses both objects: (i) if h|t is aborted, it
contains no invocations of enq or deq methods (on SLQ). (ii) Any
commit event (on OM) in h|t occurs between an acquire event (on
SLQ) and a release event (on SLQ) or the end of the history if it
contains no release event.

We claim that AT is a subset of the OM ′ � SLQ′ protocol.
Hence, AT itself is an abortable ws-protocol.

4.2 Applications
Using our theorem we can prove the correctness of using the OM
and SLQ protocols in Figure 1. Assume we use a separate instance
of SLQ for packet q and complete q and OM for flows m. We
replace [2 by the OM begin-transaction method, and all other [i/]i
by SLQ acquire/release methods. We replace]2 by an invocation
of the OM commit method: if the commit is successful, execution
continues normally; if the commit aborts, we skip the subsequent
conditional statement to directly execute]3. (Note that when an
aborted transaction ends, it must be retried as well. This is straight-
forward and we will ignore this aspect in this paper.)

Such an implementation guarantees that for every transaction
accessing both the map and the queue objects, the OM serialization
window is contained in the SLQ serialization window and all the
histories are compatible. Therefore, our composed protocol is an
abortable ws-protocol.

The well-known two-phase-commit protocol is another instance
of our protocol composition. For certain simple optimistic trans-
action implementations, the serialization window of a transaction
consists of a single event, namely the commit event. It is not possi-
ble to compose two such protocols since there is no way to ensure
that two different single-point windows overlap. Protocols that are
designed to support two-phase-commit split the commit operation
into two operations. The first operation validates that the transac-
tion is consistent and can be committed (and acquires necessary
locks to ensure this) and returns. The second operation completes
the commit. For such protocols, the serialization window extends
from the first operation (if it is successful) to the second opera-
tion, permitting a non-trivial composition of two such protocols. In

245

this setting, our composition corresponds to exactly the two-phase-
commit protocol.

A similar extension can be used to compose two instances of
the TL2 protocol by splitting its commit operation into multiple
operations. However, this splitting is more involved since TL2 does
not acquire locks for reads.

Another useful application that our theorem enables is the use
of an abortable protocol (e.g. STM) in transactions performing I/O
operations.

Example 10. Consider a data-structure and a log file used in
a program with a read transaction, which reads from the data-
structure, and an update transaction, which writes to the data-
structure and adds a line in the log file. Assuming the data-structure
supports parallel reads, for a read-dominant program we would
prefer using TL2 STM to synchronize access to the data-structure
and a lock for the log file. To guarantee serializability, we acquire
the lock before the STM commit. The subsequent log file operation
is executed only if the STM commits successfully. In either case, the
lock is released finally.

The above example is an abstraction of real systems, like lev-
elDB [1] and journaling file-systems [26].

5. Progress Guarantees: Deadlock Avoidance
We now consider the problem of avoiding deadlocks in a composed
protocol. To formalize the problem, we first refine our notion of an
event, as in [21], and assume that histories may contain invocation
events and response events, where an invocation event represents
an invocation of an operation, and a response event represents a
response to an invocation. (The event defined in Section 2 is es-
sentially an invocation event immediately followed by a matching
response event.)

We write RUN(h), to denote the set of running transactions at
the end of history h. We say that history h is a complete history, if
RUN(h) = ∅; otherwise we say that h is an incomplete history.

Definition 10 (Unblocked transaction). We say that a running
transaction t in a history h is currently blocked (with respect to
a set of histories S) if h|t ends with an invocation event and there
is no matching response t-event e such that he ∈ S. Otherwise, we
say that t is currently unblocked in h. We say that t is unblocked in
h (with respect to a set of histories S) if for any t-history ht such
that hht ∈ S, t is currently unblocked in hht.

The above notion of an unblocked transaction is analogous to
the notion of obstruction-freedom: if no other transaction inter-
venes, then an unblocked transaction can keep executing without
getting blocked.

Definition 11 (Unblocked history). An incomplete history h is
existentially unblocked (with respect to a set of histories S) if
there exists some t ∈ RUN(h) such that t is unblocked in h. An
incomplete history h is universally unblocked (with respect to a set
of histories S) if for every t ∈ RUN(h), t is unblocked in h.

Definition 12 (Unblocked Protocol). A protocol P is existentially
unblocked if every incomplete history h ∈ P is existentially un-
blocked with respect to the protocol specification S. A protocol P
is universally unblocked, if every incomplete history h ∈ P is uni-
versally unblocked with respect to the protocol specification S.

The above unblocked properties are satisfied by many exist-
ing concurrency control protocols. The existentially unblocked
property is satisfied by tree-locking [2, 29], DAG-locking [2, 29],
domination-locking [10], two-phase locking in which the locks are
acquired in a consistent order [31], and by the synchronization de-
scribed in [11]. All of these protocols ensure that (at least) one of

the running transactions can safely continue alone without waiting
for the other running transactions.

The universally unblocked property is satisfied by every serial-
izable obstruction-free protocol [20] because obstruction-free pro-
tocols guarantee that each running transaction can make progress
until completion — examples for such protocols are described
in [17]. It is also satisfied by protocols like boosting [19] and TL2,
because these protocols use timeouts to ensure that any transac-
tion that waits too long is aborted (notice that in our framework an
aborted transaction is a completed transaction).

Theorem 7. If P1 is an existentially unblocked protocol and P2 is
a universally unblocked protocol, then P1 ? P2 is an existentially
unblocked protocol.

Our formalism can be extended to guarantee that a composition
of two existentially unblocked protocols creates an existentially
unblocked protocol. This can be achieved by introducing ordered
overlapping composition, which enforces serialization window or-
der in addition to the overlapping window requirement.

6. Opacity
A subtle issue with optimistic protocols is that, unless special
care is taken, only committed transactions are guaranteed to be
consistent. Speculative transactions may observe an inconsistent
state and only subsequently detect that they should rollback. How-
ever, these inconsistencies may cause transactions to behave in
unexpected ways (taking “impossible” branches, executing non-
terminating loops, throwing an exception, etc.) even before the in-
consistency is detected.

Many STMs take extra care to prevent inconsistent reads and
guarantee that transactions always observe a consistent state (a
property is formalized as opacity [15]). E.g., the TL2 and LSA [27]
algorithms use a global time-stamp to efficiently validate a transac-
tion after each read, guaranteeing consistency for all intermediate
states.

This problem resurfaces when we compose protocols, as illus-
trated by the example in Figure 4. In this example, we protect vari-
able x using an STM like TL2 and variable y using a lock. The
main program executes two transactions T1 and T2 in parallel. The
invariant “x == y” is preserved by transaction T1. Yet, transaction
T2 can observe a state where this invariant is violated, if it reads
the old value of x (before T1 commits) and the new value of y (af-
ter T1 releases the lock). In this example, we have an interleaving
history that is non-terminating even though all non-interleaved his-
tories terminate.

Note that this example satisfies the requirements of the abortable
ws-protocol composition from the previous section! This shows
that we need something more if we wish to guarantee opacity for
the composed protocol.

6.1 Formalism
Several challenges motivate the following formalism. First, we de-
sire to formalize the desired guarantees in a general way so that
it applies to both pessimistic and optimistic protocols. Second, we
need to strengthen these guarantees so that we can inductively com-
pose protocols with such guarantees and ensure that the resultant
protocol has the same guarantee.

A candidate guarantee is to ensure that every transaction sees
all the effects and only the effects of a (serialized) set of commit-
ted transactions. Some optimistic protocols provide this guarantee.
However, pessimistic protocols such as 2PL permit one transaction
t′ to observe some of the effects of another transaction t even if t
has not completed (e.g., when t has released some of its locks). We
would like to permit this flexibility, while still guaranteeing some
notion of consistency.

246

int x = 0; // protected by stm-x
int y = 0; // protected by lock-y
main() { T1() —— T2() }
T1() {

begin-transaction(stm-x); acquire(lock-y);
x = 1;
if (commit(stm-x) == success) { y = 1; }
release(lock-y);

}
T2() {

begin-transaction(stm-x); int lx = x;
acquire(lock-y); int ly = y;
if (lx != ly) { while (true) {} }
commit(stm-x); release(lock-y);

}

Figure 4. An example illustrating lack of opacity.

We now abstractly describe the properties that a transaction t
must possess so that we can safely allow other transactions to see
the effects of t.

Definition 13. Let t be a transaction in a history h ∈ P , where P
is a protocol over a specification S. We say that t is dependable in
h (with respect to P) if

1. ∀hh′ ∈ P . t is not an aborted transaction in hh′.
2. ∀hh′ ∈ P . h(h′|t)(h′ \ t) ∈ S.
3. ∀hht ∈ S, hho ∈ S. (Γ(ht) = {t}) ∧ (t 6∈ Γ(ho)) ⇒
hhoht ∈ S
Property 2 says that actions of a dependable transaction are

“left movers” (with respect to actions of other transactions), while
property 3 is a slightly stronger property asserting that the actions
of a dependable transaction do not interact (conflict) with any
possible concurrent actions by other transactions. (Note that one
can also derive hhtho ∈ S in the case of 3 using 2.)

We now define a relation ≈t that captures the notion that two
histories look equivalent from the perspective of a transaction t.
For any non-empty history h, let Abort(h) denote h with its last
event’s return value replaced by abort. Define Abort∗(h) to be the
set {h} ∪ {Abort(hp) | hp is a non-empty prefix of h}.

Let hi and hs be histories. We say that hi ≈t hs iff for any
t-history ht, we have hiht ∈ S ⇒ hsht ∈ S and hsht ∈ S ⇒
∃ha ∈ Abort∗(ht).hiha ∈ S. This relation says that the behavior
of t after hi and hs are almost the same: the only asymmetry is that
aborts may prevent some possible behaviors after hi.

Definition 14 (Safe transaction). A transaction t in a history h is
said to be a safe transaction (with respect to a set of histories S) if
there exists some set T of dependable transactions in h such that
h ≈t (h|T)s(h|t) where (h|T)s is any legal serialization of h|T .
We say that t safely-depends on T (in h) in this case.

Definition 15 (Dependable). An abortable ws-protocol (P,w, f)
is said to be dependable if every visible transaction is dependable:
i.e., for any h ∈ P and transaction t in h, if f(h, t) is visible, then
t is dependable.

Definition 16 (Read window). Let (P,w, f) be an abortable ws-
protocol. Let h = h1eh2 be a history in P containing an event e.
Event e is said to be a read-point for a transaction t if t safely-
depends on V for any V ∈ witness(h1, f). (See Definition 8.) A
window w in h is said to be a read-window for t if every event e in
w is a read-point for t. A read-window mapping r is a function that
maps every pair (h, t) (where h ∈ P and t is a transaction in h) to
a read-window w for t in h.

Definition 17. We say that (P,w, f, r) is an opaque ws-protocol
if (P,w, f) is a dependable abortable ws-protocol and r is a read-
window mapping for (P,w, f).

Example 11. Every transaction t in every history h in the OMP ′

abortable ws-protocol (defined in Example 7) has a read window
mapping r defined by r(t) = [ei, ej] where:

• If commit was executed successfully by t, ei and ej are both the
commit method executed by t;

• Otherwise, ei is the begin-transaction executed by t and ej is
the first read method executed by t1 or the last event in h if no
read was made by t.

For 2PL protocol the read window mapping and the serializa-
tion window mapping are identical.

6.2 The Opacity Theorem
We now formalize the claim that an opaque ws-protocol ensures
that every transaction sees only a “consistent state”.

Given a protocol P for an object o, a client C of P is (the se-
mantics of) a program that executes multiple, concurrent, transac-
tions against o and satisfies the protocol. A formal definition of a
client appears in the technical report. Mathematically, C is a sub-
set of P (which satisfies certain properties detailed in the technical
report).

Recall that a non-interleaved history h is of the form h1h2 · · ·hk

where each hi represents the sub-history executed by a different
transaction ti. Note that ti may be incomplete in h. We say that
the non-interleaved history h above is a serial history if for every
1 ≤ i < k, transaction ti is complete in h. In other words, for
every prefix hp of a complete history h we have RUN(hp) ≤ 1.

The following theorem shows that if P is an opaque ws-
protocol, then every transaction in an interleaved history of C
behaves as it does in some serial history of C. It is important to
distinguish the actual serial histories that are possible with a given
implementation (say, of an STM) from the set of serial histories
permitted by the specification of the object o. E.g., in a real im-
plementation, a serial history will not abort, while an interleaved
history may abort, potentially producing behaviors not seen in a
real serial history. However, the specification of an STM object
allows aborts even in a serial history, thus explaining the behavior
seen in an interleaved history.

Theorem 8 (Opacity Theorem). Let C be a client of an opaque
ws-protocol P , such that every serial history in C is a prefix of a
complete serial history in C. For every history h ∈ C and every
transaction t in h, there exists a serial history hs ∈ C such that
h|t = hs|t.

Many desired results follow from the above theorem. Thus, if
no serial history throws an exception, no interleaved history will
throw an exception. If no serial history contains a non-terminating
loop, then no interleaved history contains a non-terminating loop.

6.3 Composition of Opaque Protocols
We now extend the composition operator we defined for abortable
ws-protocols to compose opaque ws-protocols, by essentially
adding the extra requirement that only histories that have over-
lapping read-windows are permitted.

Let (P1, w1, f1, r1) and (P2, w2, f2, r2) be opaque ws-protocols
for two disjoint objects o1 and o2. Let (P ′, w, f) = (P1, w1, f1)�
(P2, w2, f2). Let r̂1 denote the natural extension of function r1
to histories in P ′ (where r̂1(h, t) is determined by ignoring op-
erations on o2 and is undefined if t does not access o1). r̂2 is

1 first read operation with no preceding write operation to the read location

247

similarly defined. We say that a history h in P ′ has overlapping
read-windows if for every transaction t in h that accesses both o1
and o2, the windows r̂1(h, t) and r̂2(h, t) overlap. Let P denote
the set of histories h in P ′ that have overlapping read-windows.
We define a read-window mapping function r as follows: r(h, t)
is r̂1(h, t) ∩ r̂2(h, t) if both r̂1(h, t) and r̂2(h, t) are defined, and
r(h, t) is r̂i(h, t) if α(h|t) = {oi} (for i = 1, 2).

We define the composed protocol (P1, w1, f1, r1)⊕(P2, w2, f2, r2)
to be (P,w, f, r).

Theorem 9. If Z1 = (Q1, w1, f1, r1) and Z2 = (Q2, w2, f2, r2)
are opaque ws-protocols (for disjoint objects), then Z1 ⊕ Z2 is an
opaque ws-protocol.

7. Evaluation
We have implemented and evaluated several instances of hybrid
transactions that combine STM implementations and locking. Our
implementations make use of DEUCE [8, 23] and ScalaSTM [4].
The API that both STMs expose is the ability to execute an arbitrary
function atomically.

We now describe how we combine locking with the execution
of the atomic function (by the STM) in a way that satisfies the
requirements of our composition theory:

• Overlapping window: The serialization window of the atomic
function is effectively the end of the atomic function (assuming
no read-only transactions). We can ensure overlapping windows
by acquiring the locks within the atomic function and releasing
them after the STM atomic function returns.

• Compatible status: No writes to the object guarded by the 2PL
are permitted within the atomic function.

• Aborts: We implemented a trivial abort function for 2PL (to re-
lease the 2PL locks) to be called by the STM abort function.
While ScalaSTM allows such an extension to its abort proce-
dure using the afterRollback API, with DEUCE we had to add
such a functionality ourselves.

• Deadlock avoidance: We use Java tryLock to implement 2PL
(as an universally unblocked protocol) and if acquiring a lock
fails, we initiate STM abort (and release all locks acquired so
far).

• Opacity: No reads from the object guarded by 2PL are permit-
ted within the atomic function.

We have implemented various versions of the Intruder and
Vacation benchmarks from Jstamp and a composite data-structure
that combines in-memory data-structure and a disk-based log. In
the technical report we discuss the performance benefits which
achieved by our composition implementation comparing to tradi-
tional synchronization synchronization protocols. As described in
Section 1, these results show how hybrid protocols can yield better
performance than pure locking or STM approaches.

8. Related Work
Quite a few authors have previously explored opportunities for
combining optimistic and pessimistic concurrency control. A dis-
tinguishing aspect of our work is that we present a general theory
of correctness for composing abstract protocols. Much of the previ-
ous work has focused on composition of specific protocols in spe-
cific systems. Our composition theorem can be used to justify the
correctness of many protocol combinations (e.g., Lock-free STMs
with 2PL, tree-locking with 2PL, etc.)

Combining optimistic and pessimistic concurrency control has
been previously explored by Herlihy in the context of distributed
databases [18]. Herlihy’s setting assumes the presence of a trans-

action manager that assigns logical timestamps to transactions as
well as a common validation protocol that has some knowledge of
all of the different concurrency control mechanisms. Within this
framework it is provable that any concurrent transactions made up
of mixed optimistic and pessimistic mechanisms is serializable. A
similar technique for composition was presented in [24]. In contrast
to the above, we present our results in a more abstract setting.

The work in [12, 14] is also motivated by the same abstract
problem of composing transactions that use different protocols. Our
work focuses on abstract properties that enable such composition,
while [12, 14] address composition of a specific set of protocols.
[12] also addresses compiler support for automating composition,
which we do not address.

[22] presents another instance of a specific composition that
combines lock-based STMs with lock inference. An alternative ap-
proach for composition is proposed in [5, 9, 13], which serializes
different transactions simultaneously accessing the same shared
memory using different synchronization protocols. A methodology
for composing lock-free objects is described in [7]. Their approach
is applicable to CAS-based algorithms, and relies on implementa-
tion details of the composed objects.

Adaptive runtime techniques for choosing between optimistic
and pessimistic synchronization protocols for every transaction are
described by [28, 30].

I/O operations are handled in a limited way in STMs. In [16],
I/O is handled using a buffering mechanism which wraps the na-
tive libraries. As noted in [16], this solution is very limited and
cannot support transactions dependent on the output of this oper-
ation. Finally, [3], describes an STM with two modes of opera-
tion: restricted (which limits the operations that can be done) and
unrestricted (which allows any operation). The STM transition be-
tween the modes is done automatically, moving to unrestricted only
when an operation violates the restricted mode. Only one running
transaction at a time is allowed in an unrestricted mode (as in crit-
ical sections), which limits the degree of parallelism. Our method
can exploit more parallelism opportunities by using an STM on
the parts of a transaction that do not invoke I/O combined with a
pessimistic (non-abortable) protocol. This ensures that transactions
which include I/O execute atomically.

Linearizability [21] relates to atomicity of a single operation,
while our paper focuses on the atomicity of a sequence of opera-
tions (transactions), with a single-operation being a special case.
Our formalism is based on abstract specifications of objects, as in
linearizability (with a set of histories being used to model a specifi-
cation). The protocols and the compositions we consider also pre-
serve the real-time ordering of non-overlapping transactions, even
though we do not explicitly discuss this. This is a simple conse-
quence when the serializability window of every transaction is con-
tained within the transaction.

Acknowledgments
The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Program (FP7/2007-2013) / ERC grant agreement n
[321174-VSSC].

References
[1] A fast and lightweight key/value database library by google.

http://code.google.com/p/leveldb.
[2] H. Attiya, G. Ramalingam, and N. Rinetzky. Sequential ver-

ification of serializability. In Proceedings of the 37th an-
nual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’10, pages 31–42, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-479-9. . URL
http://doi.acm.org/10.1145/1706299.1706305.

248

[3] C. Blundell. Abstract unrestricted transactional memory: Supporting
i/o and system calls within transactions, 2006.

[4] N. Bronson. Scalastm, 2010. URL
http://nbronson.github.io/scala-stm/.

[5] M. Cao, M. Zhang, and M. D. Bond. Drinking from both glasses:
Adaptively combining pessimistic and optimistic synchronization for
efficient parallel runtime support. In 5th Workshop on Determinism
and Correctness in Parallel Programming, 2014.

[6] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC,
2008.

[7] D. Cederman and P. Tsigas. Supporting lock-free composition of
concurrent data objects. In Proceedings of the 7th ACM international
conference on Computing frontiers, pages 53–62. ACM, 2010.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In DISC,
pages 194–208, 2006.

[9] J. J. Duffy, M. M. Magruder, G. Graefe, D. Detlefs, and V. K. Grover.
Combined pessimistic and optimistic concurrency control. US Patent
7,434,010 B2, 2008.

[10] G. Golan-Gueta, N. Bronson, A. Aiken, G. Ramalingam, M. Sagiv,
and E. Yahav. Automatic fine-grain locking using shape properties. In
OOPSLA, 2011.

[11] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Concurrent
libraries with foresight. In PLDI, 2013.

[12] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic
scalable atomicity via semantic locking. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11,
2015, pages 31–41, 2015.

[13] J. E. Gottschlich and J. Chung. Optimizing the concurrent execution of
locks and transactions. In Proceedings of the 24th International Work-
shop on Languages and Compilers for Parallel Computing (LCPC),
September 2011.

[14] V. Gramoli and R. Guerraoui. Reusable concurrent data types. In
R. Jones, editor, ECOOP 2014 Object-Oriented Programming, vol-
ume 8586 of Lecture Notes in Computer Science, pages 182–206.
Springer Berlin Heidelberg, 2014. ISBN 978-3-662-44201-2.

[15] R. Guerraoui and M. Kapalka. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’08, pages
175–184, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-
7. . URL http://doi.acm.org/10.1145/1345206.1345233.

[16] T. Harris. Exceptions and side-effects in atomic blocks. Science of
Computer Programming, 58(3):325 – 343, 2005. ISSN 0167-6423.
Special Issue on Concurrency and synchonization in Java programs
Special Issue on Concurrency and synchronization in Java programs.

[17] T. Harris, J. Larus, and R. Rajwar. Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1), 2010. .

[18] M. Herlihy. Apologizing versus asking permission: Optimistic concur-
rency control for abstract data types. ACM Transactions on Database
Systems, 15:96–124, 1990.

[19] M. Herlihy and E. Koskinen. Transactional boosting: a method-
ology for highly-concurrent transactional objects. In Proceedings
of the 13th ACM SIGPLAN Symposium on Principles and prac-
tice of parallel programming, PPoPP ’08, pages 207–216, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. . URL
http://doi.acm.org/10.1145/1345206.1345237.

[20] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchro-
nization: Double-ended queues as an example. In Distributed Com-
puting Systems, 2003. Proceedings. 23rd International Conference on,
pages 522–529, 2003.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. TOPLAS, 12, 1990.

[22] S. Kempf, R. Veldema, and M. Philippsen. Combining lock inference
with lock-based software transactional memory. In Springer, editor,
Proceedings of the 26th International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2013), 2013.

[23] G. Korland, N. Shavit, and P. Felber. Noninvasive concurrency with
java stm. In MULTIPROG, 2010.

[24] G. Lausen. Concurrency control in database systems: A step towards
the integration of optimistic methods and locking. In Proceedings of
the ACM ’82 Conference, ACM ’82, pages 64–68, New York, NY,
USA, 1982. ACM. ISBN 0-89791-085-0.

[25] Z. Ofri, A. Aiken, G. Golan-Gueta, G. Ramalingam, and M. Sagiv.
Composing concurrency control. Technical report, 2015. In prepara-
tion.

[26] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Analysis and evolution of journaling file systems. In Proceedings
of the annual conference on USENIX Annual Technical Conference,
pages 8–8. USENIX Association, 2005.

[27] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with ea-
ger validation. In Proceedings of the 20th International Conference on
Distributed Computing, DISC’06, pages 284–298, Berlin, Heidelberg,
2006. Springer-Verlag. ISBN 3-540-44624-9, 978-3-540-44624-8.

[28] M. Sheikhan and S. Ahmadluei. An intelligent hybrid op-
timistic/pessimistic concurrency control algorithm for centralized
database systems using modified gsa-optimized art neural model.
Neural Computing and Applications, 23(6):1815–1829, 2013. URL
http://dx.doi.org/10.1007/s00521-012-1147-3.

[29] A. Silberschatz and Z. Kedam. A family of locking protocols for
database systems that are modeled by directed graphs. Software
Engineering, IEEE Transactions on, (6):558–562, 1982.

[30] T. Usui, R. Behrends, J. Evans, and Y. Smaragdakis. Adaptive locks:
Combining transactions and locks for efficient concurrency. In PACT,
pages 3–14, 2009.

[31] G. Weikum and G. Vossen. Transactional information systems: theory,
algorithms, and the practice of concurrency control and recovery.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.
ISBN 1-55860-508-8.

249

