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Abstract—Testing is a key element of software development 

processes for the management and assessment of product quality. 

In most development environments, the software engineers are 

responsible for ensuring the functional correctness of code. 

However, for large complex software products, there is an 

additional need to check that changes do not negatively impact 

other parts of the software and they comply with system 

constraints such as backward compatibility, performance, security 

etc. Ensuring these system constraints may require complex 

verification infrastructure and test procedures. Although such 

tests are time consuming and expensive and rarely find defects 

they act as an insurance process to ensure the software is 

compliant. However, long lasting tests increasingly conflict with 

strategic aims to shorten release cycles. To decrease production 

costs and to improve development agility, we created a generic test 

selection strategy called THEO that accelerates test processes 

without sacrificing product quality. THEO is based on a cost 

model, which dynamically skips tests when the expected cost of 

running the test exceeds the expected cost of removing it. We 

replayed past development periods of three major Microsoft 

products resulting in a reduction of 50% of test executions, saving 

millions of dollars per year, while maintaining product quality. 

Index Terms—measurement, cost estimation, test improvement.  

I. INTRODUCTION 

Software testing is a key element of software development 

processes. The purpose of testing is to ensure that code changes 

applied to a software product do not compromise product 

quality. Often, testing is associated with checking for functional 

correctness. However, for large complex software systems, it is 

also important to verify system constraints such as backward 

compatibility, performance, security etc. Complex systems like 

Microsoft Windows and Office are developed by thousands of 

engineers that simultaneously apply code changes, which may 

interfere with each other. In such environments, testing may be 

seen as an insurance process verifying that the software product 

complies with all necessary system constraints at all times. By 

nature, system and compliance tests are complex and time-

consuming although they rarely find a defect. Large complex 

software products tend to run on millions of configuration in the 

field and emulating these configurations requires multiple test 

infrastructures and procedures that are expensive to run in terms 

of cost and time. Making tests faster is desirable but usually 

requires enormous development efforts. Simply removing tests 

increases the risk of expensive bugs being shipped as part of the 
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final product. This is a generic issue for developing large 

complex software systems [1]. At the same time, long running 

test processes increasingly conflict with the need to deliver 

software products in shorter periods of time while maintaining 

or increasing product quality and reliability. Increasing 

productivity through running less tests is desirable but threatens 

product quality, as code defects may remain undetected. 

The goal of this work is to develop a cost based test selection 

strategy (called THEO1) to improve development processes. 

THEO is a dynamic, self-adaptive test selection strategy, which 

does not sacrifice product quality. THEO automatically skips 

test executions when the expected cost of running a test exceeds 

the expected cost of not running it. We designed THEO to ensure 

that all tests will execute on all code changes at least once before 

shipping the software product. Executing all tests at least once 

ensures that we eventually find all code defects. Thus, THEO 

does not sacrifice product quality but may delay defect detection 

to later development phases. THEO and its underlying cost 

model are based on historic test measurements to estimate future 

test execution costs and causes no test runtime overhead. 

Additional dynamic or static test analysis data, such as coverage 

or dependency graphs are not required. 

We evaluated the effects of THEO by simulating historic 

development processes for three major Microsoft products: 

Windows, Office, and Dynamics. Combined, our simulation 

results cover more than 26 month of industrial product 

development and more than 37 million test executions.  

We make the following contributions in this paper: 

 We develop a cost model for test executions based on 

historic test execution results that causes no test 

execution runtime overhead, and is capable of 

readjusting its cost estimations based on execution 

contexts (e.g., configurations of the test environment). 

 We develop THEO, a self-adapting test selection 

strategy to accelerate test processes without sacrificing 

code quality. 

 We evaluate THEO by simulating its impact on historic 

Windows, Office, and Dynamics developments. 

 We briefly discuss expected secondary improvements 

such as developer satisfaction. 

In Section II, we provide background information about 

development and verification processes to explain the context of 

this work, motivation and methodology are described in  



Section III. We define the historic data feeds in Section IV. 

Based on this input, we derive failure probability functions 

(Section V) used in our cost model (Section VI). Section VII 

contains a description on simulating THEO on past development 

processes. Sections VIII and IX discuss simulation 

measurements and results. Secondary improvements are briefly 

discussed in Section X. We close the paper with threats to 

validity (Section XI), related work (Section XII) and a 

conclusion (Section XIII). 

II.  DEVELOPMENT AND VERIFICATION PROCESSES 

In this section, we provide a brief overview of the complex 

subject of software development methodologies. The process for 

developing large software products is predominantly through 

developing a single component across multiple code branches 

(e.g. Microsoft Windows) or through developing independent 

components (e.g. Microsoft Office) which form the product.  

When developing code across multiple code branches, a code 

branch is a forked version of the code base that allows parallel 

modifications without interference (for more details we refer to 

Bird and Zimmermann [2] and Murphy et al. [3]). The 

alternative is to design the product into multiple independent 

components. Each component can be developed independently 

on a single code branch [4]. 

Independent from the development methodology, 

development teams are often responsible for verifying functional 

correctness of any code change. Where system constraints exist 

on the product, additional test infrastructure is required to ensure 

all code meets those constraints. Since product constraints are 

system properties, they often need to be verified at system level. 

The complexity of the verification requirements is dependent 

upon system size and the number of system constraints. For 

example, Windows uses multiple development branches that 

integrate into a single trunk branch (see Fig. 1. ). Developer 

commit their code changes to development branches (Branch B1 

in Fig. 1. ) and integrate these code changes through multiple 

integration branches (B2 and B3 in Fig. 1. ) into the trunk branch, 

which contains the current stable version of the next Windows 

release. Each integration path between any two branches is 

guarded by so-called quality gates checking for various 

constraints, e.g. backward compatibility requirements, both in 

terms of the hardware it runs on and in terms of supported 

applications. To verify that Windows meets these constraints 

requires the emulation of millions of different execution setups 

at each branch level. The lower the level of branches a quality 

gate fails, the higher the number of affected engineers and the 

more expensive a defect becomes. 

At the same time, any complex test infrastructure evolves 

over time. New test are added, older tests might get less 

important or even deprecated. Maintaining tests and preventing 

test infrastructures from decay can be an enormous effort. For 

older products, there may be a lack of ownership for some of the 

older tests. These tests can affect development speed as the more 

tests are executed and the longer the runtime of tests, the longer 

the verification process and the slower the development speed, 

e.g. the time required to integrate code changes into the trunk 

branch. Additionally, verification time depends on the number 

of test failures. Most test failures require human effort to inspect 

and to fix the underlying issue. Note that test failures may be due 

to code defects or due to test reliability issues and that running 

and analyzing these failures is a time consuming task, especially 

at system and integration level. System tests can run for minutes 

or hours as they often require entire systems to be set-up and 

tore-down. At the same time, developing large complex software 

systems usually implies large development teams developing 

code changes in parallel that need to be tested also in parallel. 

Consequently, increasing the effectiveness and efficiency of 

test processes has an immediate effect on product development. 

Running less tests might help to improve test performance. 

However, reducing testing imposes the risk of elapsing defects 

to later development stages and unnecessary involving or 

affecting more developers.  

III. MOTIVATION & METHODOLOGY 

The goal of this work is to decrease development costs and 

to increase productivity without sacrificing product quality. As 

we discussed in Section II, achieving this goal requires a careful 

balance between conservative test strategies to minimize the 

number of defects elapsing into later development stages, and 

reducing test time to allow faster integration processes and 

higher productivity. Any test optimization strategies should not 

compromise the quality of the code shipped to customers. It may 

be acceptable to find defects later than possible, but it remains 

unacceptable to weaken overall product quality. Our 

optimization strategy ensures that all test scenarios are executed 

at least once for each code change before integrating the code 

change into the main product code base, e.g. the trunk branch. 

From the example shown in Fig. 1. , it is acceptable to skip a test 

scenario on branch B2 if and only if the very same test scenario 

will be executed on branch B3 for the very same code change.  

The basic assumption behind this work and most other test 

optimization and test selection approaches is that for given 
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Fig. 1.  Integration path example. The integration path of change C applied 

to branch B1 lists the branches B1, B2, B3, and trunk including the 

timestamps of the corresponding successful merge operations. 



scenarios, not all tests are equally well suited. Some tests are 

more effective than others are. However, deciding the 

effectiveness of tests and when to execute them is not trivial.  

The approach presented in this paper uses historic test 

execution data and development process cost factors to perform 

test selection. Each test execution is considered an investment 

and the expected test result considered as return of investment. 

Using a cost model, our goal is to create a dynamic, self-adaptive 

test selection strategy, which readjusts its cost estimations based 

on test execution context. To provide an actionable solution that 

fits into the Microsoft development processes, we considered 

only solutions that cause no runtime overhead and that required 

no additional data collection. THEO only uses historic test data 

collected by standard testing frameworks and excludes code 

coverage data as collecting code coverage can increase the 

runtime overhead. Later, we will show that THEO ensures all 

tests are executed at least once for each code change. Therefore, 

it does not affect the overall code coverage of the test process. 

IV. HISTORIC TEST PERFORMANCE DATA FEEDS 

The process collects the results of prior test executions; this 

data is already collected by most test execution frameworks. The 

individual data sources we use to select test cases are depict in 

TABLE I. . The main data collection categories are:  

A. General Test Execution Information  

The name of the executed test (TestName) and the unique 

identifier of the test execution instance (TestExecID) are 

collected. This data allows us to bind and group test execution 

results to the according test case.  

B. Test Runtime 

We use the time taken for the test to run, i.e. the test 

execution time (TestExecDuration) for each test execution as 

recorded by the test framework. 

C. Test Results 

Further, we collect the results of all tests being run within the 

development process. A test failure is where the expected result 

of a test could not be produced (i.e., assertion failed), or the 

whole test execution terminated with an error. Usually, we 

assume that a failing test indicates a code defect, caused by 

introducing a defect (e.g. through side effects) when merging 

multiple parallel-developed code changes. However, it might 

also be that the test case reporting the test failure is not reliable. 

We call test failures due to test reliability issues false alarms.  

Categorizing the test result as passing or failing is implicitly 

given by the testing framework. However, it is also important to 

further distinguish test failures into code defects and false 

alarms. To do so, we need additional information. Using links 

between test failures and bug reports, we can distinguish test 

failures due to code defects from false alarms [5]. If the failure 

led to a bug report that was later fixed by applying a code change 

we mark it as a code defect. Otherwise, the failed test execution 

is marked as a false alarm. To identify their cause, test failures 

always need to be manually inspected to either fix the problem 

or identify the test failure as false alarm. Due to resource 

restrictions, not all test failures can be investigated. Therefore, 

test failures that were not manually investigated are marked as 

undecided and ignored, as their cause is indeterminable. 

D. Execution Context 

Modern software systems tend to be multi-platform 

applications running on different processor architectures, e.g. 

x64 and arm, different machines, and different configurations. 

We define an execution context as a set of properties used to 

distinguish between different test environments. In this paper, 

we use the execution context properties BuildType, Architecture, 

Language, Branch (see TABLE I. for detailed description). 

However, the concept of execution contexts is variable. Adding 

or removing properties will influence the number of different 

execution contexts but requires no modification of the general 

approach. This is a crucial point as a test may show different 

execution behaviors for different execution contexts. For 

example, a test might find more issues on code of one branch 

than another depending on the type of changes performed on that 

branch. For example, tests cases testing core functionality might 

find more defects on a branch containing kernel changes than on 

a branch managing media changes. Thus, our approach will not 

only differentiate between test cases, but also bind historic defect 

detection capabilities of a test to its execution context. 

V. TEST FAILURE PROBABILITIES 

Given a planned test execution and given the corresponding 

execution context, we can use past test executions of the same 

test in the same execution context and derive the number of 

reported defects and the number of false test alarm that the test 

reported. From these past observations, we can derive two 

failure probabilities: 𝑃𝑇𝑃 as the probability that the combination 

of test and execution context will detect a defect (true positive) 

and 𝑃𝐹𝑃 as the probability that the combination of test and 

execution context will report a false alarm (false positive). These 

probabilities are defined as: 

𝑃𝑇𝑃(𝑡, 𝑐) =  
#𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (𝑡, 𝑐)

#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐)
    

𝑃𝐹𝑃(𝑡, 𝑐) =  
#𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡, 𝑐)

#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐)
 

TABLE I.  TEST EXECUTION DATA USED FOR TEST SELECTION. 

Data point Description 

General test execution information 

TestName Unique name of test case executed. 

TestExecID Unique identifier of test case execution.  

Test runtime information 

TestExecDuration Number of seconds the recorded test case execution 

lasted. 

Test result information 

TestExecResult The result of the test execution. Possible value: 
passed, code defect, false alarm, undecided. 

Requires interpretation as described in Section IV.C 

Execution context information 

BuildType The build type of the binaries on which the test was 

executed. Possible value: debug, release. 

Architecture Architecture information of the binaries under test. 
Possible values: x86, x64, arm. 

Language Language information of the binaries under test, e.g. 

en-us. Especially media and GUI tests depend on it. 

Branch Unique identifier of the source code branch on which 

the test execution was performed. 
  



where the tuple (𝑡, 𝑐) is a combination of test 𝑡 and execution 

context 𝑐, where #𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (𝑡, 𝑐) represents the number 

of defects reported by 𝑡 when executed in c, #𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐) 

represents the number of times 𝑡 has been executed in 𝑐, and 

where #𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡, 𝑐) represents the number of false test 

alarms caused by 𝑡 when executed in 𝑐. For example, consider a 

test 𝑡 executed 100 times in an execution context 𝑐, e.g. on build 

type release, architecture x64, branch b, and language en-us, 

which reported 4 false alarms and 7 defects, then 𝑃𝐹𝑃(𝑡, 𝑐) =

 0.04 and 𝑃𝑇𝑃(𝑡, 𝑐) =  0.07. Both probability measurements 

consider the entire history from the beginning of monitoring 

until the moment the test is about to be executed. Consequently, 

probability measures get more stable and more reliable the more 

historic information we gathered for the corresponding test. 

Note that test failure probabilities enclose code coverage like 

information. For tests not covering a changed code area and for 

test covering the code area but not checking any execution 

results, the defect detection probability 𝑃𝑇𝑃 will be zero. 

VI. COST MODELLING THEORY 

The decision of when to execute or skip a test case in a given 

execution context is solely based on cost. The idea is to estimate 

the cost of executing or not executing a test in a given execution 

context beforehand and to choose the less expensive option. 

A cost model was developed to deliver the cost factors for 

the test selection strategy, using the data feeds and test failure 

probabilities discussed in Section IV. It is sensitive to the history 

of a test case as it considers past test executions in the same 

context to assess the expected cost values. For each scheduled 

test execution, the cost model considers two different scenarios: 

executing the scheduled test and not executing it. For both 

scenarios and the given execution context, we estimate the 

corresponding expected costs and decide for the scenario which 

is expected to be less expensive. Thus, if the estimated cost of 

not executing the test (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝) is lower than the cost executing 

it (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐), THEO will skip the test execution—not selecting 

the test to be executed. 

For both execution scenarios, the contributing cost factors 

must be considered. Executing a test raises both the 

computational cost (Section VI.A) and the cost of inspecting the 

test result (Section VI.B), if necessary. Executing tests that fail 

without detecting a real code defect will trigger unnecessary 

failure inspections performed by engineers. On the other hand, 

not executing a test might lead to undetected defects that will 

escape to later development stages and therefore impact more 

engineers than necessary (Section IV.C) 

In this paper, cost factors, which are described with positive 

values, express the expected cost to be paid. We could also have 

described cost saving values with negative amounts and cost 

increasing values with positive amounts, but we explicitly 

wanted to avoid any up-front judgment on these figures. 

A. Base Cost of Test Executions 

A major cost factor is the time-shared cost of infrastructure 

necessary to execute a test on all required execution contexts. 
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The constant 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  is a constant representing the per 

minute infrastructure cost. Multiplied with the execution time 

per test, we get the total infrastructure cost of running a test. For 

the Microsoft development environment we computed 

𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  to have a value of 0.03 $/min. The cost factor 

corresponds roughly to the cost of a memory intense Azure 

Windows virtual machine2 and includes power and hardware 

consumption, as well as maintenance.  

For example, consider we executed a test 100 times in a 

given execution context and that each execution took 10 

minutes. The total machine cost required to run the test in that 

context accumulates to 100 * 10 * 0.03 $/min = $30. 

B. Cost of Test Inspections 

All test failures require human inspection effort, but 

inspecting failing tests due to anything other than code defects is 

unnecessary and should be avoided. The cost of a test inspection 

equals the amount of time required to conduct the inspection 

times the salary of the engineer conducting the inspection. The 

cost constant 𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡  represents the average cost rate of test 

failure inspections at Microsoft. It considers the size of the test 

inspection teams, the number of inspections performed and the 

average salary of engineers on the team. The average cost per 

test inspection is $9.60. Although this cost may vary from case 

to case, for simplicity reasons, we use the average cost of a test 

inspection in our model. Note that this cost reflects only the time 

spent by inspecting engineers. Additional cost factors such as 

waiting time or the need to run extra tests is not included. 

C. Cost of Escaped Defects 

Code defects escaping a test run can be expensive. The 

longer a defect remains hidden the more people can potentially 

be affected and the more expensive the escaped defect become. 

Defects closer to release dates tend to be more expensive [6] and 

increased time from defect introduction to its detection increases 

cost due to aggravated root cause analysis (more changes have 

been applied since then). Understanding and fixing an older 

change is more difficult. Additionally, the greater the number of 

engineers affected by a defect, the more expensive disruptions 

will be while fixing the defect. Defects usually imply some sort 

of development freeze, e.g. no check-ins until issue resolved. 

The constant 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑  represents the average cost of an 

escaped defect. This cost depends on the number of people that 

will be affected by the escaped defect and the time duration the 

defect remains undetected. We used a value of $4.20 per 

developer and hour of delay for 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 . This value 

represents the average cost of a bug elapsing within Microsoft. 

Depending on the time the defect remains undetected and the 

number of additional engineers affected, elapsing a defect from 

a development branch into the main trunk branch in Windows 

can cost tens of thousands of dollars. 

We do not model defect severity explicitly. There are two 

main reasons for this. First, the severity of a defect cannot be 

determined prior to its occurrence—we would need to predict 

defect severity, which will not be reliable or actionable. Second, 



all defects breaking a system and integration test and causing 

development activity to freeze on the corresponding branch must 

be considered severe. Vice versa, system constraints and 

properties whose violations are not considered severe will not be 

tested during system and integration testing. Such defects are 

caught by pre-check-in verification processes or dog-food and 

manual testing procedures. For example, breaking look and feel 

properties may not cause a development freeze. The impact of 

the defect on the overall system is too low to cause a sever 

disruption of the overall development process. 

D. Final Cost Function 

Finally, we combine the individual cost components into two 

cost functions: the expected cost of executing a test (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐) 

and the expected cost for not executing a test (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝). 

𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐  represents the expected cost if we decide to execute 

the test which depends on the machine cost (𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒), the 

probability that the executed test will fail due to any other reason 

as a defect (𝑃𝐹𝑃), and the cost of conducting an unnecessary test 

failure inspecting (𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡): 

𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 =  𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + (𝑃𝐹𝑃 ∗ 𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡) 

𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 represents the expected cost of not executing the test 

which depends on the cost of escaped defects (𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑) and 

the number of additionally affected engineers (#𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠) 

and the time the defect remains undetected (𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦): 

𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 =  𝑃𝑇𝑃 ∗ 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 ∗ 𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦 ∗ #𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠 

The number of engineers (#𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠) is a static property 
of the engineering system and can be determined by 
counting the number of engineers whose code changes 
passed the current code branch. The  𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦  is the 

average time span required to fix historic defects on the 
corresponding code branch. Both properties are easy to 
measure and reliable (we verified these values with the 
corresponding product teams).  
𝐹or tests that found no defects in the given execution context, 

𝑃𝑇𝑃 and 𝐶𝑜𝑠𝑡𝑆𝑘𝑖𝑝 is zero and the test is skipped. The same test 

for a different execution context (e.g. different branch) is likely 

to have a different 𝑃𝑇𝑃 value and thus might remain enabled. 

Note, that we skip tests only if we know that the code change 

will be tested by the same execution context later again, e.g. on 

a lower branch level as shown in Fig. 1.  

VII. IMPROVEMENT STRATEGY SIMULATION 

Applying THEO to a live development environment without 

a period of thorough evaluation is too risky as it can directly 

impact product quality. The result presented are based on 

simulations of THEO on past development periods. This section 

discusses the process of simulating the execution of the tests and 

also simulating the impact of any failures that would propagate 

as tests are removed. Simulating the test selection process also 

allows us to compare our results with actual test and code quality 

behavior.  

A. Simulating Test Case Executions 

To simulate the behavior and impact of our test selection 

strategy, we replayed test executions as they occurred in past 

development periods. Tests executions and their test results 

(failed or passed) are recorded in databases by the test execution 

frameworks at Microsoft. Using these databases, we know the 

test suite and test case executions, the execution contexts these 

tests were executed, and the order in which these tests run. This 

information is sufficient for the simulation. Our simulation 

process follows the following basic steps, described in Fig. 2.   

Step 1: Using the databases containing the test executions 

and their corresponding test execution results (failed or 

passed), we order these historic test executions by their 

execution timestamp. Thus, our test optimization strategy is 

fed with test executions in the order they were applied. 

Step 2: Each historic test execution and the corresponding 

test execution context definition is fed into a simulation 

process running an implementation of our test selection 

strategy. The test selection process then returns a binary 

decision indicating whether the test case received as input is 

selected to be executed by the test selection strategy. 

Step 3: Depending on the binary result, the originally 

executed test is marked as skipped or executed in a separate 

simulation table. Skipped test executions represent those test 

executions that would not be executed when using our test 

selection strategy. 

Our simulation process does not execute test cases. It only makes 

decisions on whether a test case would have been executed, 

depending on the cost balance tightly influence by its defect 

finding capabilities. The result of this test case simulation is a 

simple list of test case executions that would have been 

prevented when using our test selection strategy. This list can be 

used to compare against the original set of executed tests. 

B. Simulating Defect Detection 

Removing test executions may impact code quality. Defects 

detected by test executions that have been removed by THEO 

time
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Fig. 2.  Flow chart illustrating the test execution simulation process. For each 

test execution and execution context, ordered by time, we decide which 

tests should be executed. 



would remain undetected, at least for some time. Disabling test 

executions is likely to have impact on code changes and 

developer behavior, which cannot be simulated. Thus, we have 

to estimate how undetected defects would propagate through the 

development process and when they would be detected.   

The heuristic estimating when and where escaped defects 

would have been recaptures requires more data about the actual 

project specific development process. This data is needed to gain 

further insight in how code changes, and thus defects, propagate 

through the development process. For this part of our simulator, 

we collect the following, project specific datasets and make 

some basic assumptions about code defects and test behavior.   

Integration paths of code changes and defects 

Assuming a base code branch, usually called trunk, the 

integration path of a code change is a sequence of branches and 

timestamps the corresponding code change was applied to 

before the code change was merged into trunk. For projects 

using a single development branch, e.g. Microsoft Office, the 

integration path of a code change is a single entry identifying the 

name of the single branch and the commit timestamp. For 

projects using multiple code branches, e.g. Microsoft Windows, 

the integration path usually contains multiple entries. For 

example, consider the example shown in Fig. 1. The integration 

path of change C lists the branches B1, B2, B3, and trunk 

including the timestamps of the corresponding merge operation 

that applied C to the code base in each branch.  

For each change originally applied to the version control 

system, we compute their corresponding integration paths 

tracing code changes through the version control system [3]. For 

more details on that procedure, we refer to Murphy et al. [3]. 

Basic defect and test behavior assumptions 

We make the following two assumptions with respect to code 

issues and test cases detecting these code issues: 

1. A combination of test case and execution context3, that 

detected and reported a defect at time 𝑡𝑖 will also detect 

and report the same defect at any time 𝑡𝑘  if and only if  

𝑡𝑘 ≥  𝑡𝑖 and if 𝑡𝑘 is executed on an integration path of 

the defect. This assumption disregards that (even though 

unlikely) the code defect might have be suppressed but 

not fixed by other code changes applied to the code base.  

2. The code issue can be replicated by re-running the test 

in the corresponding execution context. 

We discussed these assumptions with various Microsoft 

product teams who verified and confirmed their validity. Product 

teams also confirmed that in few cases, code defects escape their 

original branches and are re-captured on higher-level branches 

or later on the same branch. 

C. Assigning defects to simulated test executions 

The integration path of code changes is assumed to 

correspond to the propagation path of undetected defects, and 

                                                           
3 For defect propagation purposes, we ignore all branch specific execution 

context information as long as the change containing the defect was 

integrated into the branch.  

can be used to estimate which test execution would have re-

captured an escaped defect. In the example shown in Fig. 1. a 

defect in change C is caught by test T2 and the code does not 

progress past branch B2. A bug fix is created and verified by 

tests T4, T5 and T6. If THEO skips test T2 the defect is assumed 

to be immediately merged into branch B3. THEO assumes the 

defect is caught by test T6 as it runs the same tests as T2. In this 

scenario the bug fix would be applied in branch B1 after running 

test T6 and THEO would assume that the cost of fixing the defect 

is now higher than its original cost.    

While the original association between defect and test 

execution is stored in the test execution framework database, our 

simulator returns a modified version of the original associations 

reflecting simulation results. For each test that is executed during 

simulation, we assign all original code issues detected during test 

execution. Additionally, we assign all escaped defects to the test 

execution that would have been caught given the heuristics 

above. As a result, the number of defects associated with a test 

execution equals the number of defects during the actual 

execution of the test, plus an additional set of escaped defects. 

D. Executing all Test Cases At Least Once 

The goal of this work is to optimize testing processes without 

sacrificing product quality. This implies that we ensure that all 

escaped defects are eventually caught, before releasing the 

product to customers. To satisfy this condition, we ensure all 

originally executed combinations of tests and execution contexts 

for all code changes applied to the code base are executed at least 

once. To ensure this happens we use two separate criteria, 

depending on the development process: 
 

Option 1: For single branch development processes, e.g. 

Microsoft Office, we enforce each test to execute at least 

every third day4. Since all code changes are applied to the 

same branch, re-execution of each test for each execution 

context periodically ensures that each code change has to go 

through the same verification procedures as performed 

originally. 

Option 2: For multi-branch development processes, e.g. 

Microsoft Windows, we enforce to execute a combination of 

test and execution context on the branch closest to trunk on 

which the test had been executed originally.  

Thus, THEO can only skip test executions if the criteria 

described above allow a test to be skipped. Otherwise, THEO’s 

decision to skip a test in a given execution context will be 

ignored by the simulator and the test will be executed. 

E. Training Phase 

As the underlying cost model depends on risk factors 

extracted from historic data, these risk factors will be unknown 

and unreliable in the early stages of the simulation process, in 

which no historic data is known. To compensate, each test and 

execution context combination has to go through a training 

4 This value is the result of a complex analysis we conducted with the 

Office product team and reflects the optimal solution for the system. Due 

to confidential reasons, we cannot share the details of this process. 



phase of 50 executions before the simulator will allow THEO to 

disable the corresponding test in the given execution context.  

VIII. SIMULATION EVALUATION 

A. Test Execution Reduction 

The first evaluation identifies the number of test executions 

that were skipped during the simulation of the test selection 

strategy. To retrieve this number, we count the number of 

originally recorded test executions and subtract the number of 

test executions that our test strategy would have executed during 

simulation. We report the relative test reduction rate as the 

number of skipped test execution divided by the total number of 

originally executed test execution during development. 

Considering the execution time of individual test executions, see 

Section IV.B, we can translate the relative test reduction rate into 

relative test execution time improvements—the total execution 

time of all skipped test executions divided by the total test 

execution time of all tests executed originally. We further show 

reduction rates over time. The number of skipped test executions 

and their summed execution duration determines how much 

machine cost 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  has been saved.  

B. Test Result Inspection 

As discussed in Section VI.B, test failures require human 

effort for inspection in order to decide what action to take. 

Skipping test cases that would have caused unnecessary test 

inspections (false alarms) is an improvement. Relating these 

suppressed false alarms with the corresponding cost factor for 

test failure inspections (𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡), identifies the relative 

improvement with respect to test inspection time and the 

associated development cost improvements. 

C. Escaped Defects 

While the reduction in test executions (Section VIII.A) and 

the reduction in test inspections (Section VIII.B) relate to 

productivity and cost improvements, the number of defects that 

escaped due to skipped test executions reflects the negative 

aspects of THEO and relates to development cost increases. We 

report the number of escaped defects relative to the number of 

all code defects reported by test executions. The simulator is 

pessimistic assuming defects can only be found by the same test 

cases that are ignored (comparing TestName and TestExecID), 

in reality they may be caught earlier by other test cases.  

D. Cost Improvement 

Skipping tests may save development time. At the same time 

it imposes risk of escaped defects temporarily compromising 

code quality, and thus to increase development cost—finding 

defects later in the development tends to be more expensive [6]. 

To validate if the estimated development cost improvements 

predominate the estimated development cost increases, we 

report the total cost balance as the balance of cost reductions. 

We add the cost reductions due to reduced test time and du to 

less test failure inspections and subtract the extra cost of escaped 

bugs. A positive balance reflects cases in which the 

improvements predominate. Negative balances refer to cases in 

which our optimization strategy THEO does not payoff and 

would have caused additional development costs rather than 

lowering them.  

E. Evaluation Subject 

We evaluated the effects of THEO on three major Microsoft 

products: Windows, Office, and Dynamics. Combined, our 

simulation results cover 26 months of product development, 

more than 37 million test executions. TABLE II. contains 

information about the duration of simulated development 

periods and the number of simulated test cases per project.  

Results presented for Windows reflect the entire Windows 8.1 

development period (~11 months). For Windows, we simulated 

more than 30 million test executions. Simulation results for 

Office cover development activities and test executions 

covering three months—a total of more than 1.2 million test 

executions. For Dynamics, we simulated a development period 

of 12 months with more than 6.5 million test executions. While 

Windows and Dynamics use multi-branch development setups, 

Office uses a single collaboration branch. Thus, for simulations 

for Windows and Dynamics, we enforce to execute a 

combination of test and execution context on the branch closest 

to trunk (Option 2 discussed in Section VII.D), while for Office 

we simulate using the time based test execution policy (Option 

1 discussed in Section VII.D). 

IX. SIMULATION RESULTS 

In this section, we present and discuss the results of our 

simulation experiments as described in Section VII. We will 

restrict the discussion in this section to measurable 

improvements. Section X contains a discussion on secondary 

improvements that cannot be measured directly. 

Similar to the cost model the overall cost improvement 

depends on the constant cost estimations as presented in Section 

VIII. The results are summarized in TABLE III.  

A. Test Execution and Test Time Reduction 

THEO would have skipped 40.6% of all Windows test 

executions across all branches. Considering the runtime of these 

tests and relating it to the total runtime of all executed tests, 

THEO would have saved 40.3% of the total test execution time. 

This is a significant improvement. In simulation, submitting a 

code change to a development branch in Windows could have 

been integrated into trunk in only 60% of the original integration 

time. Note that this measurement considers only test execution 

time, but does not consider other development or human factors. 

Thus, the test time improvement of 40% may not translate to a 

40% increase in integration time, but it certainly lowers the 

lower bound of integration time. Multiplying the test time 

improvement with the cost factor for test execution 

(𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒), we yield a cost improvement of over $1.6 

million. Note that the test time cost improvement figures 

TABLE II.  EVALUATION SUBJECT DETAILS. 

 Windows Office Dynamics 

Simulated 

period 
~11 months ~3 months ~12 months 

#test 

executions 
> 30 million > 1.2 million  > 6.5 million 

# branches > 1 1 > 1  
    



consider only the time of not executing the skipped tests. It does 

not include potential cost improvements due to skipping test 

setups, test teardowns, removing entire dedicated test machines 

from a branch, etc. Thus, the test time cost improvement must 

be seen as a lower bound of the actual cost improvement.  

The average test execution reduction rate for Dynamics is above 

50%. This means that THEO would have prevented more than 

half of the originally executed test executions and saved 47% of 

test execution time. In theory, code could have been moved 

nearly 50% faster into the trunk branch, a significant 

improvement. Although the test execution and test time 

reduction rate exceeds the values achieved for Windows, the test 

machine cost improvements that correlated with the reduced test 

time are two orders of magnitude lower than for Windows. This 

is due to the fact, that tests executed for Dynamics terminate 

much faster than Windows tests. Thus, the reduction rate is 

translating into less computational time and thus is less lucrative. 

The same is true for Office tests, which also execute much faster 

and therefore the savings on reduction of test execution time are 

lower than for Windows. The cost savings for Office are further 

less significant as we only simulate a three-month period and test 

executions on one branch. Nevertheless, THEO would have 

skipped a significant number of 34.9% of all performed test 

executions and saved 40.1% of the total test execution time 

B. Test Result Inspection.  

As discussed for the cost modelling theory (Section VI), 

THEO specifically targets unnecessary test inspections caused 

by test failures due to other reasons than code defects (false test 

alarms). Suppressing such test failures implies reduction of 

unnecessary test result inspections, which translates into cost 

savings. Row “Test result inspection” of TABLE III. contains 

the relative number of spared test inspections for all three 

products. For Windows and Dynamics, the reduction rate lies 

around 33%; one third of originally carried out test result 

inspections were unnecessary. For Office, THEO would 

suppress 21.1% of all false positives. Interestingly, the 

associated cost improvements for Windows ($61k) and Office 

($104k) are again two orders of magnitudes lower when 

compared to Dynamics ($2.3M). The reason for the difference is 

again the different absolute number of test failures suppressed. 

C. Escaped Defects 

While removed test executions and reduced test inspections 

determines a positive cost savings, the number of temporarily 

escaped defects increases development costs. 

In our Windows simulation, 0.2% of all defects escaped at 

least one test execution. As shown in TABLE IV. 71% of these 

escaped defects escaped only one branch and were found in the 

corresponding next merge branch. 21% of escaped Windows 

defects escaped two branches and 8% escaped even 3 branches. 

Importantly, none of the defects escaped into the trunk branch. 

On Dynamics, THEO would have elapsed 13.4% of all defects, 

a much higher escape rate as for Windows. The vast majority 

(97%) of these escaped Dynamics defects were caught on the 

direct consecutive merge branch. The remaining 3% escaped 

two branch levels. For both Windows and Dynamics, the extra 

cost caused by escaped bugs is significant. However, in both 

cases, these new extra costs are orders of magnitudes lower than 

the highest cost savings achieved by removed test executions 

and inspections.  

For Office, the results are a bit different. Whereby the 

percentage of bugs that escaped is 8.7%, which is comparable to 

Dynamics, the costs are $75k higher in relation to the cost 

savings. This is due to an additional cost of manual testing work 

that we added as a penalty for Office in case the bugs was not 

found within 10 days. The rationale behind this lies in the way 

the Office test and development is performed. Nevertheless, 

approximately 40% of bugs escaped would have been found 

already in the next scheduled build and test.   

D. Cost Improvement.  

Looking at the overall cost balance, we see cost savings for all 

three evaluation subjects. For Windows, we estimate a total cost 

saving of $1.6M, for Dynamics, a total cost saving of 

approximate $2.0M and for Office a cost saving of approximate 

$100k. These values may seem small considering the total 

development budgets of projects of their scale. However, this 

only identifies test savings. Considering the actual test execution 

reduction rates of 35% to 50% puts these numbers into 

perspective. The actual values are secondary, it is important that 

the achieved productivity increase though faster integrations.  

E. Variable Performance over Time 

Fig. 3. shows the relative test execution reduction over time 

(measured in development days) for Windows. The dark area 

corresponds to originally executed tests that were removed 

during simulation. As shown, THEO requires an initial training  

TABLE III.  SIMULATION RESULTS FOR MICROSOFT WINDOWS, OFFICE, AND DYNAMICS. 

 Windows Office Dynamics 

 Measurement Rel. improvement Cost 

improvement 

Rel. improvement Cost 

improvement 

Rel. improvement Cost 

improvement 

Test executions 40.58% -- 34.9% -- 50.36% -- 

Test time 40.31% $1,567,607.76 40.1% $76,509.24 47.45%  $19,979.03  

Test result inspection 33.04% $61,532.80 21.1% $104,880.00 32.53% $2,337,926.40 

Escaped defects 0.20% $11,970.56 8.7% $75,326.40 13.40% $310,159.42 

Total cost balance  $1,617,170.00  $106,063.24  $2,047,746.01 

       

TABLE IV.  DISTRIBUTION OF ESCAPED DEFECTS OVER NUMBER OF 

ESCAPED BRANCHES FOR WINDOWS AND DYNAMICS. 

 Number of escaped branch levels 

 1 2 3 

Windows 71% 21% 8% 

Dynamics 97% 3% 0% 
    



phase (see Section VII) in which we observe the current testing 

process to estimates risk factors before applying any test 

selection. Once THEO starts skipping test executions, the ratio 

of removed executions converges to an almost stable state. The 

plot shows fluctuations in the relative number of reduced test 

executions, e.g. a sharp drop from nearly 55% to 40% midway 

through the plotted timespan. The reason for these fluctuations 

in test execution reduction rates are natural fluctuations in code 

quality. The quality of submitted code changes is not constant; a 

drop in overall code quality causes more test failures and directly 

influences risk factors. Changes in risk factors can cause 

previously skipped tests to be re-enabled. Reduction rates for 

Office and Dynamics look similar. Due to space reason, we 

abstain from showing these plots.  

X. SECONDARY IMPROVEMENTS 

The measurable improvements discussed in Section IX are 

likely to have further, secondary consequences. Although, these 

improvements are not directly measurable, they are an important 

part of the improvement of the development processes. 

A. Code Velocity 

Reducing the number of executions and consequently the 

overall required test time may have positive effects on code 

velocity. Executing fewer tests implies that code changes have 

to spend less time in verification and changes can be integrated 

faster, freeing up engineering time that may have been spent 

evaluating false positives. However, the immediate impact on 

code velocity is hard to measure. Code velocity is determined by 

many different aspects, including human behavior, which is not 

possible to simulate. Thus, it is hard to predict how THEO would 

affect actual development speed. It might well be that the 

bottleneck of current development processes is not only testing. 

Nevertheless, the number of executed tests represents a lower 

bound to code velocity, as the consecutive time necessary to pass 

all required tests is the minimal time required to integrate code 

changes. By lowering the number of executed tests, THEO 

lowers the lower bound for code velocity. 

B. Developer Satisfaction 

A very important but also hard to measure factor of every 

development process is developer satisfaction. Reducing the 

time for testing and the number of required test inspections is 

likely to increase developer satisfaction. It should help to 

increase the confidence in test results and decisions based on 

testing. Increasing the speed of the development process will 

itself also impact the developer experience. The ability to merge, 

integrate, and share code changes faster can reduce the number 

of merge conflicts and is likely to support collaboration.  

XI. THREATS TO VALIDITY 

Like most empirical studies, the presented study has threats 

to validity. We identified three main groups of threats. 

A. Generalizability 

We investigated test executions specific to three Microsoft 

products and their development processes. Even though some 

terminology might be unique to Microsoft, the execution of tests 

during software development and the impact of test execution 

time on development speed are generalizable.  

The estimated costs presented in this paper are specific to 

Microsoft. The cost model considers several independent but 

development process specific aspects and cost factors are likely 

to vary across releases and projects (e.g. cost factors for 

machines and engineers). Replicating this study for different 

projects or releases requires detailed reviews and adjustments. 

B. Construct Validity 

The approach to estimate the impact of escaped defects and 

to identify those test cases that would eventually re-capture these 

defects is a heuristic and associated cost values must be 

considered approximations. However, our data was derived 

through investigations, discussions and fine-tuning with the 

corresponding product teams. We consider the approximations 

of these heuristics as fair and realistic. Cost factors used in this 

study are based on average Microsoft development figures and 

numbers (e.g. average salary and work hours per year). These 

numbers vary and might not consider all possible aspects. 

Execution context information might be particular important 

for system and integration tests while other tests, e.g. unit tests, 

might be more independent from them. However, the presented 

concept is generic. Reducing the number of execution contexts 

to one or further increasing the number of execution contexts 

does not threat the validity of the overall approach. 

C. Internal Threats to Validity 

The simulator may contain defects. To conquer this threat, 

we implemented multiple test cases and performed manual 

inspections. Through validating with product teams, we are 

confident that the data collected and analyzed reflects the 

development processes accurately.  

XII. RELATED WORK 

In this section, we give an overview of related studies. 

A. Test Selection, Prioritization, and Reduction 

“Measuring the absolute effectiveness of testing is generally 

not possible, but comparison between effectiveness of tests is” 

[7]. Based on this concept, Basili and Selby [8] presented one of 

the first studies comparing the effectiveness and cost of testing 

 
Fig. 3.  Relative test execution reduction rate for Windows over time. The area 

shows the relative number of tests skipped by THEO. 
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strategies showing that changing or choosing different test 

strategies might impact test effectiveness. 

Many of the following research studies focused on the area 

of test case selection, prioritization, and reduction. In 2007, Yoo 

and Harman [9] presented a comprehensive survey of research 

studies showing that many techniques assume access either to 

code, execution traces or some sort of model to derive selection 

criteria (i.e., based on code coverage)  [9, 10, 11]. In contrast, 

the strategy discussed in this paper, does not make any such 

assumption. We treat tests entirely as black boxes. Lately, 

Anderson et al. [12] used software repositories to measure 

historic test performances. This study was carried out in parallel 

to this work and does not provide any dynamic test selection 

solution, but rather assess the effectiveness of tests. 

Schroeder and Korel [13] used input-output analysis to 

construct test input to reduce the number of required black box 

test executions without lowering test effectiveness. Contrary to 

their study, THEO measures test effectiveness based on a cost 

model and uses the context and frequency of executions to drive 

efficiency improvement. Altering inputs for tests would not be 

actionable at Microsoft. Goradia [14] used the fault exposing 

potential of a test as the selection criteria, whereby he relies on 

mutation analysis, i.e., modification of the original program to 

determine the probabilities of a test to reveal a fault. More 

generally, a number of empirical case studies and extensive 

literature reviews compared and identify test tools most likely to 

yield optimal test effectiveness [14, 15, 16, 17, 10, 18]. 

With respect to test executions costs, Vallespir and Herbert 

[19] used machine and inspection costs for individual unit tests 

to conclude that the number found defects is low compared to 

the relatively high cost of unit tests. However, the cost 

calculation presented in [19] are based on three samples and are 

rather vague and seem not applicable for development processes 

nor for system and integration tests at Microsoft. 

B. Cost Aware Improvement Strategies 

Using cost-aware test improvement strategies is not unique. 

Yoo and Harman [20] and Alspaugh et al. [21] used time-aware 

techniques selecting a subset of test cases that can be executed 

in a given time budget. Do et al. [22] assessed the effect of time 

constraints on the cost and benefits of prioritization techniques. 

Additionally, empirical studies exist that consider the impact of 

testing strategies on the cost-effectiveness in the wider context 

of the overall software lifecycle [10, 23]. Lately, Li and Boehm 

[24] proposed a value-based test prioritization strategy ranking 

tests by their risk exposure coverage and the relative cost of tests. 

Gustafson [25] applied cost factors to software flow graphs to 

define areas that require additional testing. The difference 

between these studies and THEO is that THEO is solely based 

on a dynamic, empirically derived cost model, which directly 

impacts the strategy decisions. Our model uses not only the cost 

and risk of executing or skipping a test but relates both values to 

each other. Empirical evaluations and application of testing 

techniques at industrial settings [26, 27, 28] remain limited [9]. 

All those studies focus on regression test suites. To the best 

of our knowledge, this study is the first that evaluates system and 

integration test effectiveness based on execution contexts such 

as branching structures and architectures. 

C. Merge Conflicts and Awareness 

Even though version control systems allow parallel 

development activities and avoid conflicts, several studies 

showed that merge conflicts occur frequently, whereby most of 

the studies focused on facilitating collaboration effectiveness. 

One of the first studies that showed how frequent merge conflicts 

occur has been performed by Zimmermann [29]. He showed that 

between 22% and 46% of integrations could not be 

automatically resolved and resulted in conflicts. In a recent 

study, Brun et al. [30] showed that merge conflicts are frequent 

and persistent. In summary, they showed that 33% of merges that 

were reported to contain no textual conflicts by the version 

control system, in fact contained higher-order conflicts, which 

manifested themselves as a build or a test failure. Also Perry et 

al. showed significant correlations between the degree of parallel 

work and the number of quality problems [31]. The effect of 

merge conflicts on quality has also been studied by Bird and 

Zimmermann [2]. Those studies aimed at quantifying the degree 

of merge conflicts, or at establishing collaborative awareness for 

merge conflicts, we focus on quantifying and improving the 

effectiveness and efficiency of tests. 

XIII. CONCLUSION 

We presented a novel cost based test selection strategy, 

THEO, which skips test executions where the expected cost of 

running the test exceeds the expected cost of not running it. Our 

strategy is dynamic and self-adaptive and only uses historical 

test data, which is already collected by most test frameworks. 

THEO was verified through simulating its impact on the 

Microsoft Windows, Office, and Dynamics developments. 

THEO would have reduced the number of test executions by up 

to 50% cutting down test time by up to 47%. At the same time, 

product quality was not sacrificed as the process ensures that all 

tests are ran at least once on all code changes. Removing tests 

would result in between 0.2% and 13% of defects being caught 

later in the development process, thus increasing the cost of 

fixing those defects. Nevertheless simulation shows that THEO 

produced an overall cost reduction of up to $2 million per 

development year, per product. Through reducing the overall 

test time, THEO would also have other impacts on the product 

development process, such as increasing code velocity and 

productivity. These improvements are hard to quantify but are 

likely to increase the cost savings estimated in this paper. 

The technique and results described in this paper have 

convinced an increasing number of product teams, within 

Microsoft, to provide dedicate resources to explore ways to 

integrate THEO into their actual live production test 

environments.  
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