
The Art of Testing Less without Sacrificing Quality

Kim Herzigi

kimh@microsoft.com

Michaela Greilerii

mgreiler@microsoft.com

Jacek Czerwonkaii

jacekcz@microsoft.com

Brendan Murphyi

bmurphy@microsoft.com

i Microsoft Research, United Kingdom

ii Microsoft Corporation, Redmond, United States

Abstract—Testing is a key element of software development

processes for the management and assessment of product quality.

In most development environments, the software engineers are

responsible for ensuring the functional correctness of code.

However, for large complex software products, there is an

additional need to check that changes do not negatively impact

other parts of the software and they comply with system

constraints such as backward compatibility, performance, security

etc. Ensuring these system constraints may require complex

verification infrastructure and test procedures. Although such

tests are time consuming and expensive and rarely find defects

they act as an insurance process to ensure the software is

compliant. However, long lasting tests increasingly conflict with

strategic aims to shorten release cycles. To decrease production

costs and to improve development agility, we created a generic test

selection strategy called THEO that accelerates test processes

without sacrificing product quality. THEO is based on a cost

model, which dynamically skips tests when the expected cost of

running the test exceeds the expected cost of removing it. We

replayed past development periods of three major Microsoft

products resulting in a reduction of 50% of test executions, saving

millions of dollars per year, while maintaining product quality.

Index Terms—measurement, cost estimation, test improvement.

I. INTRODUCTION

Software testing is a key element of software development

processes. The purpose of testing is to ensure that code changes

applied to a software product do not compromise product

quality. Often, testing is associated with checking for functional

correctness. However, for large complex software systems, it is

also important to verify system constraints such as backward

compatibility, performance, security etc. Complex systems like

Microsoft Windows and Office are developed by thousands of

engineers that simultaneously apply code changes, which may

interfere with each other. In such environments, testing may be

seen as an insurance process verifying that the software product

complies with all necessary system constraints at all times. By

nature, system and compliance tests are complex and time-

consuming although they rarely find a defect. Large complex

software products tend to run on millions of configuration in the

field and emulating these configurations requires multiple test

infrastructures and procedures that are expensive to run in terms

of cost and time. Making tests faster is desirable but usually

requires enormous development efforts. Simply removing tests

increases the risk of expensive bugs being shipped as part of the

1 Theo stands for: Test Effectiveness Optimization using Historic data.

final product. This is a generic issue for developing large

complex software systems [1]. At the same time, long running

test processes increasingly conflict with the need to deliver

software products in shorter periods of time while maintaining

or increasing product quality and reliability. Increasing

productivity through running less tests is desirable but threatens

product quality, as code defects may remain undetected.

The goal of this work is to develop a cost based test selection

strategy (called THEO1) to improve development processes.

THEO is a dynamic, self-adaptive test selection strategy, which

does not sacrifice product quality. THEO automatically skips

test executions when the expected cost of running a test exceeds

the expected cost of not running it. We designed THEO to ensure

that all tests will execute on all code changes at least once before

shipping the software product. Executing all tests at least once

ensures that we eventually find all code defects. Thus, THEO

does not sacrifice product quality but may delay defect detection

to later development phases. THEO and its underlying cost

model are based on historic test measurements to estimate future

test execution costs and causes no test runtime overhead.

Additional dynamic or static test analysis data, such as coverage

or dependency graphs are not required.

We evaluated the effects of THEO by simulating historic

development processes for three major Microsoft products:

Windows, Office, and Dynamics. Combined, our simulation

results cover more than 26 month of industrial product

development and more than 37 million test executions.

We make the following contributions in this paper:

 We develop a cost model for test executions based on

historic test execution results that causes no test

execution runtime overhead, and is capable of

readjusting its cost estimations based on execution

contexts (e.g., configurations of the test environment).

 We develop THEO, a self-adapting test selection

strategy to accelerate test processes without sacrificing

code quality.

 We evaluate THEO by simulating its impact on historic

Windows, Office, and Dynamics developments.

 We briefly discuss expected secondary improvements

such as developer satisfaction.

In Section II, we provide background information about

development and verification processes to explain the context of

this work, motivation and methodology are described in

Section III. We define the historic data feeds in Section IV.

Based on this input, we derive failure probability functions

(Section V) used in our cost model (Section VI). Section VII

contains a description on simulating THEO on past development

processes. Sections VIII and IX discuss simulation

measurements and results. Secondary improvements are briefly

discussed in Section X. We close the paper with threats to

validity (Section XI), related work (Section XII) and a

conclusion (Section XIII).

II. DEVELOPMENT AND VERIFICATION PROCESSES

In this section, we provide a brief overview of the complex

subject of software development methodologies. The process for

developing large software products is predominantly through

developing a single component across multiple code branches

(e.g. Microsoft Windows) or through developing independent

components (e.g. Microsoft Office) which form the product.

When developing code across multiple code branches, a code

branch is a forked version of the code base that allows parallel

modifications without interference (for more details we refer to

Bird and Zimmermann [2] and Murphy et al. [3]). The

alternative is to design the product into multiple independent

components. Each component can be developed independently

on a single code branch [4].

Independent from the development methodology,

development teams are often responsible for verifying functional

correctness of any code change. Where system constraints exist

on the product, additional test infrastructure is required to ensure

all code meets those constraints. Since product constraints are

system properties, they often need to be verified at system level.

The complexity of the verification requirements is dependent

upon system size and the number of system constraints. For

example, Windows uses multiple development branches that

integrate into a single trunk branch (see Fig. 1.). Developer

commit their code changes to development branches (Branch B1

in Fig. 1.) and integrate these code changes through multiple

integration branches (B2 and B3 in Fig. 1.) into the trunk branch,

which contains the current stable version of the next Windows

release. Each integration path between any two branches is

guarded by so-called quality gates checking for various

constraints, e.g. backward compatibility requirements, both in

terms of the hardware it runs on and in terms of supported

applications. To verify that Windows meets these constraints

requires the emulation of millions of different execution setups

at each branch level. The lower the level of branches a quality

gate fails, the higher the number of affected engineers and the

more expensive a defect becomes.

At the same time, any complex test infrastructure evolves

over time. New test are added, older tests might get less

important or even deprecated. Maintaining tests and preventing

test infrastructures from decay can be an enormous effort. For

older products, there may be a lack of ownership for some of the

older tests. These tests can affect development speed as the more

tests are executed and the longer the runtime of tests, the longer

the verification process and the slower the development speed,

e.g. the time required to integrate code changes into the trunk

branch. Additionally, verification time depends on the number

of test failures. Most test failures require human effort to inspect

and to fix the underlying issue. Note that test failures may be due

to code defects or due to test reliability issues and that running

and analyzing these failures is a time consuming task, especially

at system and integration level. System tests can run for minutes

or hours as they often require entire systems to be set-up and

tore-down. At the same time, developing large complex software

systems usually implies large development teams developing

code changes in parallel that need to be tested also in parallel.

Consequently, increasing the effectiveness and efficiency of

test processes has an immediate effect on product development.

Running less tests might help to improve test performance.

However, reducing testing imposes the risk of elapsing defects

to later development stages and unnecessary involving or

affecting more developers.

III. MOTIVATION & METHODOLOGY

The goal of this work is to decrease development costs and

to increase productivity without sacrificing product quality. As

we discussed in Section II, achieving this goal requires a careful

balance between conservative test strategies to minimize the

number of defects elapsing into later development stages, and

reducing test time to allow faster integration processes and

higher productivity. Any test optimization strategies should not

compromise the quality of the code shipped to customers. It may

be acceptable to find defects later than possible, but it remains

unacceptable to weaken overall product quality. Our

optimization strategy ensures that all test scenarios are executed

at least once for each code change before integrating the code

change into the main product code base, e.g. the trunk branch.

From the example shown in Fig. 1. , it is acceptable to skip a test

scenario on branch B2 if and only if the very same test scenario

will be executed on branch B3 for the very same code change.

The basic assumption behind this work and most other test

optimization and test selection approaches is that for given

T2

Branch B1

Branch B2

Branch B3

timetrunk

T1

T6

T4

T5

T3

Fig. 1. Integration path example. The integration path of change C applied

to branch B1 lists the branches B1, B2, B3, and trunk including the

timestamps of the corresponding successful merge operations.

scenarios, not all tests are equally well suited. Some tests are

more effective than others are. However, deciding the

effectiveness of tests and when to execute them is not trivial.

The approach presented in this paper uses historic test

execution data and development process cost factors to perform

test selection. Each test execution is considered an investment

and the expected test result considered as return of investment.

Using a cost model, our goal is to create a dynamic, self-adaptive

test selection strategy, which readjusts its cost estimations based

on test execution context. To provide an actionable solution that

fits into the Microsoft development processes, we considered

only solutions that cause no runtime overhead and that required

no additional data collection. THEO only uses historic test data

collected by standard testing frameworks and excludes code

coverage data as collecting code coverage can increase the

runtime overhead. Later, we will show that THEO ensures all

tests are executed at least once for each code change. Therefore,

it does not affect the overall code coverage of the test process.

IV. HISTORIC TEST PERFORMANCE DATA FEEDS

The process collects the results of prior test executions; this

data is already collected by most test execution frameworks. The

individual data sources we use to select test cases are depict in

TABLE I. . The main data collection categories are:

A. General Test Execution Information

The name of the executed test (TestName) and the unique

identifier of the test execution instance (TestExecID) are

collected. This data allows us to bind and group test execution

results to the according test case.

B. Test Runtime

We use the time taken for the test to run, i.e. the test

execution time (TestExecDuration) for each test execution as

recorded by the test framework.

C. Test Results

Further, we collect the results of all tests being run within the

development process. A test failure is where the expected result

of a test could not be produced (i.e., assertion failed), or the

whole test execution terminated with an error. Usually, we

assume that a failing test indicates a code defect, caused by

introducing a defect (e.g. through side effects) when merging

multiple parallel-developed code changes. However, it might

also be that the test case reporting the test failure is not reliable.

We call test failures due to test reliability issues false alarms.

Categorizing the test result as passing or failing is implicitly

given by the testing framework. However, it is also important to

further distinguish test failures into code defects and false

alarms. To do so, we need additional information. Using links

between test failures and bug reports, we can distinguish test

failures due to code defects from false alarms [5]. If the failure

led to a bug report that was later fixed by applying a code change

we mark it as a code defect. Otherwise, the failed test execution

is marked as a false alarm. To identify their cause, test failures

always need to be manually inspected to either fix the problem

or identify the test failure as false alarm. Due to resource

restrictions, not all test failures can be investigated. Therefore,

test failures that were not manually investigated are marked as

undecided and ignored, as their cause is indeterminable.

D. Execution Context

Modern software systems tend to be multi-platform

applications running on different processor architectures, e.g.

x64 and arm, different machines, and different configurations.

We define an execution context as a set of properties used to

distinguish between different test environments. In this paper,

we use the execution context properties BuildType, Architecture,

Language, Branch (see TABLE I. for detailed description).

However, the concept of execution contexts is variable. Adding

or removing properties will influence the number of different

execution contexts but requires no modification of the general

approach. This is a crucial point as a test may show different

execution behaviors for different execution contexts. For

example, a test might find more issues on code of one branch

than another depending on the type of changes performed on that

branch. For example, tests cases testing core functionality might

find more defects on a branch containing kernel changes than on

a branch managing media changes. Thus, our approach will not

only differentiate between test cases, but also bind historic defect

detection capabilities of a test to its execution context.

V. TEST FAILURE PROBABILITIES

Given a planned test execution and given the corresponding

execution context, we can use past test executions of the same

test in the same execution context and derive the number of

reported defects and the number of false test alarm that the test

reported. From these past observations, we can derive two

failure probabilities: 𝑃𝑇𝑃 as the probability that the combination

of test and execution context will detect a defect (true positive)

and 𝑃𝐹𝑃 as the probability that the combination of test and

execution context will report a false alarm (false positive). These

probabilities are defined as:

𝑃𝑇𝑃(𝑡, 𝑐) =
#𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (𝑡, 𝑐)

#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐)

𝑃𝐹𝑃(𝑡, 𝑐) =
#𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡, 𝑐)

#𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐)

TABLE I. TEST EXECUTION DATA USED FOR TEST SELECTION.

Data point Description

General test execution information

TestName Unique name of test case executed.

TestExecID Unique identifier of test case execution.

Test runtime information

TestExecDuration Number of seconds the recorded test case execution

lasted.

Test result information

TestExecResult The result of the test execution. Possible value:
passed, code defect, false alarm, undecided.

Requires interpretation as described in Section IV.C

Execution context information

BuildType The build type of the binaries on which the test was

executed. Possible value: debug, release.

Architecture Architecture information of the binaries under test.
Possible values: x86, x64, arm.

Language Language information of the binaries under test, e.g.

en-us. Especially media and GUI tests depend on it.

Branch Unique identifier of the source code branch on which

the test execution was performed.

where the tuple (𝑡, 𝑐) is a combination of test 𝑡 and execution

context 𝑐, where #𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑠 (𝑡, 𝑐) represents the number

of defects reported by 𝑡 when executed in c, #𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 (𝑡, 𝑐)

represents the number of times 𝑡 has been executed in 𝑐, and

where #𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡, 𝑐) represents the number of false test

alarms caused by 𝑡 when executed in 𝑐. For example, consider a

test 𝑡 executed 100 times in an execution context 𝑐, e.g. on build

type release, architecture x64, branch b, and language en-us,

which reported 4 false alarms and 7 defects, then 𝑃𝐹𝑃(𝑡, 𝑐) =

 0.04 and 𝑃𝑇𝑃(𝑡, 𝑐) = 0.07. Both probability measurements

consider the entire history from the beginning of monitoring

until the moment the test is about to be executed. Consequently,

probability measures get more stable and more reliable the more

historic information we gathered for the corresponding test.

Note that test failure probabilities enclose code coverage like

information. For tests not covering a changed code area and for

test covering the code area but not checking any execution

results, the defect detection probability 𝑃𝑇𝑃 will be zero.

VI. COST MODELLING THEORY

The decision of when to execute or skip a test case in a given

execution context is solely based on cost. The idea is to estimate

the cost of executing or not executing a test in a given execution

context beforehand and to choose the less expensive option.

A cost model was developed to deliver the cost factors for

the test selection strategy, using the data feeds and test failure

probabilities discussed in Section IV. It is sensitive to the history

of a test case as it considers past test executions in the same

context to assess the expected cost values. For each scheduled

test execution, the cost model considers two different scenarios:

executing the scheduled test and not executing it. For both

scenarios and the given execution context, we estimate the

corresponding expected costs and decide for the scenario which

is expected to be less expensive. Thus, if the estimated cost of

not executing the test (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝) is lower than the cost executing

it (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐), THEO will skip the test execution—not selecting

the test to be executed.

For both execution scenarios, the contributing cost factors

must be considered. Executing a test raises both the

computational cost (Section VI.A) and the cost of inspecting the

test result (Section VI.B), if necessary. Executing tests that fail

without detecting a real code defect will trigger unnecessary

failure inspections performed by engineers. On the other hand,

not executing a test might lead to undetected defects that will

escape to later development stages and therefore impact more

engineers than necessary (Section IV.C)

In this paper, cost factors, which are described with positive

values, express the expected cost to be paid. We could also have

described cost saving values with negative amounts and cost

increasing values with positive amounts, but we explicitly

wanted to avoid any up-front judgment on these figures.

A. Base Cost of Test Executions

A major cost factor is the time-shared cost of infrastructure

necessary to execute a test on all required execution contexts.

2 Price for Azure A7 high memory VM as of Feb. 2014: $1.6 per hour

The constant 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 is a constant representing the per

minute infrastructure cost. Multiplied with the execution time

per test, we get the total infrastructure cost of running a test. For

the Microsoft development environment we computed

𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 to have a value of 0.03 $/min. The cost factor

corresponds roughly to the cost of a memory intense Azure

Windows virtual machine2 and includes power and hardware

consumption, as well as maintenance.

For example, consider we executed a test 100 times in a

given execution context and that each execution took 10

minutes. The total machine cost required to run the test in that

context accumulates to 100 * 10 * 0.03 $/min = $30.

B. Cost of Test Inspections

All test failures require human inspection effort, but

inspecting failing tests due to anything other than code defects is

unnecessary and should be avoided. The cost of a test inspection

equals the amount of time required to conduct the inspection

times the salary of the engineer conducting the inspection. The

cost constant 𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡 represents the average cost rate of test

failure inspections at Microsoft. It considers the size of the test

inspection teams, the number of inspections performed and the

average salary of engineers on the team. The average cost per

test inspection is $9.60. Although this cost may vary from case

to case, for simplicity reasons, we use the average cost of a test

inspection in our model. Note that this cost reflects only the time

spent by inspecting engineers. Additional cost factors such as

waiting time or the need to run extra tests is not included.

C. Cost of Escaped Defects

Code defects escaping a test run can be expensive. The

longer a defect remains hidden the more people can potentially

be affected and the more expensive the escaped defect become.

Defects closer to release dates tend to be more expensive [6] and

increased time from defect introduction to its detection increases

cost due to aggravated root cause analysis (more changes have

been applied since then). Understanding and fixing an older

change is more difficult. Additionally, the greater the number of

engineers affected by a defect, the more expensive disruptions

will be while fixing the defect. Defects usually imply some sort

of development freeze, e.g. no check-ins until issue resolved.

The constant 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 represents the average cost of an

escaped defect. This cost depends on the number of people that

will be affected by the escaped defect and the time duration the

defect remains undetected. We used a value of $4.20 per

developer and hour of delay for 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 . This value

represents the average cost of a bug elapsing within Microsoft.

Depending on the time the defect remains undetected and the

number of additional engineers affected, elapsing a defect from

a development branch into the main trunk branch in Windows

can cost tens of thousands of dollars.

We do not model defect severity explicitly. There are two

main reasons for this. First, the severity of a defect cannot be

determined prior to its occurrence—we would need to predict

defect severity, which will not be reliable or actionable. Second,

all defects breaking a system and integration test and causing

development activity to freeze on the corresponding branch must

be considered severe. Vice versa, system constraints and

properties whose violations are not considered severe will not be

tested during system and integration testing. Such defects are

caught by pre-check-in verification processes or dog-food and

manual testing procedures. For example, breaking look and feel

properties may not cause a development freeze. The impact of

the defect on the overall system is too low to cause a sever

disruption of the overall development process.

D. Final Cost Function

Finally, we combine the individual cost components into two

cost functions: the expected cost of executing a test (𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐)

and the expected cost for not executing a test (𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝).

𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 represents the expected cost if we decide to execute

the test which depends on the machine cost (𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒), the

probability that the executed test will fail due to any other reason

as a defect (𝑃𝐹𝑃), and the cost of conducting an unnecessary test

failure inspecting (𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡):

𝐶𝑜𝑠𝑡𝑒𝑥𝑒𝑐 = 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + (𝑃𝐹𝑃 ∗ 𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡)

𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 represents the expected cost of not executing the test

which depends on the cost of escaped defects (𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑) and

the number of additionally affected engineers (#𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠)

and the time the defect remains undetected (𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦):

𝐶𝑜𝑠𝑡𝑠𝑘𝑖𝑝 = 𝑃𝑇𝑃 ∗ 𝐶𝑜𝑠𝑡𝑒𝑠𝑐𝑎𝑝𝑒𝑑 ∗ 𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦 ∗ #𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠

The number of engineers (#𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑠) is a static property
of the engineering system and can be determined by
counting the number of engineers whose code changes
passed the current code branch. The 𝑇𝑖𝑚𝑒𝑑𝑒𝑙𝑎𝑦 is the

average time span required to fix historic defects on the
corresponding code branch. Both properties are easy to
measure and reliable (we verified these values with the
corresponding product teams).
𝐹or tests that found no defects in the given execution context,

𝑃𝑇𝑃 and 𝐶𝑜𝑠𝑡𝑆𝑘𝑖𝑝 is zero and the test is skipped. The same test

for a different execution context (e.g. different branch) is likely

to have a different 𝑃𝑇𝑃 value and thus might remain enabled.

Note, that we skip tests only if we know that the code change

will be tested by the same execution context later again, e.g. on

a lower branch level as shown in Fig. 1.

VII. IMPROVEMENT STRATEGY SIMULATION

Applying THEO to a live development environment without

a period of thorough evaluation is too risky as it can directly

impact product quality. The result presented are based on

simulations of THEO on past development periods. This section

discusses the process of simulating the execution of the tests and

also simulating the impact of any failures that would propagate

as tests are removed. Simulating the test selection process also

allows us to compare our results with actual test and code quality

behavior.

A. Simulating Test Case Executions

To simulate the behavior and impact of our test selection

strategy, we replayed test executions as they occurred in past

development periods. Tests executions and their test results

(failed or passed) are recorded in databases by the test execution

frameworks at Microsoft. Using these databases, we know the

test suite and test case executions, the execution contexts these

tests were executed, and the order in which these tests run. This

information is sufficient for the simulation. Our simulation

process follows the following basic steps, described in Fig. 2.

Step 1: Using the databases containing the test executions

and their corresponding test execution results (failed or

passed), we order these historic test executions by their

execution timestamp. Thus, our test optimization strategy is

fed with test executions in the order they were applied.

Step 2: Each historic test execution and the corresponding

test execution context definition is fed into a simulation

process running an implementation of our test selection

strategy. The test selection process then returns a binary

decision indicating whether the test case received as input is

selected to be executed by the test selection strategy.

Step 3: Depending on the binary result, the originally

executed test is marked as skipped or executed in a separate

simulation table. Skipped test executions represent those test

executions that would not be executed when using our test

selection strategy.

Our simulation process does not execute test cases. It only makes

decisions on whether a test case would have been executed,

depending on the cost balance tightly influence by its defect

finding capabilities. The result of this test case simulation is a

simple list of test case executions that would have been

prevented when using our test selection strategy. This list can be

used to compare against the original set of executed tests.

B. Simulating Defect Detection

Removing test executions may impact code quality. Defects

detected by test executions that have been removed by THEO

time

Test selection
Simulator

Execute?

Recorded,
historic

test executions

Mark execution
as skipped

Mark execution
as executed

NO

YES

Next()

Fig. 2. Flow chart illustrating the test execution simulation process. For each

test execution and execution context, ordered by time, we decide which

tests should be executed.

would remain undetected, at least for some time. Disabling test

executions is likely to have impact on code changes and

developer behavior, which cannot be simulated. Thus, we have

to estimate how undetected defects would propagate through the

development process and when they would be detected.

The heuristic estimating when and where escaped defects

would have been recaptures requires more data about the actual

project specific development process. This data is needed to gain

further insight in how code changes, and thus defects, propagate

through the development process. For this part of our simulator,

we collect the following, project specific datasets and make

some basic assumptions about code defects and test behavior.

Integration paths of code changes and defects

Assuming a base code branch, usually called trunk, the

integration path of a code change is a sequence of branches and

timestamps the corresponding code change was applied to

before the code change was merged into trunk. For projects

using a single development branch, e.g. Microsoft Office, the

integration path of a code change is a single entry identifying the

name of the single branch and the commit timestamp. For

projects using multiple code branches, e.g. Microsoft Windows,

the integration path usually contains multiple entries. For

example, consider the example shown in Fig. 1. The integration

path of change C lists the branches B1, B2, B3, and trunk

including the timestamps of the corresponding merge operation

that applied C to the code base in each branch.

For each change originally applied to the version control

system, we compute their corresponding integration paths

tracing code changes through the version control system [3]. For

more details on that procedure, we refer to Murphy et al. [3].

Basic defect and test behavior assumptions

We make the following two assumptions with respect to code

issues and test cases detecting these code issues:

1. A combination of test case and execution context3, that

detected and reported a defect at time 𝑡𝑖 will also detect

and report the same defect at any time 𝑡𝑘 if and only if

𝑡𝑘 ≥ 𝑡𝑖 and if 𝑡𝑘 is executed on an integration path of

the defect. This assumption disregards that (even though

unlikely) the code defect might have be suppressed but

not fixed by other code changes applied to the code base.

2. The code issue can be replicated by re-running the test

in the corresponding execution context.

We discussed these assumptions with various Microsoft

product teams who verified and confirmed their validity. Product

teams also confirmed that in few cases, code defects escape their

original branches and are re-captured on higher-level branches

or later on the same branch.

C. Assigning defects to simulated test executions

The integration path of code changes is assumed to

correspond to the propagation path of undetected defects, and

3 For defect propagation purposes, we ignore all branch specific execution

context information as long as the change containing the defect was

integrated into the branch.

can be used to estimate which test execution would have re-

captured an escaped defect. In the example shown in Fig. 1. a

defect in change C is caught by test T2 and the code does not

progress past branch B2. A bug fix is created and verified by

tests T4, T5 and T6. If THEO skips test T2 the defect is assumed

to be immediately merged into branch B3. THEO assumes the

defect is caught by test T6 as it runs the same tests as T2. In this

scenario the bug fix would be applied in branch B1 after running

test T6 and THEO would assume that the cost of fixing the defect

is now higher than its original cost.

While the original association between defect and test

execution is stored in the test execution framework database, our

simulator returns a modified version of the original associations

reflecting simulation results. For each test that is executed during

simulation, we assign all original code issues detected during test

execution. Additionally, we assign all escaped defects to the test

execution that would have been caught given the heuristics

above. As a result, the number of defects associated with a test

execution equals the number of defects during the actual

execution of the test, plus an additional set of escaped defects.

D. Executing all Test Cases At Least Once

The goal of this work is to optimize testing processes without

sacrificing product quality. This implies that we ensure that all

escaped defects are eventually caught, before releasing the

product to customers. To satisfy this condition, we ensure all

originally executed combinations of tests and execution contexts

for all code changes applied to the code base are executed at least

once. To ensure this happens we use two separate criteria,

depending on the development process:

Option 1: For single branch development processes, e.g.

Microsoft Office, we enforce each test to execute at least

every third day4. Since all code changes are applied to the

same branch, re-execution of each test for each execution

context periodically ensures that each code change has to go

through the same verification procedures as performed

originally.

Option 2: For multi-branch development processes, e.g.

Microsoft Windows, we enforce to execute a combination of

test and execution context on the branch closest to trunk on

which the test had been executed originally.

Thus, THEO can only skip test executions if the criteria

described above allow a test to be skipped. Otherwise, THEO’s

decision to skip a test in a given execution context will be

ignored by the simulator and the test will be executed.

E. Training Phase

As the underlying cost model depends on risk factors

extracted from historic data, these risk factors will be unknown

and unreliable in the early stages of the simulation process, in

which no historic data is known. To compensate, each test and

execution context combination has to go through a training

4 This value is the result of a complex analysis we conducted with the

Office product team and reflects the optimal solution for the system. Due

to confidential reasons, we cannot share the details of this process.

phase of 50 executions before the simulator will allow THEO to

disable the corresponding test in the given execution context.

VIII. SIMULATION EVALUATION

A. Test Execution Reduction

The first evaluation identifies the number of test executions

that were skipped during the simulation of the test selection

strategy. To retrieve this number, we count the number of

originally recorded test executions and subtract the number of

test executions that our test strategy would have executed during

simulation. We report the relative test reduction rate as the

number of skipped test execution divided by the total number of

originally executed test execution during development.

Considering the execution time of individual test executions, see

Section IV.B, we can translate the relative test reduction rate into

relative test execution time improvements—the total execution

time of all skipped test executions divided by the total test

execution time of all tests executed originally. We further show

reduction rates over time. The number of skipped test executions

and their summed execution duration determines how much

machine cost 𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 has been saved.

B. Test Result Inspection

As discussed in Section VI.B, test failures require human

effort for inspection in order to decide what action to take.

Skipping test cases that would have caused unnecessary test

inspections (false alarms) is an improvement. Relating these

suppressed false alarms with the corresponding cost factor for

test failure inspections (𝐶𝑜𝑠𝑡𝑖𝑛𝑠𝑝𝑒𝑐𝑡), identifies the relative

improvement with respect to test inspection time and the

associated development cost improvements.

C. Escaped Defects

While the reduction in test executions (Section VIII.A) and

the reduction in test inspections (Section VIII.B) relate to

productivity and cost improvements, the number of defects that

escaped due to skipped test executions reflects the negative

aspects of THEO and relates to development cost increases. We

report the number of escaped defects relative to the number of

all code defects reported by test executions. The simulator is

pessimistic assuming defects can only be found by the same test

cases that are ignored (comparing TestName and TestExecID),

in reality they may be caught earlier by other test cases.

D. Cost Improvement

Skipping tests may save development time. At the same time

it imposes risk of escaped defects temporarily compromising

code quality, and thus to increase development cost—finding

defects later in the development tends to be more expensive [6].

To validate if the estimated development cost improvements

predominate the estimated development cost increases, we

report the total cost balance as the balance of cost reductions.

We add the cost reductions due to reduced test time and du to

less test failure inspections and subtract the extra cost of escaped

bugs. A positive balance reflects cases in which the

improvements predominate. Negative balances refer to cases in

which our optimization strategy THEO does not payoff and

would have caused additional development costs rather than

lowering them.

E. Evaluation Subject

We evaluated the effects of THEO on three major Microsoft

products: Windows, Office, and Dynamics. Combined, our

simulation results cover 26 months of product development,

more than 37 million test executions. TABLE II. contains

information about the duration of simulated development

periods and the number of simulated test cases per project.

Results presented for Windows reflect the entire Windows 8.1

development period (~11 months). For Windows, we simulated

more than 30 million test executions. Simulation results for

Office cover development activities and test executions

covering three months—a total of more than 1.2 million test

executions. For Dynamics, we simulated a development period

of 12 months with more than 6.5 million test executions. While

Windows and Dynamics use multi-branch development setups,

Office uses a single collaboration branch. Thus, for simulations

for Windows and Dynamics, we enforce to execute a

combination of test and execution context on the branch closest

to trunk (Option 2 discussed in Section VII.D), while for Office

we simulate using the time based test execution policy (Option

1 discussed in Section VII.D).

IX. SIMULATION RESULTS

In this section, we present and discuss the results of our

simulation experiments as described in Section VII. We will

restrict the discussion in this section to measurable

improvements. Section X contains a discussion on secondary

improvements that cannot be measured directly.

Similar to the cost model the overall cost improvement

depends on the constant cost estimations as presented in Section

VIII. The results are summarized in TABLE III.

A. Test Execution and Test Time Reduction

THEO would have skipped 40.6% of all Windows test

executions across all branches. Considering the runtime of these

tests and relating it to the total runtime of all executed tests,

THEO would have saved 40.3% of the total test execution time.

This is a significant improvement. In simulation, submitting a

code change to a development branch in Windows could have

been integrated into trunk in only 60% of the original integration

time. Note that this measurement considers only test execution

time, but does not consider other development or human factors.

Thus, the test time improvement of 40% may not translate to a

40% increase in integration time, but it certainly lowers the

lower bound of integration time. Multiplying the test time

improvement with the cost factor for test execution

(𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒), we yield a cost improvement of over $1.6

million. Note that the test time cost improvement figures

TABLE II. EVALUATION SUBJECT DETAILS.

 Windows Office Dynamics

Simulated

period
~11 months ~3 months ~12 months

#test

executions
> 30 million > 1.2 million > 6.5 million

branches > 1 1 > 1

consider only the time of not executing the skipped tests. It does

not include potential cost improvements due to skipping test

setups, test teardowns, removing entire dedicated test machines

from a branch, etc. Thus, the test time cost improvement must

be seen as a lower bound of the actual cost improvement.

The average test execution reduction rate for Dynamics is above

50%. This means that THEO would have prevented more than

half of the originally executed test executions and saved 47% of

test execution time. In theory, code could have been moved

nearly 50% faster into the trunk branch, a significant

improvement. Although the test execution and test time

reduction rate exceeds the values achieved for Windows, the test

machine cost improvements that correlated with the reduced test

time are two orders of magnitude lower than for Windows. This

is due to the fact, that tests executed for Dynamics terminate

much faster than Windows tests. Thus, the reduction rate is

translating into less computational time and thus is less lucrative.

The same is true for Office tests, which also execute much faster

and therefore the savings on reduction of test execution time are

lower than for Windows. The cost savings for Office are further

less significant as we only simulate a three-month period and test

executions on one branch. Nevertheless, THEO would have

skipped a significant number of 34.9% of all performed test

executions and saved 40.1% of the total test execution time

B. Test Result Inspection.

As discussed for the cost modelling theory (Section VI),

THEO specifically targets unnecessary test inspections caused

by test failures due to other reasons than code defects (false test

alarms). Suppressing such test failures implies reduction of

unnecessary test result inspections, which translates into cost

savings. Row “Test result inspection” of TABLE III. contains

the relative number of spared test inspections for all three

products. For Windows and Dynamics, the reduction rate lies

around 33%; one third of originally carried out test result

inspections were unnecessary. For Office, THEO would

suppress 21.1% of all false positives. Interestingly, the

associated cost improvements for Windows ($61k) and Office

($104k) are again two orders of magnitudes lower when

compared to Dynamics ($2.3M). The reason for the difference is

again the different absolute number of test failures suppressed.

C. Escaped Defects

While removed test executions and reduced test inspections

determines a positive cost savings, the number of temporarily

escaped defects increases development costs.

In our Windows simulation, 0.2% of all defects escaped at

least one test execution. As shown in TABLE IV. 71% of these

escaped defects escaped only one branch and were found in the

corresponding next merge branch. 21% of escaped Windows

defects escaped two branches and 8% escaped even 3 branches.

Importantly, none of the defects escaped into the trunk branch.

On Dynamics, THEO would have elapsed 13.4% of all defects,

a much higher escape rate as for Windows. The vast majority

(97%) of these escaped Dynamics defects were caught on the

direct consecutive merge branch. The remaining 3% escaped

two branch levels. For both Windows and Dynamics, the extra

cost caused by escaped bugs is significant. However, in both

cases, these new extra costs are orders of magnitudes lower than

the highest cost savings achieved by removed test executions

and inspections.

For Office, the results are a bit different. Whereby the

percentage of bugs that escaped is 8.7%, which is comparable to

Dynamics, the costs are $75k higher in relation to the cost

savings. This is due to an additional cost of manual testing work

that we added as a penalty for Office in case the bugs was not

found within 10 days. The rationale behind this lies in the way

the Office test and development is performed. Nevertheless,

approximately 40% of bugs escaped would have been found

already in the next scheduled build and test.

D. Cost Improvement.

Looking at the overall cost balance, we see cost savings for all

three evaluation subjects. For Windows, we estimate a total cost

saving of $1.6M, for Dynamics, a total cost saving of

approximate $2.0M and for Office a cost saving of approximate

$100k. These values may seem small considering the total

development budgets of projects of their scale. However, this

only identifies test savings. Considering the actual test execution

reduction rates of 35% to 50% puts these numbers into

perspective. The actual values are secondary, it is important that

the achieved productivity increase though faster integrations.

E. Variable Performance over Time

Fig. 3. shows the relative test execution reduction over time

(measured in development days) for Windows. The dark area

corresponds to originally executed tests that were removed

during simulation. As shown, THEO requires an initial training

TABLE III. SIMULATION RESULTS FOR MICROSOFT WINDOWS, OFFICE, AND DYNAMICS.

 Windows Office Dynamics

 Measurement Rel. improvement Cost

improvement

Rel. improvement Cost

improvement

Rel. improvement Cost

improvement

Test executions 40.58% -- 34.9% -- 50.36% --

Test time 40.31% $1,567,607.76 40.1% $76,509.24 47.45% $19,979.03

Test result inspection 33.04% $61,532.80 21.1% $104,880.00 32.53% $2,337,926.40

Escaped defects 0.20% $11,970.56 8.7% $75,326.40 13.40% $310,159.42

Total cost balance $1,617,170.00 $106,063.24 $2,047,746.01

TABLE IV. DISTRIBUTION OF ESCAPED DEFECTS OVER NUMBER OF

ESCAPED BRANCHES FOR WINDOWS AND DYNAMICS.

 Number of escaped branch levels

 1 2 3

Windows 71% 21% 8%

Dynamics 97% 3% 0%

phase (see Section VII) in which we observe the current testing

process to estimates risk factors before applying any test

selection. Once THEO starts skipping test executions, the ratio

of removed executions converges to an almost stable state. The

plot shows fluctuations in the relative number of reduced test

executions, e.g. a sharp drop from nearly 55% to 40% midway

through the plotted timespan. The reason for these fluctuations

in test execution reduction rates are natural fluctuations in code

quality. The quality of submitted code changes is not constant; a

drop in overall code quality causes more test failures and directly

influences risk factors. Changes in risk factors can cause

previously skipped tests to be re-enabled. Reduction rates for

Office and Dynamics look similar. Due to space reason, we

abstain from showing these plots.

X. SECONDARY IMPROVEMENTS

The measurable improvements discussed in Section IX are

likely to have further, secondary consequences. Although, these

improvements are not directly measurable, they are an important

part of the improvement of the development processes.

A. Code Velocity

Reducing the number of executions and consequently the

overall required test time may have positive effects on code

velocity. Executing fewer tests implies that code changes have

to spend less time in verification and changes can be integrated

faster, freeing up engineering time that may have been spent

evaluating false positives. However, the immediate impact on

code velocity is hard to measure. Code velocity is determined by

many different aspects, including human behavior, which is not

possible to simulate. Thus, it is hard to predict how THEO would

affect actual development speed. It might well be that the

bottleneck of current development processes is not only testing.

Nevertheless, the number of executed tests represents a lower

bound to code velocity, as the consecutive time necessary to pass

all required tests is the minimal time required to integrate code

changes. By lowering the number of executed tests, THEO

lowers the lower bound for code velocity.

B. Developer Satisfaction

A very important but also hard to measure factor of every

development process is developer satisfaction. Reducing the

time for testing and the number of required test inspections is

likely to increase developer satisfaction. It should help to

increase the confidence in test results and decisions based on

testing. Increasing the speed of the development process will

itself also impact the developer experience. The ability to merge,

integrate, and share code changes faster can reduce the number

of merge conflicts and is likely to support collaboration.

XI. THREATS TO VALIDITY

Like most empirical studies, the presented study has threats

to validity. We identified three main groups of threats.

A. Generalizability

We investigated test executions specific to three Microsoft

products and their development processes. Even though some

terminology might be unique to Microsoft, the execution of tests

during software development and the impact of test execution

time on development speed are generalizable.

The estimated costs presented in this paper are specific to

Microsoft. The cost model considers several independent but

development process specific aspects and cost factors are likely

to vary across releases and projects (e.g. cost factors for

machines and engineers). Replicating this study for different

projects or releases requires detailed reviews and adjustments.

B. Construct Validity

The approach to estimate the impact of escaped defects and

to identify those test cases that would eventually re-capture these

defects is a heuristic and associated cost values must be

considered approximations. However, our data was derived

through investigations, discussions and fine-tuning with the

corresponding product teams. We consider the approximations

of these heuristics as fair and realistic. Cost factors used in this

study are based on average Microsoft development figures and

numbers (e.g. average salary and work hours per year). These

numbers vary and might not consider all possible aspects.

Execution context information might be particular important

for system and integration tests while other tests, e.g. unit tests,

might be more independent from them. However, the presented

concept is generic. Reducing the number of execution contexts

to one or further increasing the number of execution contexts

does not threat the validity of the overall approach.

C. Internal Threats to Validity

The simulator may contain defects. To conquer this threat,

we implemented multiple test cases and performed manual

inspections. Through validating with product teams, we are

confident that the data collected and analyzed reflects the

development processes accurately.

XII. RELATED WORK

In this section, we give an overview of related studies.

A. Test Selection, Prioritization, and Reduction

“Measuring the absolute effectiveness of testing is generally

not possible, but comparison between effectiveness of tests is”

[7]. Based on this concept, Basili and Selby [8] presented one of

the first studies comparing the effectiveness and cost of testing

Fig. 3. Relative test execution reduction rate for Windows over time. The area

shows the relative number of tests skipped by THEO.

0%0%

10%

20%20%20%

30%

40%40%40%

50%

60%

Development days (Windows)

R
e
la

ti
v
e
 t

e
s
t

ti
m

e
 i
m

p
ro

v
e
m

e
n
t

strategies showing that changing or choosing different test

strategies might impact test effectiveness.

Many of the following research studies focused on the area

of test case selection, prioritization, and reduction. In 2007, Yoo

and Harman [9] presented a comprehensive survey of research

studies showing that many techniques assume access either to

code, execution traces or some sort of model to derive selection

criteria (i.e., based on code coverage) [9, 10, 11]. In contrast,

the strategy discussed in this paper, does not make any such

assumption. We treat tests entirely as black boxes. Lately,

Anderson et al. [12] used software repositories to measure

historic test performances. This study was carried out in parallel

to this work and does not provide any dynamic test selection

solution, but rather assess the effectiveness of tests.

Schroeder and Korel [13] used input-output analysis to

construct test input to reduce the number of required black box

test executions without lowering test effectiveness. Contrary to

their study, THEO measures test effectiveness based on a cost

model and uses the context and frequency of executions to drive

efficiency improvement. Altering inputs for tests would not be

actionable at Microsoft. Goradia [14] used the fault exposing

potential of a test as the selection criteria, whereby he relies on

mutation analysis, i.e., modification of the original program to

determine the probabilities of a test to reveal a fault. More

generally, a number of empirical case studies and extensive

literature reviews compared and identify test tools most likely to

yield optimal test effectiveness [14, 15, 16, 17, 10, 18].

With respect to test executions costs, Vallespir and Herbert

[19] used machine and inspection costs for individual unit tests

to conclude that the number found defects is low compared to

the relatively high cost of unit tests. However, the cost

calculation presented in [19] are based on three samples and are

rather vague and seem not applicable for development processes

nor for system and integration tests at Microsoft.

B. Cost Aware Improvement Strategies

Using cost-aware test improvement strategies is not unique.

Yoo and Harman [20] and Alspaugh et al. [21] used time-aware

techniques selecting a subset of test cases that can be executed

in a given time budget. Do et al. [22] assessed the effect of time

constraints on the cost and benefits of prioritization techniques.

Additionally, empirical studies exist that consider the impact of

testing strategies on the cost-effectiveness in the wider context

of the overall software lifecycle [10, 23]. Lately, Li and Boehm

[24] proposed a value-based test prioritization strategy ranking

tests by their risk exposure coverage and the relative cost of tests.

Gustafson [25] applied cost factors to software flow graphs to

define areas that require additional testing. The difference

between these studies and THEO is that THEO is solely based

on a dynamic, empirically derived cost model, which directly

impacts the strategy decisions. Our model uses not only the cost

and risk of executing or skipping a test but relates both values to

each other. Empirical evaluations and application of testing

techniques at industrial settings [26, 27, 28] remain limited [9].

All those studies focus on regression test suites. To the best

of our knowledge, this study is the first that evaluates system and

integration test effectiveness based on execution contexts such

as branching structures and architectures.

C. Merge Conflicts and Awareness

Even though version control systems allow parallel

development activities and avoid conflicts, several studies

showed that merge conflicts occur frequently, whereby most of

the studies focused on facilitating collaboration effectiveness.

One of the first studies that showed how frequent merge conflicts

occur has been performed by Zimmermann [29]. He showed that

between 22% and 46% of integrations could not be

automatically resolved and resulted in conflicts. In a recent

study, Brun et al. [30] showed that merge conflicts are frequent

and persistent. In summary, they showed that 33% of merges that

were reported to contain no textual conflicts by the version

control system, in fact contained higher-order conflicts, which

manifested themselves as a build or a test failure. Also Perry et

al. showed significant correlations between the degree of parallel

work and the number of quality problems [31]. The effect of

merge conflicts on quality has also been studied by Bird and

Zimmermann [2]. Those studies aimed at quantifying the degree

of merge conflicts, or at establishing collaborative awareness for

merge conflicts, we focus on quantifying and improving the

effectiveness and efficiency of tests.

XIII. CONCLUSION

We presented a novel cost based test selection strategy,

THEO, which skips test executions where the expected cost of

running the test exceeds the expected cost of not running it. Our

strategy is dynamic and self-adaptive and only uses historical

test data, which is already collected by most test frameworks.

THEO was verified through simulating its impact on the

Microsoft Windows, Office, and Dynamics developments.

THEO would have reduced the number of test executions by up

to 50% cutting down test time by up to 47%. At the same time,

product quality was not sacrificed as the process ensures that all

tests are ran at least once on all code changes. Removing tests

would result in between 0.2% and 13% of defects being caught

later in the development process, thus increasing the cost of

fixing those defects. Nevertheless simulation shows that THEO

produced an overall cost reduction of up to $2 million per

development year, per product. Through reducing the overall

test time, THEO would also have other impacts on the product

development process, such as increasing code velocity and

productivity. These improvements are hard to quantify but are

likely to increase the cost savings estimated in this paper.

The technique and results described in this paper have

convinced an increasing number of product teams, within

Microsoft, to provide dedicate resources to explore ways to

integrate THEO into their actual live production test

environments.

ACKNOWLEDGMENT

We thank the Windows, Office, and Dynamics development

teams for their help and feedback. This work is based on data

extracted from varies development repositories by the

CodeMine process managed by Microsoft’s Tools for Software

Engineers group. Our special thanks go to Jason Means, Blerim

Kuliqi, Alex Gorischek, Alain Zariffa, Wayne Roseberry,

Adrian Marius Marin, Craig Campbell, and Alan Back.

REFERENCES

[1] M. Vakilian, R. Sauciuc, J. D. Morgenthaler and V. Mirrokni,

"Automated Decomposition of Build Targets," 2014.

[2] C. Bird and T. Zimmermann, "Assessing the Value of Branches

with What-if Analysis," in Proceedings of the ACM SIGSOFT

20th International Symposium on the Foundations of Software

Engineering, Cary, North Carolina, 2012.

[3] B. Murphy, J. Czerwonka and L. Williams, "Branching

Taxonomy," Microsoft Research, Cambridge, 2014.

[4] D. Sprott, "Enterprise Resource Planning: Componentizing the

Enterprise Application Packages," Commun. ACM, vol. 43, pp.

63--69, apr 2000.

[5] K. Herzig and N. Nagappan, "The Impact of Test Ownership and

Team Structure on the Reliability and Effectiveness of Quality

Test Runs," in Acceppted for 8th International Symposium on

Empirical Software Engineering and Measurement (ESEM),

Torino, 2014.

[6] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall,

D. Port, I. Rus, R. Tesoriero and M. Zelkowitz, "What we have

learned about fighting defects," in Software Metrics, 2002.

Proceedings. Eighth IEEE Symposium on, 2002.

[7] E. Weyuker, "Can we measure software testing effectiveness?,"

in Software Metrics Symposium, 1993. Proceedings., First

International, 1993.

[8] V. R. Basili and R. W. Selby, "Comparing the Effectiveness of

Software Testing Strategies," IEEE Trans. Softw. Eng., vol. 13,

no. 12, pp. 1278--1296, December 1987.

[9] S. Yoo and M. Harman , "Regression testing minimization,

selection and prioritization: a survey," Softw. Test. Verif. Reliab.,

vol. 22, no. 2, pp. 67--120, March 2012.

[10] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Test Case

Prioritization: A Family of Empirical Studies," IEEE Trans.

Softw. Eng., vol. 28, no. 2, pp. 159--182, February 2002.

[11] J. A. Jones and M. J. Harrold, "Test-Suite Reduction and

Prioritization for Modified Condition/Decision Coverage," in

Proceedings of the IEEE International Conference on Software

Maintenance (ICSM'01), 2001.

[12] J. Anderson, S. Salem and H. Do, "Improving the Effectiveness

of Test Suite Through Mining Historical Data," in Proceedings

of the 11th Working Conference on Mining Software

Repositories, 2014.

[13] P. J. Schroeder and B. Korel, "Black-box test reduction using

input-output analysis," in Proceedings of the 2000 ACM

SIGSOFT international symposium on Software testing and

analysis, Portland, Oregon, USA, 2000.

[14] T. Goradia, "Dynamic impact analysis: a cost-effective

technique to enforce error-propagation," in Proceedings of the

1993 ACM SIGSOFT international symposium on Software

testing and analysis, Cambridge, Massachusetts, USA, 1993.

[15] Y. Zhang, X. Zhao, X. Zhang and T. Zhang, "Test effectiveness

index: Integrating product metrics with process metrics," in

Cyber Technology in Automation, Control, and Intelligent

Systems (CYBER), 2012 IEEE International Conference on,

2012.

[16] G. Whyte and D. L. Mulder, "Mitigating the Impact of Software

Test Constraints on Software Testing Effectiveness.," Electronic

Journal of Information Systems Evaluation, vol. 14, pp. 254 -

270, 2011.

[17] G. Rothermel, R. Untch, C. Chu and M. Harrold, "Test case

prioritization: an empirical study," in Software Maintenance,

1999. (ICSM '99) Proceedings. IEEE International Conference

on, 1999.

[18] P. Braione, G. Denaro, A. Mattavelli, M. Vivanti and A.

Muhammad, "An industrial case study of the effectiveness of

test generators," in Automation of Software Test (AST), 2012 7th

International Workshop on, 2012.

[19] D. Vallespir and J. Herbert, "Effectiveness and Cost of

Verification Techniques: Preliminary Conclusions on Five

Techniques," in Computer Science (ENC), 2009 Mexican

International Conference on, 2009.

[20] S. Yoo and M. Harman, "Pareto efficient multi-objective test

case selection," in Proceedings of the 2007 international

symposium on Software testing and analysis, London, United

Kingdom, 2007.

[21] S. Alspaugh, K. R. Walcott, M. Belanich, G. M. Kapfhammer

and M. L. Soffa, "Efficient time-aware prioritization with

knapsack solvers," in Proceedings of the 1st ACM international

workshop on Empirical assessment of software engineering

languages and technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software

Engineering (ASE) 2007, Atlanta, Georgia, 2007.

[22] H. Do, S. Mirarab, L. Tahvildari and G. Rothermel, "An

empirical study of the effect of time constraints on the cost-

benefits of regression testing," in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software

engineering, Atlanta, Georgia, 2008.

[23] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri and

X. Qiu, "On test suite composition and cost-effective regression

testing," ACM Trans. Softw. Eng. Methodol., vol. 13, no. 3, pp.

277--331, july 2004.

[24] Q. Li and B. Boehm, "Improving scenario testing process by

adding value-based prioritization: an industrial case study," in

Proceedings of the 2013 International Conference on Software

and System Process, San Francisco, CA, USA, 2013.

[25] D. A. Gustafson, "Guidance for Test Selection Based on the Cost

of Errors," in Proceedings of the July 9-12, 1984, National

Computer Conference and Exposition, 1984.

[26] M. Sherriff, M. Lake and L. Williams, "Prioritization of

Regression Tests using Singular Value Decomposition with

Empirical Change Records," in Proceedings of the The 18th

IEEE International Symposium on Software Reliability, 2007.

[27] M. Skoglund and P. Runeson, "A case study of the class firewall

regression test selection technique on a large scale distributed

software system," in Empirical Software Engineering, 2005.

2005 International Symposium on, 2005.

[28] N. b. Ali, K. Petersen and M. Mäntylä, "Testing highly complex

system of systems: an industrial case study," in Proceedings of

the ACM-IEEE international symposium on Empirical software

engineering and measurement, Lund, Sweden, 2012.

[29] T. Zimmermann, "Mining Workspace Updates in CVS," in

Proceedings of the Fourth International Workshop on Mining

Software Repositories, Minneapolis, MN, USA, 2007.

[30] Y. Brun, R. Holmes, M. D. Ernst and D. Notkin, "Proactive

detection of collaboration conflicts," in Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference

on Foundations of software engineering, Szeged, Hungary,

2011.

[31] D. E. Perry, H. P. Siy and L. G. Votta, "Parallel changes in large-

scale software development: an observational case study," ACM

Trans. Softw. Eng. Methodol., vol. 10, no. 3, pp. 308--337, July

2001.

