
Empirically Detecting False Test Alarms

Using Association Rules

Kim Herzig

Microsoft Research

Cambridge, United Kingdom

kimh@microsoft.com

Nachiappan Nagappan

Microsoft Research

Redmond, United States

nachin@microsoft.com

Abstract—Applying code changes to software systems and

testing these code changes can be a complex task that involves

many different types of software testing strategies, e.g. system and

integration tests. However, not all test failures reported during

code integration are hinting towards code defects. Testing large

systems such as the Microsoft Windows operating system requires

complex test infrastructures, which may lead to test failures

caused by faulty tests and test infrastructure issues. Such false test

alarms are particular annoying as they raise engineer attention

and require manual inspection without providing any benefit. The

goal of this work is to use empirical data to minimize the number

of false test alarms reported during system and integration testing.

To achieve this goal, we use association rule learning to identify

patterns among failing test steps that are typically for false test

alarms and can be used to automatically classify them. A

successful classification of false test alarms is particularly valuable

for product teams as manual test failure inspection is an expensive

and time-consuming process that not only costs engineering time

and money but also slows down product development. We

evaluating our approach on system and integration tests executed

during Windows 8.1 and Microsoft Dynamics AX development.

Performing more than 10,000 classifications for each product, our

model shows a mean precision between 0.85 and 0.90 predicting

between 34% and 48% of all false test alarms.

Keywords—software testing; association rules; false test alarms;

classification model; test improvement

I. INTRODUCTION

Every day engineers change software systems applying code
changes to add new features, improve the product or to fix
known issues. However, code changes increase the risk of
introducing new issues or incompatibilities. To ensure that code
changes do not lower product quality, developers typically test
their code changes before merging them into the current code
base. Testing all code changes applied to a code base for large
software systems may be in itself a time-consuming task. While
test cases on unit level might run fast, higher-level tests, such as
system and integration tests, usually take more time to complete.
Thus, the more changes are applied the more tests need to be
executed and the more time each code change spends in
verification before beig integrated into the final product. At the
same time, competition between software manufacturers to gain
or defend market share increases the pressure on development

1 False test alarms are valuable to identify problems in verification

processes that should be resolved. However, false test alarms should not

slow down code integration processes.

teams to increase efficiency while maintaining or even
increasing product quality. This situation is not new and there
exist many studies and reports that investigate a wide variety of
code and process metrics to estimate code quality before release
[1, 2, 3, 4, 5, 6]. However, the increasing pressure on
development teams to deliver features faster also impacts
software testing processes. Testing processes tend to reduce
code integration speed (code velocity) and slow down product
development. Therefore, optimizing test processes is likely to
positively affect speed and productivity of overall software
development processes.

There exist a wide range of test optimization research fields
that address various aspects of testing processes, e.g. test
prioritization [7, 8], test selection [9, 10], test generation [11,
12], test effectiveness measurements [13, 14, 15], etc. However,
many of these techniques concentrate on unit testing, which
mainly focuses on functional correctness. In this paper, we
tackle a severe problem that mainly appears in the area of system
and integration testing—tests that typically check for constraints
such compatibility, performance, privacy, etc. In theory, test
cases either pass or fail and if they fail, they hint to code defects.
In practice, running system and integrations tests for systems,
e.g. Microsoft Windows or the Microsoft Dynamics business
software suite, require complex test setups and infrastructures,
which come with their own issues. Thus, system and integration
tests may also fail due to test and infrastructure issues, e.g.
broken hardware prevents a test from retrieving a remote file.
We call such test failures false test alarms. As any test failure,
false test alarms are reported to the engineers requiring manual
investigation lowering development speed. However, false test
alarms provide no insights into product quality but rather harm
the development process. Therefore, it is desirable to minimize
or eliminate false test alarms, or at least preventing them to
disrupt the development process1. At the same time, test failures
due to code defects must remain enabled and may not be ignored
as these test failures may prevent code defects to be shipped to
the customer.

The goal of this work is to develop a precise false test alarm
classification model, which identifies false test alarms
automatically. Our model analyzes reported and manually
classified false test alarms. Using association rule mining, we
detect frequently occurring patterns between failures of

individual test steps that are unique for false test alarms. These
mined association rules are then used to automatically classify
newly reported test failures as false test alarms. We evaluated
our approach on a large set of false test alarms reported by
system and integration test cases during development periods of
Windows and Dynamics.

We make the following contributions in this paper:

 We use association rule mining to analyze tens of
millions of individual test steps to detect patterns
between these test steps that are unique to false test
alarms.

 Using these test behavior patterns, we develop a fully
automatic and continuously learning model to pre-
classify test case failures as false test alarms.

 We evaluate our classification model on more than
20,000 test case results executed during development
periods of Windows and Dynamics.

 We further estimate the impact of false test alarms on
code velocity that could have been prevented using the
proposed test result classification model.

 We briefly discuss how to apply such a model in a live
development process scenario.

The paper is structured as follows: In Section II and Section
III we provide background on related work and a short
introduction into the analyzed testing processes. In Section IV
we discuss how we mined and analyzed test results and false test
alarms using association rule mining, before presenting our
experimental setup in Section V. In Section VI we present our
evaluation results and discuss the impact of this work on the
development processes in Section VII. We close with threats to
validity in Section VIII and a conclude in Section IX.

II. RELATED WORK

Classifying test results is an active research field, but most
of the related studies focused on failure classification, clustering
test failures with respect to failure causes, test repair, and fault
localization. To the best of our knowledge, only the work
presented by Hao et al. [16] and Herzig and Nagappan [15]
classify test failures related to test and infrastructure issues
rather than code defects.

A. Classifying Program Failures And Behavior

A wide range of studies classifying the type of program
behavior and in particular program failures exists. In many
cases, test failures are described by bug reports. Using bug
reports to classifying program failures is an active research field.
Guo et al. [17] presented an approach to predict which program
failures get fixed. Similar to the results presented by Bettenburg
et al. [18], their results suggest that the reputation of bug
reporters as well as the details of test failure description
determines the likelihood of bugs to get fixed. Zanetti et al. [19]
used social networks to build a successful classification model
to identify bug reports that refer to actual code defects and that
add no duplicated bug description. Antoniol et al. [20] used text
mining to separate bug reports from feature requests. More
generally, approaches as presented by Sherwood et al. [21] and

Bowring et al. [22] automatically classify program behavior
using execution data. In contrast, the work presented in this
paper, uses test step failure patterns to automatically classify
whether test failures report code defects or are due to test and
infrastructure issues.

B. Fault Localization

Studies on fault localization tackle the problem of
identifying code parts that are likely to cause a test failure.
Although related, studies on fault localization deal with a more
complex problem of automatic fault cause analysis to enhance
and speedup debugging sessions. Hildebrandt and Zeller [23]
showed that a binary search on program input causing faulty
program behavior can be used to minimize program input
reproducing the error and thus to narrow down code areas
containing the corresponding code bug. Jones and Harrold [24]
compared different fault localization techniques and showed that
automatic fault localization techniques can be very precise.
Later, Liu and Han [25] used proposed a new type of fault
proximity not only making fault localization more precise but
that can also be used to cluster failing traces with respect to the
fault cause. Lately, Zhou et al. [26] mined bug reports extracting
additional information hinting to possible bug locations.

C. Test Repair

In cases in which test failures are not due to code defects but
rather to test issues, researchers proposed techniques to
automatically repair tests—a scenario that occurs in practice
[27]. Instead of simply reordering test executions to repair
partially broken test cases [28], later studies advanced and tried
to actually fix the suspected broken test case automatically [29,
30, 31] also for GUI based test cases [32, 33]. The work
presented in this paper does not try to automatically fix test
issues nor to prevent their execution. Instead, our goal is to
classify false test alarms as such, to reduce manual inspection
effort, and to speed up the testing and development processes.

D. Failure Clustering

Similar to Liu and Han [25], there exist more approaches to
classify software failures. The goal of these studies is to group
test or program failures based on their suspected cause.
Although closely related to this work, these approachs do not
specifically target false test alarms but rather group failures
often categorizing them by similarity but often without
interpreting the relevance of the failures. Dickson et al. [34] used
machine learning over program executions to identify faulty
program executions. Later, Podgurski et al. [35] used clustering
techniques to identify faulty program executions that are likely
to be caused by the same code defect. DiGiuseppe and Jones
used “latent-semantic-analysis techniques to categorize each
failure by the semantic concepts that are expressed in the
executed source code” [36] while Francis et al. [37] proposed
tree-based classification techniques to cluster program failures
with respect to their underlying error.

E. Classifying Test Results

Related work specifically targeting test results with the goal
of identifying test results to filter relevant test failures is rare.
Triou et al. [38] filed a patent to collect, compare, and cross-
reference test failure results. Hao et al. [16] and Herzig and
Nagappan [15] reported similar studies in which the authors

classified test results to identify test failures due to test issues.
However, the study by Hao et al. [16] is based on unit test level
and uses test complexity and program execution measurements
(e.g. code coverage) to classify test results. In comparison, the
work presented in this paper does not use any static nor dynamic
test measurements. Collecting such information for test
executions is rather expensive in a large evolving system and
slows down test speed. The presented classification model is
solely based on already existing test step results captured during
common test executions without the need to slow down or
enhance existing test environments in any way. Closest to this
approach, is the study by Herzig and Nagappan [15] who
identified false test alarms in the Microsoft Windows
development process and showed to show the impact of
organizational structure on test reliability and effectiveness. In

their study, false tests alarms are used as reliability measures for
system and integration tests. In this paper, we re-use the
approach presented by Herzig and Nagappan [15] to identify
false test alarms.

III. TEST PROCESS

In this study, we investigate system and integration test runs
continuously executed during the development of Microsoft
Windows and Microsoft Dynamics. Each system and integration
test case checks for one or multiple system constraints such as
compatibility, performance, privacy, functional correctness etc.
Where system constraints exist on products, additional test
infrastructure is required to ensure all code meets those
constraints. Since product constraints are system properties, they
often need to be verified at system level. For example, Windows
has certain backward compatibility requirements, both in terms
of hardware and in terms of supported applications. To verify
these constraints requires the emulation of millions of different
configurations and execution setups. For the sake of brevity, we
provide a high-level description of the analyzed Microsoft
testing processes to make this paper self-contained. For details,
we refer to Bird and Zimmermann [39] and Herzig and
Nagappan [15].

The development process to develop and maintain large
software systems typically involves multiple code branches—a
forked copy of the code base that allows parallel modifications
without interference (for more details we refer to Bird and
Zimmermann [39] and Murphy et al. [40]). Typically, code
changes are applied in development branches and once ready
integrated into the trunk branch using integration branches. Each
merge between branches is guarded by system and integration
test cases ensuring basic functionality and constraints such as
compatibility and performance compliances (see Fig. 1). Thus,
each code change has to pass multiple layers of system and
integration tests while code changes from different development
branches are merged together. Once a code change reaches the
trunk branch it is considered as part of the next release.

Each system and integration test case can be considered a
test scenario executing a sequence of test steps to complete the
scenario. To sucessfully complete the scanrio (test case), all test
steps must pass (see Fig. 2). As a consequence, each failing test
step causes the corresponding test case to report a test failure.

A. Test Failures

A failing test case causes a development process disruption.
Scheduled code integration requests are canceled and the
corresponding code branch on which the test failure occurred is
excluded from code integration processes until the issue is
resolved. Each failed test case requires manual inspection and
resolution in order to include the branch code, and its code
branch sub-tree, into the code integration process again. As a
consequence, each system and integration test failure not only
affects the engineers that submitted code changes to the branch
before the test failure, but all engineers that will have to merge
their code changes through this code branch in order to integrate
into the main trunk branch. Please note that a failing test step
may not cause the test case to terminate immediately. Thus, each
executed test case may report more than one test step failure
each of which may relate to a code defect or a false test alarm.

Build Build Build

Build Build

Branch B1

Branch B2

Fig. 1. Code changes have to pass system and integration tests to get

integrated into lower level branches. Failing tests automatically cancel code

integrations and require manual inspection and possible bug fixes to allow

further code integration.

Test step 1

Test step 2

Test step 3

Test step n

Test case

Fig. 2. Each system and integration test case as shown in Fig. 1 executes a

sequence of test steps all of which are required to pass to pass the overall test
case. Test failures reported to engineers contain a list of test steps that failed

during execution.

Test case failures reported to engineers contain a list of test steps
that failed to help the engineer to investigate the failure cause
and to resolve the underlying issue.

B. False Test Alarms

Test results presented to engineers are classified as passing
or failing. However, it is important to further distinguish
whether a test failures is caused by a code defects or whether the
test failures must be considered a false test alarms. A test failure
that is due to any other reason than a code defect is regarded as
false alarms. In most cases, such false alarms are caused by test
and infrastructure issues, e.g. a test case requires to fetch an
input source from a remote server that cannot be reached at the
time of the test execution. False test alarms are a common issue
during system and integration tests, for example testing the
installation of a Windows operating system.

False test alarms are expensive and harm the verification and
development process without providing any benefit. Like other
test failures, false test alarms require expensive manual
inspection. However, unlike test failures due to code defects,
investigating false test alarms must be considered as a waste of
time and resources. The result of the investigation will be that
the test failure was due to test and infrastructure issues, but
allows no conclusion about the actual code quality under tests.
The test suite execution must be repeated, once the test
infrastructure issue is resolved. Like for any other test failure,
the code branch is banned from code integrations until the tests
pass again. This is likely to affect other engineers on the same
branch as they are also banned from integrating changes into the
main trunk branch. Thus, false test alarms not only waste the
time of engineers inspecting the test failure but also slows down
productivity and code velocity of entire development teams.

IV. DATA COLLECTION

The main goal of this work is to build a precise classification
model to identify false test alarms without requiring expensive
additional information about test runs, such as dynamic program
traces or state dumps.

A. Test Case Features (Independent Variables)

Instead, we investigate the behavior of individual test steps
to judge the outcome of the overall test case. The rational is that
false test alarms show specific patterns or combinations of test
step failures that rarely occur during normal test executions
including test failures due to code defects. For each failing test

case, we collect the following properties of all executed (failing
and passing) test steps executed:

 The unique identifier of the test case execution. Each test
case execution is assigned a unique identifier that can be
used to reference a specific executed instance of a test
case.

 The unique identifier of the test case, typically the test
case name. However, this identifier does not specify the
exact execution (see test case execution identifier above).
A test is typically associated with many executions.

 The identifier of the executed test step. Each test case is
a sequence of test steps. Test steps themselves have
unique names within a test case. The full-qualified test
step name is a combination of test case name and test step
name. It allows us to uniquely refer to an individual test
step and is unique among all test steps names.

 A simple binary field indicating whether the test step has
passed or failed. This binary field contains no indication
on whether the test case step failed due to a code defect
or a test or infrastructure issue.

At this point in time, we made no assumption on test failures
or their possible causes. In particular, we do not make any
judgment on whether the test case or the individual test step
failed due to code or test and infrastructure issues.

B. False Test Alarms (Dependent Variable)

To identify false test alarms, we trace development activities
that occurred after a test failure (see Fig. 3) using CODEMINE
[1]. Test failures referencing bug reports that were fixed by
applying code changes must be considered test failures due to
code defects. Test failures that did not lead to a bug report or that
were assigned to bug reports, which never got fixed, are
considered false test alarms. The only exception are test failures
that were not investigated at all—we ignored these instances and
removed them from our list of observed test failures. The
mapping strategy was developed in cooperation with the
Windows and Dynamics product teams. We estimated the
number of falsely classified test failures to be below 5%.

C. Test Step Association Rules

To discover patterns among test step behavior unique to false
test alarms, we use association rule learning [41] to produce
rules of the form: {𝑎1, … , 𝑎𝑛} ⇒ {𝑐} where left hand side of the
implication (antecedent) represents one or multiple conditions

Exec fails

False positive
failure

Mapped to
bug report?

yes
Bug report

fixed?
yes

True positive
failure

Resolved via
code change?

yes

 no

Investigated? yes

Undecided

no

Fig. 3 Flow chart describing the process to separate test failures reporting code issues from test executions failing due to other reasons than code issues

(e.g. test and infrastructure issues).

that need to be satisfied to imply the right hand side
(consequent). In our case, the set of antecedents 𝑎1, … , 𝑎𝑛 will
indicate which combination of test step results is expected in
order to indicate the type of test failure reported by the test case.
As an example, consider the following rule:

{𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑋 = 1, 𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑌 = 0, 𝑇𝑒𝑠𝑡𝑆𝑡𝑒𝑝𝑍 = 1} ⇒ 𝐹𝑇𝐴.

This association rule suggests that a test case execution in
which test steps 𝑋 and 𝑍 fail but test step 𝑌 passes should be
considered a false test alarm. Typically, association rule learning
returns more than a single association rule. Each rule can be
treated as a separate set of conditions that if satisfied by a test
case execution indicate how to interpret the corresponding test
case result. Note that the antecedents of an association rules are
not sufficient to let the consequence to become true. Association
rules do not state implications but probabilistic relationships. As
a consequence, association rules are associated with statistical
measurements: support and confidence. Translated to our usage
scenario, support is a value between zero and one and defined as
the proportion of test case executions for which all antecedents
were satisfied. A support value of 0.5 would mean that 50% of
all observed test case executions satisfied all antecedents. In the
example above this would mean that in 50% of all test case
executions, test steps 𝑋 and 𝑍 fail while test step 𝑌 passes. The
confidence in a rule is defined as the relative number of observed
test case executions for which all antecedents and the
consequence were satisfied over the number of test case
executions for which all antecedents were satisfied:

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒({𝐴 ⇒ {𝑐}} =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ {𝑐})
,

where 𝐴 represents a set of antecedent such as {𝑎1, … , 𝑎𝑛} .
Confidence values range between zero and one. A confidence
value of 1 indicates that in all cases for which the antecedents
were satisfied the consequence could always be satisfied as well.
Note that different association rules might contradict each other.
It is important to remove contradicting rules from rule sets
before using them. As result, for a series of observed test case
executions, we extract a set of association rules expressing
probabilistic relations between test step results and the overall
test case failure categorization. Each rule is associated with a
support and confidence value that allows us to filter rules based
on their frequency and accuracy.

V. EXPERIMENTAL SETUP

A. Learning Association Rules

To perform association rule learning on a given set of test
case executions, we used an implementation of the apriori
algorithm provided by Hahsler et al. [42] in their arules package
for the statistical framework R [43]. For each given set of
observations (transactions), we use a stringent selection criteria
for association rules that we consider as relevant. Association
rules must be associated with a minimum confidence value of
0.8 before being considered by our classification model.
Additionally, we considered only rules that appeared in at least
3% of all test case failures. This minimum support value is
derived by measuring the median number of occurrences per test

case in the overall set of test failure observations and multiplied
by ten.

For each set of observations, we split the set of association
rules into two subsets: one containing rules whose consequences
indicate false test alarms (𝐹𝑃) and the other subset containing
rules whose consequences indicate failures due to code defect
(𝑇𝑃). To remove possible contradicting rules, we only use 𝐹𝑃
rules whose antecedents (left hand side) does not appear as
antecedents in the set of 𝑇𝑃 rules.

B. Predicting and Updating Classification Model

To simulate realistic scenarios, we use incremental learning
to classify test case failures as false alarms based on previous
test case execution observations (see Fig. 4). We start with an
initial training set containing the first 10% of test case failures
as they occurred during development (preserving temporal
order). The idea is to build up a set of association rules as basis
for any classification attempt. After this initial training phase,
we proceed with the following steps:

Step 1: We fetch the next test case failure as it occurred
during development and decompose the failure into
individual test step results.

Step 2: We check if our current pool of association rules
contains any rule whose left hand side (antecedent) is
satisfied by the test step results observed during test case
execution. If any such rule exists, we classify the test case
failure as false test alarm. If no such rule exist (considering
the thresholds discussed in Section V.A), we consider the
test failure to be due to code defects.

Step 3: We compare the classification result with the actual
ground truth by tracing development activities that occurred
after a test failure (see Section IV.B).

Identify executed
test steps & results

Satisfies any
association rule?

no Mark as code issue

yes

Mark as false alarm

Add to training pool

Observed
failed test

cases

Did test failure
caused bug fix?

Did test failure
caused bug fix?

yes
no

no

yes

True
positive

False
positive

True
negative

False
negative

Fig. 4. Using incremental learning to evaluate false test alarm classification

model. Evaluation performed on multiple million test case executions.

Step 4: Depending on the result of this comparison, we mark
the result either as true positive (we correctly predicted the
test failure to be a false alarm), false positive (we predicted
the test failure to be a false alarm but it was due to code
defects), false negative (we failed to classified the test
failure as false test alarm), or true negative (we correctly
classified the test failure to be due to code defects). See Fig.
5 for schematic version of confusion matrix.

Step 5: We use the ground truth as new observation and use
the updated pool of test case observations to create a new set
of association rules.

Naturally, all test case executions that did not fail are treated
as true negatives. To measure the accuracy of our classification
model, we report precision and recall values over all predictions
performed.

C. Study Subjects

To evaluate our classification technique, we classified
integration test cases executed during development periods of
Windows and Dynamics. For each product, we classified more
than 10,000 test case failures executing tens of millions of test
steps. TABLE I. contains details about the development periods
and products our experiments were conducted on. For Dynamics
we covered a total development period of approximately 2 years,
for Windows, active development lasted about 1 year. Overall,
we performed more than 10,000 predictions per product.

VI. IDENTIFYING FALSE TEST ALARMS

As discussed in Section V, we used incremental learning to
conduct our experiments.

A. Precision & Recall

The overall observed precision for Dynamics lies at 0.85
while for Windows we achieved an overall precision of 0.9 (see
TABLE I.). Thus, the false positive rate—classified false test
alarms that were due to real code defects—lies under 15%. This
is important as false positives can have critical impact on
product quality: test failures that would be falsely suppressed or

ignored could lead to defects elapsing quality assurance and thus
directly affect product quality.

As expected, recall values for our classification models are
lower. At the end of each development period, the overall
observed recall value for Dynamics lies at 0.48 and for Windows
at 0.34. The reason for these low recall values is that there exist
a lot of false test alarms cause by infrastructure issues that
occurred only a few times or even only once. Thus, low recall
was expected and shows that false test alarms are more complex
than simple infrastructure issues, but rather are serious issues
that are hard to detect and prevent. Still, reducing the number of
false test alarm reported by at least 34% is a significant
improvement. We discuss implication on development
processes in more detail in Section VII.

Fig. 6 shows values for cumulative precision and recall
values over test case failures ordered by time. Values on the x-
axis represent development time excluding the initial training
phase (see Section V). As shown in Fig. 6, precision and recall
values are not constant but rather follow a wave curve. In both
cases, the recall value drops quite dramatically over time. For
Windows, the cumulative recall value at the end of the one-year
period drops to its lowest value of 0.34. The same trend can be
observed for Dynamics for which the recall value recovers after
a sharp drop in the first half of the development time (one year)
before it starts declining again. Currently, we suspect that there
could be a relationship between the decrease (and increase) of
recall values and the maturity of the code base towards final
release dates. However, we have no evidence to confirm this
relationship. Although showing similar behavior, precision
values are much more stable over time. The curve shape is less
distinct but still visible. For both products, precision values do
not drop under 0.8 and remain high throughout the entire
experiment. This is an important factor as precision is the more
important value. False positives (precision) threaten the
usefulness and reliability of the presented approach, while low

True positive
(TP)

Classified and
observed

False positive
(FP)

Classified but not
observed

False negative
(FN)

Not classified but
observed

True negative
(TN)

Not classified and
not observed

Observed class (expectation)

C
la

ss
if

ie
d

 c
la

ss
 (

pr
ed

ic
ti

on
)

Fa
ls

e
te

st
 a

la
rm

False test alarm

C
od

e
de

fe
ct

s

Code defects

Fig. 5. Comparing observed and classified test failures in a confusion

matrix. Used to compute precision and recall values to measure accuracy
of classification model.

TABLE I. OVERALL PRECISION AND RECALL VALUES.

 Dynamics Windows

Covered development time ~2 years ~ 1year

Overall precision 0.85 0.90

Overall recall 0.48 0.34

Fig. 6. Precision and recall values of Windows false test alarm

classification model over time. X-axis represent test case failures ordered

by time without initial training phase.

recall values (false negatives) impact the ability to prevent false
test alarms. However, the number of false negative
classifications does not threaten product or process quality as
these false test failures occurred already (not newly introduced)
but could not be automatically detected.

B. Number of Associtation Rules

Besides precision and recall, we were interested in the
number of association rules required to achieve the high
precision as discussed in the previous section. In particular, we
wanted to know whether the number of association rules is
rather constant—no new rules must be learned over time—or
whether constant learning of new rules is required. In the first
case, we might be able to extract the learned rules into a static,
and faster, classification model, or whether we need to keep
learning new appearing rules. For this purpose, we relate the
number of matching association rules per predicted test case
failure with the overall number of performed predictions. This
relative measure represents the number of rules to be learned
relative to the number of predictions. The result is a value
between 0 and 1, where 1 represents cases for which each
prediction instance would require a different association rule to
be learned. For the case that the number of required association
rules remains constant over time, we should see a linear
dropping line, when plotting this value over time.

Fig. 7 shows this relative association rule count
measurement over time (predicted test case failures ordered by
time). Both products show different trends. While Dynamics is
a nearly constantly dropping function, the number of association
rules required to achieve the mean precision value over 0.8 for
this product seems to be limited, thus, few new rules must be
learned over time. For Dynamics, there exist two time windows
in which the number of association rules is increasing over time
(curve constant or increasing). Comparing these two time
windows with the curve in Fig. 7, we see that the precision and
recall values for these two windows is also dropping, suggesting
that new rules must be learned to gain previous precision.
However, new rules are only adapted over time when these rules
have proven to be reliable (support and confidence thresholds,
see Section V.A). For Windows, the curve for the number of
association rules relative to the number of performed predictions
is completely different. Here, the curve is increasing in the first

couple of weeks indicating that a high number of new rules have
to be learned. Then, after some time, the curve stabilizes at a
level of roughly 0.65. This means, that for Windows, the set of
association rules required to maintain a mean precision value of
0.91 is constantly changing and new rules have to be learned.

C. Lifetime of associtation rules

The results shown in Section VI.B suggest that individual
association rules seem to have a rather short lifetime and change
quickly to capture new types of test and infrastructure issues, at
least for Windows. To further investigate this trend of
association rules being valid for only short periods of time, we
investigated the duration of individual association rules as
relative number of occurrence across predictions—that is the
number of predictions an association rule caused the test case
failure to be classified as false test alarm. Fig. 8 plots the
distribution of relative occurrence as a histogram. The x-axis
represents the relative number of predictions a single association
rule shows with a confidence value above 0.8 and a support
value above 3% (see Section V). The y-axis represents the
number of rules that showed this relative number of occurrences,
using a square root scaling function for the y-axis.

From Fig. 8 we can see that most association rules occur
contribute to less than 1% of all classifications; remember that
we classified more than 10,000 test case failures per product,
thus, a rule contributing to 1% of all classifications still
contributed to at least 100 decisions. Only very few association
rules contribute to more than the 2.5% of decisions. For

Fig. 7. Number of used association rules relative to the number of
predictions performed plotted over time. X-axis values represent test case

failures ordered by time without initial training phase.

Fig. 8. Relative number of rule occurrences per development week: How
often does a specific rule occurs across the entire development period? A

value of one means a rule is omnipresent across all development days—

having a minimum confidence value of 0.8.

Dynamics the most prominent rule contributes to 12.5% of all
decisions. Similarly, the most prominent rule for Windows
contributes to 17.5% of decisions. In general, the data shown in
Fig. 8 supports the observation that association rules have a
relative short lifetime (as suspected in Section VI.B).
Consequently, the number of required association rules is high,
indicating that false test alarms can manifest in many different
ways, but still be consistent over time. This result supports the
need for an automated classification system. A high number of
frequently changing patterns that can point out false tests alarms
is required. In fact, the actual number of required association
rules to achieve our presented precision lies well above 100.
Demanding engineers to check for more than 100 patterns
whenever a test case fails seems to be unpractical and too time
consuming, even if the number of rules would remain constant
or change little over time.

VII. IMPACT ON DEVELOPMENT PROCESS

Applying an automated classification model in real
development scenarios can have severe consequences and
implications with respect to development processes, engineering
behavior, and product quality. In this section, we discus some of
these possible implications and provide some estimations on
them. However, most of these improvements are hard or even
impossible to measure. Nevertheless, such implications are
important to understand the implications of models like the one
presented in this paper.

A. Code Velocity

As discussed in Section III.B, false test alarms directly affect
development speed. Failing tests cause code branches to be
banned from code integrations until the test issue is resolved. For
false test alarms, the time required to inspect the test failure the
code branch is blocked unnecessary, causing delays for code
changes going through this code branch. Preventing false test
alarms to block the integration activity of a code branch or being
raised to engineers could reduce these unnecessary delays and
thus improve development speed. To estimate the benefit of our
false test alarm classification model with respect to code
velocity, we traced the resolution time of false test alarms for all
cases that our classification model had classified correctly (true
positives). Summing these time values represents the amount of
time code branches were banned from integration activity,
which might have caused integration delays, but which could
have prevented using a classification model like the one
presented in this paper.

For Dynamics the estimated code velocity gain is roughly
173 hours, which corresponds to little more than 7 days.
Normalized over two years of development time, this
corresponds to an average development speedup of 14 minutes
per day. The same calculation for Windows results in a total gain
of 611 hours or 25.5 days. Normalized over a development
period of 1 year, this corresponds to an average daily code
velocity gain of roughly 100 minutes per day (1.7 hours per day).

Please keep in mind that this estimation is a very rough
estimation and that it assumes that the classification model
would have the power to suppress classified false test alarms, a
highly unlikely scenario. Note that our current classification
model has a low recall value of 0.3, which implies that around

70% of false test alarms would remain undetected. Thus, the
potential gain in code velocity could be significant higher.

B. Impact on Engineers

The main motivation for this work is to provide help in
identifying false test alarms, as these test failures require manual
failure inspection. Raising less false test alarms should help to
increase the confidence in test results themselves, but also in
decisions based on test results. Increasing code velocity, as
discussed in Section VII.A, can reduce the number of merge
conflicts and thus might further reduce the number of actual test
failures.

C. Impact on Product Quality

Using the proposed classification model would imply test
process changes. Like any other process change, the
classification model requires monitoring the implications and
possible effects on other development processes. The precision
of our classification model is already high, but still produces a
small fraction of false positives---test failures due to code
defects classified as false test alarms---which may cause code
defects to remain undetected for some time. Although we
suspect this time to be short. Tests are executed in short time
intervals or get triggered by code integration requests. However,
using human supervision and monitoring techniques to ensure
high development process quality are recommended, not only
for this classification model, but for all changes to development
processes.

D. How to Use Such a Classifcation Model

The model is an excellent tool to help engineers to prioritize
test failures and to provide additional input for engineers to
confirm the classification models decisions. Such a scenario has
two important benefits. First, it would reduce the risk of code
defects wrongly classified as false alarms to a minimum. Instead
of suppressing the test failure, the failure still reaches the
engineer but warns her about the possibility of being a false test
alarm. It would allow human supervision of the classification
system and may include a feedback loop that allows engineers
to override classification results which will then help to train the
classification model. At the same time, such an interactive
model might help engineers to prioritize their test failure
inspection. Test failures classified as false test alarms could be
seen as low severity failures and ranked by their corresponding
support and confidence values, similar to the eRose system
suggested and implemented by Zimmermann et al. [44].

Together with the product teams within Microsoft, we
believe that tackling the issue of false test alarms will strengthen
confidence into testing infrastructure even if some test cases
occasionally report false test alarms.

VIII. THREATS TO VALIDITY

A. Generalizability

We investigate test executions and test results for two
Microsoft products and their development processes. Even
though some terminology might be unique to Microsoft, the
execution of tests during software development, the impact of
test execution time on development speed, and the issue of false
test alarms are generalizable. We also believe that the basic
assumption that test failures due to test and infrastructure issues

will manifest in different test step failure patterns is general and
not specific to a particular development or verification process.
The data collected to build the classification model were
collected using Microsoft specific tools like CODEMINE, but
are not requiring the used toolset nor relies on Microsoft specific
data or details. We collect test execution data, test failure
statistics, as well as bug report linked to code changes used by
many other studies conducted on open-source. Hence, we
believe that the study and its presented model is generic and
could be easily replicated on other projects in different
companies.

The impact of suppressing or pre-classifying false test
alarms on the overall development process might differ and are
of course product and company specific. The estimated code
velocity measurements presented in this paper are specific to
Microsoft. Replicating the experiments on different projects,
releases, or development processes requires detailed reviews
and applied heuristics and might yield different results.

This paper focuses on system and integration tests that test
various constraints of a system, e.g. performance, compatibility,
and functionality. However, different test types, such as unit
tests, might require different approaches or might not even
require false test alarm detection.

B. Construct Validity

In this paper, we identify false test alarms mapping various
data sources kept in different databases. Although, we discussed
our heuristic, data mappings, and data interpretations with all
involved product teams, it is possible that some data mappings
might be missing or wrong. The product teams and we consider
all made approximations as fair and realistic and that
assumptions made in this study reflect the development
processes accurately. Time factors used to estimate code
velocity delays are based on average Microsoft figures and
numbers. These numbers vary over time and might not consider
all possible aspects.

The classification models presented in this paper depends on
data extracted using CODEMINE [1], the approach to identify
false test alarms by Herzig and Nagappan [15], and on the apriori
algorithm implemented in the arules [42] package for the R
statistical framework. All threads to validity to these tools also
apply for this study.

IX. CONCLUSION

In this paper, we presented a novel approach to automatically
classify false test alarms, test case failures due to test and
infrastructure issues. Our classification model uses association
rule mining to identify patterns across failing test steps that
correlate with false test alarms. We evaluated our classification
model on two development processes and periods covering the
development of Microsoft Windows and a 2-year development
period of Microsoft Dynamics. Our classification model shows
a mean precision above 0.85 for both products. This means that
our classification model produces a false positive rate below
15%. Recall values for both products are low and range between
0.3 and 0.5. Having a low recall does not imply negative
consequences for the development process as these test failures
already occurred in reality but simply could not be prevented.
We estimate the achieved code velocity increase by preventing

classified false test alarms to block code integration activity to
14 minutes per day for Dynamics and 100 minutes per day for
Windows. The product teams are confident that the presented
approach can help to positively impact the development
processes by increasing the confidence into test executions and
test results, but also by speeding up development processes.

The technique and results described in this paper have

convinced the Microsoft Windows product team to explore

ways to integrate the presented classification model into their

production test environments. The goal is to rank and mark

classified test failures accordingly to raise awareness of

potential false test failures.

ACKNOWLEDGMENT

We thank the Windows and Dynamics product teams for
their tremendous support and feedback. This work is based on
data extracted from varies development repositories provided by
the Microsoft TSE group. Our special thanks go to Brendan
Murphy, Michaela Greiler, Jacek Czerwonka, Jason Means,
Rama Durairajan, Josh Swedberg, and Adrian Marius Marin for
their great support and invaluable insights into development
processes and datasets.

X. REFERENCES

[1] J. Czerwonka, N. Nagappan, W. Schulte and B. Murphy, "CODEMINE:
Building a Software Development Data Analytics Platform at
Microsoft," Software, IEEE, vol. 30, no. 4, pp. 64--71, 2013.

[2] K. Herzig and A. Zeller, "Mining cause-effect-chains from version
histories," in Software Reliability Engineering (ISSRE), 2011 IEEE 22nd
International Symposium on, 2011.

[3] K. S. Herzig, "Capturing the long-term impact of changes," in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, 2010.

[4] T. Mende and R. Koschke, "Effort-Aware Defect Prediction Models," in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, 2010.

[5] N. Nagappan, B. Murphy and V. Basili, "The Influence of Organizational
Structure on Software Quality: An Empirical Case Study," in
Proceedings of the 30th International Conference on Software
Engineering, 2008.

[6] S. McIntosh, Y. Kamei, B. Adams and A. E. Hassan, "The Impact of
Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects," in In
Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014), Hyderabad (India), 2014.

[7] G. Rothermel, R. Untch, C. Chu and M. Harrold, "Test case
prioritization: an empirical study," in Software Maintenance, 1999.
(ICSM '99) Proceedings. IEEE International Conference on, 1999.

[8] J.-M. Kim and A. Porter, "A history-based test prioritization technique
for regression testing in resource constrained environments," in Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on, 2002.

[9] S. Fujiwara, G. v.Bochmann, F. Khendek, M. Amalou and A. Ghedamsi,
"Test selection based on finite state models," Software Engineering,
IEEE Transactions on, vol. 17, pp. 591-603, Jun 1991.

[10] G. Rothermel and M. J. Harrold, "A Safe, Efficient Regression Test
Selection Technique," ACM Trans. Softw. Eng. Methodol., vol. 6, pp.
173--210, apr 1997.

[11] G. Fraser and A. Arcuri, "EvoSuite: Automatic Test Suite Generation for
Object-oriented Software," in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011.

[12] V. Dallmeier, N. Knopp, C. Mallon, S. Hack and A. Zeller, "Generating
Test Cases for Specification Mining," in Proceedings of the 19th
International Symposium on Software Testing and Analysis, 2010.

[13] M. Perscheid, D. Cassou and R. Hirschfeld, "Test Quality Feedback
Improving Effectivity and Efficiency of Unit Testing," in Creating,
Connecting and Collaborating through Computing (C5), 2012 10th
International Conference on, 2012.

[14] S. Zeltyn, P. Tarr, M. Cantor, R. Delmonico, S. Kannegala, M. Keren,
A. P. Kumar and S. Wasserkrug, "Improving Efficiency in Software
Maintenance," in Proceedings of the 8th Working Conference on Mining
Software Repositories, 2011.

[15] K. Herzig and N. Nagappan, "The Impact of Test Ownership and Team
Structure on the Reliability and Effectiveness of Quality Test Runs," in
Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2014.

[16] D. Hao, T. Lan, H. Zhang, C. Guo and L. Zhang, "Is This a Bug or an
Obsolete Test?," in Proceedings of the 27th European Conference on
Object-Oriented Programming, 2013.

[17] P. J. Guo, T. Zimmermann, N. Nagappan and B. Murphy,
"Characterizing and Predicting Which Bugs Get Fixed: An Empirical
Study of Microsoft Windows," in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, 2010.

[18] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj and T.
Zimmermann, "What Makes a Good Bug Report?," in Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2008.

[19] M. S. Zanetti, I. Scholtes, C. J. Tessone and F. Schweitzer, "Categorizing
Bugs with Social Networks: A Case Study on Four Open Source
Software Communities," in Proceedings of the 2013 International
Conference on Software Engineering, 2013.

[20] G. Antoniol, K. Ayari, M. Penta, F. Khomh and G. Yann-Gaël, "Is It a
Bug or an Enhancement?: A Text-based Approach to Classify Change
Requests," in Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of Minds, 2008.

[21] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, "Automatically
Characterizing Large Scale Program Behavior," SIGOPS Oper. Syst.
Rev., vol. 36, pp. 45--57, oct 2002.

[22] J. F. Bowring, J. M. Rehg and M. J. Harrold, "Active Learning for
Automatic Classification of Software Behavior," in Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2004.

[23] R. Hildebrandt and A. Zeller, "Simplifying Failure-inducing Input,"
SIGSOFT Softw. Eng. Notes, vol. 25, pp. 135--145, aug 2000.

[24] J. A. Jones and M. J. Harrold, "Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique," in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, 2005.

[25] C. Liu and J. Han, "Failure Proximity: A Fault Localization-based
Approach," in Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2006.

[26] J. Zhou, H. Zhang and D. Lo, "Where Should the Bugs Be Fixed? - More
Accurate Information Retrieval-based Bug Localization Based on Bug
Reports," in Proceedings of the 34th International Conference on
Software Engineering, 2012.

[27] L. S. Pinto, S. Sinha and A. Orso, "Understanding Myths and Realities
of Test-suite Evolution," in Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering,
2012.

[28] M. Galli, M. Lanza, O. Nierstrasz and R. Wuyts, "Ordering broken unit
tests for focused debugging," in Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on, 2004.

[29] B. Daniel, V. Jagannath, D. Dig and D. Marinov, "ReAssert: Suggesting
Repairs for Broken Unit Tests," in Automated Software Engineering,
2009. ASE '09. 24th IEEE/ACM International Conference on, 2009.

[30] B. Daniel, T. Gvero and D. Marinov, "On Test Repair Using Symbolic
Execution," in Proceedings of the 19th International Symposium on
Software Testing and Analysis, 2010.

[31] G. Yang, S. Khurshid and M. Kim, "Specification-Based Test Repair
Using a Lightweight Formal Method," vol. 7436, D. Giannakopoulou
and D. Méry, Eds., Springer Berlin Heidelberg, pp. 455-470.

[32] M. Harman and N. Alshahwan, "Automated Session Data Repair for
Web Application Regression Testing," in Software Testing, Verification,
and Validation, 2008 1st International Conference on, 2008.

[33] A. M. Memon, "Automatically Repairing Event Sequence-based GUI
Test Suites for Regression Testing," ACM Trans. Softw. Eng. Methodol.,
vol. 18, pp. 4:1--4:36, nov 2008.

[34] W. Dickinson, D. Leon and A. Podgurski, "Pursuing Failure: The
Distribution of Program Failures in a Profile Space," in Proceedings of
the 8th European Software Engineering Conference Held Jointly with
9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2001.

[35] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun and B.
Wang, "Automated support for classifying software failure reports," in
Software Engineering, 2003. Proceedings. 25th International
Conference on, 2003.

[36] N. DiGiuseppe and J. A. Jones, "Concept-based Failure Clustering," in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, 2012.

[37] P. Francis, D. Leon, M. Minch and A. Podgurski, "Tree-based methods
for classifying software failures," in Software Reliability Engineering,
2004. ISSRE 2004. 15th International Symposium on, 2004.

[38] E. Triou, A. Milbradt, O. Agbonile and A. Dar, "Systems and methods
for automated classification and analysis of large volumes of test result
data," Google Patents, 2009.

[39] C. Bird and T. Zimmermann, "Assessing the Value of Branches with
What-if Analysis," in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
Cary, North Carolina, 2012.

[40] B. Murphy, J. Czerwonka and L. Williams, "Branching Taxonomy,"
Microsoft Research, Cambridge, 2014.

[41] R. Agrawal, T. Imieli\'nski and A. Swami, "Mining Association Rules
Between Sets of Items in Large Databases," SIGMOD Rec., vol. 22, pp.
207--216, jun 1993.

[42] M. Hahsler, S. Chelluboina, K. Hornik and C. Buchta, "The Arules R-
Package Ecosystem: Analyzing Interesting Patterns from Large
Transaction Data Sets," J. Mach. Learn. Res., vol. 12, pp. 2021--2025,
jul 2011.

[43] R. D. C. Team, "R: A Language and Environment for Statistical
Computing," 2010.

[44] T. Zimmermann, V. Dallmeier, K. Halachev and A. Zeller, "eROSE:
Guiding Programmers in Eclipse," in Companion to the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, 2005.

