2015 IEEE Symposium on Security and Privacy

A Messy State of the Union:
Taming the Composite State Machines of TLS

Benjamin Beurdouche*, Karthikeyan Bhargavan*, Antoine Delignat-Lavaud®,
Cédric Fournet’, Markulf Kohlweiss', Alfredo Pironti*,
Pierre-Yves Strub¥, Jean Karim Zinzindohoue?*

*INRIA Paris-Rocquencourt, TMicrosoft Research, {IMDEA Software Institute, 8Ecole des Ponts ParisTech

Abstract—Implementations of the Transport Layer Security
(TLS) protocol must handle a variety of protocol versions and
extensions, authentication modes, and key exchange methods.
Confusingly, each combination may prescribe a different message
sequence between the client and the server. We address the
problem of designing a robust composite state machine that
correctly multiplexes between these different protocol modes.
We systematically test popular open-source TLS implementations
for state machine bugs and discover several critical security
vulnerabilities that have lain hidden in these libraries for years,
and have now finally been patched due to our disclosures.
Several of these vulnerabilities, including the recently publicized
FREAK flaw, enable a network attacker to break into TLS
connections between authenticated clients and servers. We argue
that state machine bugs stem from incorrect compositions of
individually correct state machines. We present the first verified
implementation of a composite TLS state machine in C that can
be embedded into OpenSSL and accounts for all its supported
ciphersuites. Our attacks expose the need for the formal verifica-
tion of core components in cryptographic protocol libraries; our
implementation demonstrates that such mechanized proofs are
within reach, even for mainstream TLS implementations.

Keywords—Transport Layer Security; cryptographic protocols;
man-in-the-middle attacks; software verification; formal methods.

I. TRANSPORT LAYER SECURITY

The Transport Layer Security (TLS) protocol [1] is widely
used to provide secure channels in a variety of scenarios,
including the web (HTTPS), email, and wireless networks. Its
popularity stems from its flexibility; it offers a large choice of
ciphersuites and authentication modes to its applications.

The classic TLS threat model considered in this paper
is depicted in Figure 1. A client and a server each execute
their end of the protocol state machine, exchanging messages
across an insecure network under attacker control: messages
can be intercepted, tampered, or injected by the attacker.
Additionally, the attacker controls some malicious clients and
servers that can deviate from the protocol specification. The
goal of TLS is to guarantee the integrity and confidentiality of
exchanges between honest clients and servers, and to prevent
impersonation and tampering attempts by malicious peers.

TLS consists of a channel establishment protocol called the
handshake followed by a transport protocol called the record.
If the client and server both implement a secure handshake
key exchange (e.g. Ephemeral Diffie-Hellman) and a strong
transport encryption scheme (e.g. AES-GCM with SHA256),
the security against the network attacker can be reduced to the

© 2015, Benjamin Beurdouche. Under license to IEEE.
DOI 10.1109/SP.2015.39

535

3

Client

Server

Fig. 1. Threat Model: network attacker aims to subvert client-server exchange.

security of these building blocks. Recent works have exhibited
cryptographic proofs for various key exchange methods used
in the TLS handshakes [2—4] and for commonly-used record
encryption schemes [5].

Protocol Agility TLS suffers from legacy bloat: after 20
years of evolution of the standard, it features many versions,
extensions, and ciphersuites, some of which are no longer
used or are known to be insecure. Accordingly, client and
server implementations offer much agility in their protocol
configuration, and their deployment often support insecure
ciphersuites for interoperability reasons. For example, TLS
1.0 [6] offered several deliberately weakened ciphersuites, such
as TLS_RSA_EXPORT_WITH_RC4_40_MD5, to comply with US
export regulations at the time. These ciphersuites were explic-
itly deprecated in TLS 1.1 [7], but continue to be supported
by mainstream implementations for backward compatibility.

The particular parameters of a TLS session are negotiated
during the handshake protocol. Agreement on these parameters
is only verified at the very end of the handshake: both parties
exchange a MAC of the transcript of all handshake messages
they have sent and received so far to ensure they haven’t been
tampered by the attacker on the network. In particular, if one
party only accepts secure protocol versions, ciphersuites, and
extensions, then any session involving this party can only use
these secure parameters regardless of what the peer supports.

Composite State Machines Many TLS ciphersuites and pro-
tocol extensions are specified in their own standards (RFCs),
and are usually well-understood in isolation. They strive to
re-use existing message formats and mechanisms of TLS
to reduce implementation effort. To support their (potential)
negotiation within a single handshake, however, the burden

IEEE
computer
psouety

falls on TLS implementations to correctly compose these
different protocols, a task that is not trivial.

TLS implementations are typically written as a set of
functions that generate and parse each message, and perform
the relevant cryptographic operations. The overall message
sequence is managed by a reactive client or server process
that sends or accepts the next message based on the protocol
parameters negotiated so far, as well as the local protocol
configuration. The composite state machine that this process
must implement is not standardized, and differs between
implementations. As explained below, mistakes in this state
machine can lead to disastrous misunderstandings.

Figure 2 depicts a simple example. Suppose we have
implemented a client for one (fictional) TLS ciphersuite, where
the client first sends a He11o message, then expects to receive
two messages A and B before sending a Finished message.
Now the client wishes to implement a new ciphersuite where
the client must receive a different pair of messages C and D
between Hello and Finished. To reuse the messaging code
for Hello and Finished, it is tempting to modify the client
state machine so that it can receive either A or C, followed
by either B or D. This naive composition implements both
ciphersuites, but it also enables some unintended sequences,
such as Hello; A; D; Finished.

One may argue that allowing more incoming message
sequences does not matter, since an honest server will only
send the right message sequence. And if an attacker injects an
incorrect message, for instance by replacing message B with
message D, then the mismatch between the client and server
transcript MAC ensures that the handshake cannot succeed.
The flaw in this argument is that, meanwhile, a client that
implements Hello; A; D; Finished is running an unknown
handshake protocol, with a priori no security guarantees. For
example, the code for processing D may expect to run after C
and may accidentally use uninitialized state that it expected C
to fill in. It may also leak unexpected secrets received in A, or
allow some crucial authentication steps to be bypassed.

State Machine Bugs and Concrete Attacks In Sections III
and IV, we systematically analyze the state machines currently
implemented by various open source TLS implementations,
using a combination of automated testing and manual source
code analysis. We find that many implementations exhibit com-
position flaws like those described above, and consequently
accept unexpected message sequences. While some flaws are
benign, others lead to critical vulnerabilities that a network
attacker can exploit to break the security guarantees of TLS.

In Section V, we detail several of these vulnerabilities,
describe their impact, and summarize vendor response. For
example, we show several ways for a network attacker to
impersonate a TLS server to a buggy client, either by simply
skipping handshake messages (SKIP), or by factoring the
server’s export-grade RSA key (FREAK). These attacks were
responsibly disclosed and led to security updates in many
major web browsers, servers, and TLS libraries.

Verified Implementations Security proofs for TLS typically
focus on clients and servers that support a single, fixed
message sequence, and that a priori agree on their security

536

[send heilo |

1

l Receive A I

1

l Receive

[send mello |

1

Receive C |

1

Receive

[send hello |

1

I Receive A|C I

u #

2| I

D | I Receive B|D I

ISend Finished| |Send Finishedl |Send Finished|

Fig. 2. Incorrect union of exemplary state machines.

goals and mechanisms, e.g. mutual authentication with Diffie-
Hellman, or unilateral authentication with RSA. Recently, a
verified implementation called MITLS [8] showed how to
compose proofs for various modes that may be dynamically
negotiated by their implementation. However, mainstream TLS
implementations compose far more features, including legacy
insecure ciphersuites. Verifying their code seems unfeasible.

We ask a limited verification question, separate from the
cryptographic strength of ciphersuites considered in isolation.
Let us suppose that the individual message processing func-
tions in OpenSSL for unilaterally authenticated ECDHE in
TLS 1.0 are correct. We have found that if the protocol
implementation deviates from the correct message sequence,
there are exploitable attacks. Conversely, can we prove that, if
an OpenSSL client or server negotiates an ECDHE ciphersuite,
then its state machine faithfully implements the correct mes-
sage sequence processing for that key exchange? In Section VI
we present a verified implementation of a state machine for
OpenSSL that guarantees such properties while accounting
for all its other commonly-enabled ciphersuites and protocol
versions.

Contributions In this paper,

e we define a composite state machine for the commonly
implemented modes of TLS, based on the standard spec-
ifications (§II);

we present tools to systematically test mainstream TLS
implementations for conformance (§I11);

we report flaws (§IV) and critical vulnerabilities (§V) we
found in these implementations;

we develop a verified state machine for OpenSSL, the
first to cover all of its TLS modes (§VI).

Our state machine testing framework FLEXTLS is built
on top of MITLS [8], and benefits from its functional style
and verified messaging functions. Our OpenSSL state machine
code is verified using Frama-C [9], a framework for the static
analysis of C programs against logical specifications written
in first-order logic. All the attacks discussed in this paper
were reported to the relevant TLS implementations; they were
acknowledged and various critical updates have been released.

Online Materials Our attack scripts, test trace generators,
summary of vulnerability disclosures, and verified OpenSSL
state machine can be obtained from https://smacktls.com.

II. THE TLS STATE MACHINE

Figure 3 depicts a simplified high-level state machine that
captures the sequence of messages that are sent and received

from the beginning of a TLS connection up to the end of the
first handshake. It only covers commonly used ciphersuites
and it does not detail message contents, local state at client
and server, or cryptographic computations.

Message Sequences Messages prefixed by Client are sent
from client to server; messages prefixed by Server are sent
from server to client. Arrows indicate the order in which these
messages are expected; labels on arrows specify conditions
under which the transition is allowed.

Each TLS connection begins with either a full handshake
or an abbreviated handshake (also called session resumption).

Full handshakes consist of four flights of messages: the
client first sends a ClientHello, the server responds with
a series of messages from ServerHello to Server-—
HelloDone. The client then sends a second flight culmi-
nating in ClientFinished and the server completes the
handshake by sending a final flight that ends in Server-
Finished. Before sending their respective Finished mes-
sage, the client and the server send a change cipher spec
(CCS) message to signal that the new keys established by
this handshake will be used to protect subsequent messages
(including the Finished message). Once the handshake is
complete, the client and the server may exchange streams of
ApplicationData messages.

In most full handshakes (except for anonymous key ex-
changes), the server must authenticate itself by sending a
certificate in the ServerCertificate message. In the
DHE|ECDHE handshakes, the server demonstrates its knowledge
of the certificate’s private key by signing the subsequent Ser—
verKeyExchange containing its ephemeral Diffie-Hellman
public key. In the RSA key exchange, it instead uses the private
key to decrypt the ClientKeyExchange message. When
requested by the server (via CertificateRequest), the
client may optionally send a ClientCertificate and use
the private key to sign the full transcript of messages (so far)
in the ClientCertificateVerify.

Abbreviated handshakes skip most of the messages by
relying on shared session secrets established in some previous
full handshake. The server goes from ServerHello straight
to ServerCCS and ServerFinished, and the client com-
pletes the handshake by sending its own ClientCCS and
ClientFinished.

Negotiation Parameters The choice of what sequence of
messages will be sent in a handshake depends on a set of
parameters negotiated within the handshake itself:

e the protocol version (v),

e the key exchange method in the ciphersuite (kz),
whether the client offered resumption with a cached
session and the server accepted it (r;q = 1),

whether the client offered resumption with a session ticket
and the server accepted it (74, = 1),

e whether the server wants client authentication (cqs, = 1),
e whether the client agrees to authenticate (c,ge,r = 1),
whether the server sends a new session ticket (ns., = 1).

A client knows the first three parameters (v, kx,7;q) ex-
plicitly from the ServerHello, but can only infer the
others (7¢ck, Cask, Ntick) later in the handshake when it sees a

537

ClientHello

ServerHello(v, kz,7;q)
Tia =0 & Tick =0 Tia = 1 rtick =1

(full handshake) (abbreviated handshake)

J Niick = 1‘[

ServerCertificates ServerNewSessionTicket|tick =0

kx = DHE\ECDHEJ

ServerKeyExchange kx = RSA ServerCCs
(authenticate client?) ServerFinished
Cask = 1J
CertificateRequest |Cask =0 ClientCCS
ServerHelloDone ClientFinished
Cask =1
ClientCertificate(cofer)| Cask = 0 ApplicationData®

|

ClientKeyExchange
Cask = 1 &
Coffer = 1

ClientCertificateVerifjCask =0 || Coffer =0

|

ClientCCS

ClientFinished
Nk =1

ServerNewSessionTickeftNtick =0
ServerCCs
ServerFinished

ApplicationData®

Fig. 3. State machine for commonly used TLS configurations: Protocol ver-
sions v = TLSv1.0|TLSv1.1|TLSv1.2. Key exchanges kx = RSA|DHE|ECDHE.
Optional feature flags: resumption using server-side caches (r;4) or tickets
(r¢ick) client authentication (cqsk, Coffer), NEW session ticket (n4;ck)-

particular message. Similarly, the server only knows whether
or how a client will authenticate itself from the content of the
ClientCertificate message.

Implementation Pitfalls Even when considering only modern
protocol versions TLSv1.0|TLSv1.1|TLSv1.2 and the most
popular key exchange methods RSA|DHE|ECDHE, the number
of possible message sequences in Figure 3 is substantial and
warns us about tricky implementation problems.

First, the order of messages in the protocol has been
carefully designed and it must be respected, both for in-
teroperability and security. For example, the ServerCCS
message must occur just before ServerFinished. If it is

accepted too early or too late, the client enables various server
impersonation attacks. Implementing this message correctly is
particularly tricky because CCS messages are not officially part
of the handshake: they have a different content type and are
not included in the transcript. So an error in their position in
the handshake would not be caught by the transcript MAC.

Second, it is not enough to implement a linear sequence
of sends and receives; the client and server must distin-
guish between truly optional messages, such as Server-—
NewSessionTicket, and messages whose presence is fully
prescribed by the current key exchange, such as Server-—
KeyExchange. For example, we will show in Section V that
accepting a ServerKeyExchange in RSA or allowing it to
be omitted in ECDHE can have dire consequences.

Third, one must be careful to not prematurely calculate
session parameters and secrets. Traditionally, TLS clients set
up their state for a full or abbreviated handshake immediately
after the ServerHello message. However, with the intro-
duction of the session ticket extension [10], this would be
premature, since only the next message from the server would
tell the client whether this is a full or abbreviated handshake.
Confusions between these two handshake modes may lead to
serious vulnerabilities, like the Early CCS attack in Section IV.

Other Versions, Extensions, Key Exchanges Typical TLS
libraries also support other protocol versions such as SSLv2
and SSLv3 and related protocols like DTLS. At the level of
detail of Figure 3, the main difference in SSLv3 is in client
authentication: an SSLv3 client may decline authentication
by not sending a ClientCertificate message at all.
DTLS allows a server to respond to a ClientHello with
anew HelloVerifyRequest message, to which the client
responds with a new ClientHello.

TLS libraries also implement a number of ciphersuites
that are not often used on the web, like static Diffie-Hellman
(DH) and Elliptic Curve Diffie-Hellman (ECDH), anonymous
key exchanges (DH_anon, ECDH_anon), and various pre-shared
key ciphersuites (PSK, RSA_PSK, DHE_PSK, SRP, SRP_RSA).
Figure 9 in the appendix displays a high-level TLS state ma-
chine for all these ciphersuites for TLSv1.0|TLSv1.1|TLSv1.2.
Modeling the new message sequences induced by these cipher-
suites requires additional negotiation parameters like PSK hints
(Chint) and static Diffie-Hellman client certificates (coge,r = 2).

Incorporating renegotiation, that is multiple TLS hand-
shakes on the same connection, is logically straightforward,
but can be tricky to implement. At any point after the first
handshake, the client can go back to ClientHello (the
server could send a Hel1loRequest to request this behavior).
During a renegotiation handshake, ApplicationData can
be sent under the old keys until the CCS messages are sent.

In addition to session tickets, another TLS extension that
modifies the message sequence is called False Start [11].
Clients that support the False Start extension are allowed to
send early ApplicationData as soon as they have sent
their ClientFinished without waiting for the server to
complete the handshake. This is considered to be safe as long
as the negotiated ciphersuite is forward secret (DHE|ECDHE)
and uses strong record encryption algorithms (e.g. not RC4).
False Start is currently enabled in all major web browsers and

538

hence is also implemented in major TLS implementations like
OpenSSL, SChannel, NSS, and SecureTransport.

Analyzing Implementations We wrote the state machines in
Figures 3 and 9 by carefully inspecting the RFCs for various
versions and ciphersuites of TLS. How well do they correspond
to the state machines implemented by TLS libraries? We
have a definitive answer for MITLS, which implements RSA,
DHE, resumption, and renegotiation. The type-based proof for
MITLS guarantees that its state machine conforms to a logical
specification that is similar to Figure 3, but more detailed.

In the rest of the paper, we will investigate how to ver-
ify whether mainstream TLS implementations like OpenSSL
conform to Figure 9. In the next section, we begin by systemat-
ically testing various open source TLS libraries for deviations
from the standard state machine.

III. TESTING IMPLEMENTATIONS WITH FLEXTLS

To explore the state-machine behavior of existing TLS
implementations, we send sequences of TLS messages to the
tested implementations and we observe their reaction. For valid
protocol sequences, the peer should proceed normally with
the protocol execution; for sequences containing unexpected
messages, the peer should report an error, typically by sending
an unexpected_message alert.

Generating arbitrary sequences of valid TLS messages is
not a trivial task, as (by protocol design) the content of each
message typically depends on previously exchanged values.
For example, the master secret value needed to compute
the Finished message depends on both client and server
randomness, and at least one of the two is freshly generated
by the implementation under test. In our experience, modifying
a TLS library to execute non-standard message sequences can
be awkward and error prone. After all, TLS implementations
are designed to comply with the protocol and reject bad traces.

For these reasons, we have developed FLEXTLS, a tool
for scripting and prototyping TLS scenarios in F#. To send
and receive TLS messages, FLEXTLS uses the MITLS li-
brary, a verified reference implementation of TLS. MITLS
was developed in a modular, functional, state-passing style,
with an emphasis on clarity rather than performance, and
we found it easy to reuse its core modules for cryptography
and message parsing. In addition, using verified messaging
libraries improves the robustness of FLEXTLS and reduces
false positives due to, for example, malformed or incorrectly
parsed messages.

FLEXTLS scripting Figure 4 presents FLEXTLS by ex-
ample, using a client script for a normal RSA key ex-
change with no client authentication. For each handshake
message, FLEXTLS provides a class equipped with send and
receive functions, and a record that holds its parsed contents.
For example, the ClientHello message record contains a
ciphersuites field; the user may set its value before send-
ing, or read its value after receiving. In addition, FLEXTLS
keeps some internal connection state (including for instance the
connection keys and sequence numbers) in a state variable, st
, passed from one call to the other. Finally, each handshake
also prepares the next security context, to be installed after

/I Ensure we use RSA

let ch = {defaultClientHello with ciphersuites =
Some([TLS_RSA_WITH_AES_128_CBC_SHA]) } in

let st,nsc,ch = ClientHello.send(st,ch) in

let st,nsc,sh = ServerHello.receive(st,ch,nsc) in

let st,nsc,cert = Certificate.receive(st,Client,nsc) in

let st,shd = ServerHelloDone.receive(st) in

let st,nsc,cke = ClientKeyExchange.sendRSA(st,nsc,ch) in

let st,_ = CCS.send(st) in

let st = State.installWriteKeys st nsc in

let log = ch.payload @| sh.payload @| cert.payload @| shd.
payload @| cke.payload in

let st,cf = Finished.send(st,nsc,logRole=(log,Client)) in

let s7,_,_ = CCS.receive(st) in

let st = State.installReadKeys st nsc in

let log = log @| cf.payload in

let st,sf = Finished.receive(st,nsc,(log,Server)) in

st

Fig. 4. A normal RSA key exchange scripted with FLEXTLS.

exchanging CCS messages; FLEXTLS reflects its evolution
using another state variable, nsc.

Sending messages out-of-order with FLEXTLS is usually
as simple as reordering lines in a script. FLEXTLS handles
most of the complexity internally, notably by filling in any
missing values, inasmuch as the protocol specification does
not indicate which values to use out of order. For example,
if the user creates a script that sends a Finished message
immediately after a ServerHello message, which value
should be used for the master secret? One may pick an empty
(null) pre-master secret and combine it with the client and
server random to get the master secret; or one may use an
empty (null) master secret; or one may fill the master secret
with an array of zeros of the right length. FLEXTLS produces
context-dependent default values that are expected to work in
most of the cases; yet, it is designed to let the user easily
override these defaults. For example, the master secret of a
next security context nsc can be set by the user to an array
of 48 zeros by adding the following lines:

let keys = {nsc.keys with ms = Array.zeroCreate 48} in
let nsc = {nsc with keys = keys} in ...

Searching for deviant traces Next, we define valid and
deviant traces. Let o be a sequence of protocol messages, m a
protocol message, and o; m their concatenation. We let 0 < 7
denote that o is a prefix of 7. We write m ~ m’ when m
and m’ have the same message type, but different parameters;
for instance when both are ServerHello messages, possibly
with different ciphersuites. We also lift ~ from messages to
traces. Let Valid be the set of valid traces allowed by the state
machine described in figure 3, closed under the prefix relation.
A deviant trace is a minimal invalid trace, that is, o;m is
deviant when o € Valid but o;m ¢ Valid.

Deviant traces are useful for systematically detecting state
machine bugs, because a compliant implementation is expected
to accept o but then reject m. If it accepts m, it has a bug.
This does not necessarily mean that the implementation has
an exploitable security vulnerability: an exploit may actually
require several carefully crafted messages after the deviant

539

trace. Hence, once we identify an implementation accepting
a deviant trace, we need to look into its source code to learn
more about the cause of the state machine bug.

The set of deviant traces is rather large (and even infinite
unless we bound the number of renegotiations allowed), so we
automatically generate a representative, finite subset according
to three heuristic rules that proved the most effective:

Skip If o;m;n € Valid and 6 =o;n ¢ Valid,
test 6. That 1is, for every prefix of
a valid message sequence, we skip a
message if it is mandatory. For example,
ClientHello; ServerHello (DHE);
ServerKeyExchange is a trace where the
Certificate message has been skipped.

In practice, we find it useful to allow even a
sequence of messages to be skipped, but to get
reliable feedback from the peer we do not skip the
final message of a flight, that is, ClientHello,
ServerHelloDone, ClientFinished, or
ServerFinished.

Let 7 = o;m € Valid and 7" = o';n € Valid. If
oc~da,m#mn,and 6§ = o;n ¢ Valid, test 9.
That is, if two valid traces have the same prefix,
up to their parameters, and they differ on their
next message, we create a deviant trace from the
context of the first trace and the next message of
the second trace.

This can be seen as hopping from one state
machine trace to another, or as a way to skip
optional protocol messages that may be required
in some other context.

For example, ClientHello (noResumption) ;
ServerHello; ServerCCS is a trace that
hops into a session resumption trace, even
if the client asked to start a full handshake;
and ClientHello; ServerHello (RSA);
Certificate; ServerKeyExchange

is a trace that sends an unexpected
ServerKeyExchange by hopping from
an RSA to a DHE trace.

If 7 =o0;m;0’ € Valid and § = T;m ¢ Valid,
test 0. That is, for every prefix of a valid
message sequence, we take any message that
has appeared before and send it again if
this results in a deviant trace. For example,
ClientHello; ServerHello; ...;
ServerHelloDone; ClientHello is a
trace where the ClientHello message is
repeated in the middle of a handshake, making it
invalid.

Repeat

A trace such as ClientHello; ServerHello (DHE);
Certificate; ServerHelloDone that skips the op-
tional ServerKeyExchange message can be generated by
both the Skip and Hop policies, so we just consider the set of
traces produced by any rule. Moreover, we only consider traces
that begin witha ClientHello; ServerHello prefix, as
all the implementations we tested require these first messages.

The main advantage of generating deviant traces according
to such well-defined rules is that, when a trace is accepted by

an implementation, it is relatively simple to identify the corre-
sponding state machine bug, which helps guide our subsequent
manual code inspection. We also tried randomly generating
deviant traces but manually interpreting their results was more
time consuming and hence less effective.

Automated testing We partition the subset of deviant traces
in server-executed and client-executed traces, according to
the sender of the last message. We generate a FLEXTLS
script for every deviant trace, and we run this script against a
target implementation. Each FLEXTLS-generated script ends
its deviant trace by sending an illegal message and then
waiting for an alert from the peer. Indeed, the correct peer
behavior against a deviant trace is to return an alert (usually
unexpected_message) as soon as the deviant message
is received. If a non-alert message is received, we flag that
trace as detecting a state machine bug that requires further
investigation. If the peer does not respond within a timeout,
we assume that it accepted the trace and is waiting for further
messages, and also flag the trace for investigation.

Unfortunately, not all the TLS implementations we tested
support all the scenarios and ciphersuites we test. For example,
the Mono and CyaSSL implementations do not support DHE
key exchange. In our experiments, such scenarios fail early—
typically at the Hel1lo messages, before reaching the deviant
message—so we flag them instead as unsupported. Pragmat-
ically, we instrument all our FLEXTLS scripts so that they
automatically classify peer behavior on each trace as either
correct, or unsupported, or buggy.

Experimental results We tested the client and server sides of
the following mainstream implementations: OpenSSL 1.0.1g
and 1.0.1j; GnuTLS 3.3.9; NSS 3.17; Secure Transport
55471.14; Java 1.8.0_25; Mono 3.10.0; CyaSSL 3.2.0. Our
results are reported in table I. All tests were run enforcing
TLS 1.0, which ensures maximum support across different
implementations. We ran only the RSA and DHE ciphersuites,
since they were most commonly implemented.

We observe that both Mono and CyaSSL do not sup-
port DHE key exchange, and they do not accept an empty
ClientCertificate message, hence they have been
tested on a smaller number of traces.

CyaSSL and Secure Transport tear down the TCP connec-
tion when a deviant trace is detected; this is in contrast with the
TLS specification, which prescribes to send a fatal alert to the
peer. For this reason, our tool automatically flagged all traces
when testing these implementations. We filtered out deviant
traces that were correctly recognized, but for which the TCP
connection had been torn down, and in the table we report
traces that expose real state machine bugs.

We find more state machine issues in the older OpenSSL
1.0.1g version compared to 1.0.1j, which is not surprising since
the former had known state machine issues that were fixed in
the subsequent version.

Turning bugs into exploits In the next two sections, we
will use these results to uncover state machine flaws and
concrete attacks against these implementations. Once we find
an attack, typically by inspecting the code and running targeted
experiments with FlexTLS, we write our exploit as a FlexTLS

540

TABLE L. TESTING RESULTS FOR MAINSTREAM TLS
IMPLEMENTATIONS

Library Mode Version Kex Traces Flags
OpenSSL 1.0.1j Client TLS 1.0 RSA,DHE | 83 3
OpenSSL 1.0.1j Server TLS 1.0 RSA, DHE 94 6
OpenSSL 1.0.1g | Client TLS 1.0 RSA,DHE | 83 4
OpenSSL 1.0.1g Server TLS 1.0 RSA, DHE 94 14
GnuTLS Client TLS 1.0 RSA, DHE 83 0
GnuTLS Server TLS 1.0 RSA, DHE 94 2
SecureTransport Client TLS 1.0 RSA, DHE 83 3
NSS Client TLS 1.0 RSA,DHE | 83 9
Java Client TLS 1.0 RSA, DHE 71 6
Java Server TLS 1.0 RSA, DHE 94 46
Mono Client TLS 1.0 RSA 35 32
Mono Server TLS 1.0 RSA 38 34
CyaSSL Client TLS 1.0 RSA 41 19
CyaSSL Server TLS 1.0 RSA 47 20

scenario and use it as a demo to communicate with the
implementors of the TLS library.

Our automated testing technique is a form of protocol-
aware state machine fuzzing. Although effective, it is not com-
plete, and every trace it flags requires further manual inspection
of the source code to assess the severity of the state machine
bug. We chose a set of traces that, in our experience, were
likely to expose security critical bugs. Independently, we wrote
specific scenarios in FLEXTLS to experiment with message
content tampering and fragmentation, and could rediscover
known attacks, such as the ClientHello fragmentation
rollback attack on OpenSSL (CVE-2014-3511).

IV. STATE MACHINE FLAWS IN TLS IMPLEMENTATIONS

We now report the result of our systematic search for state-
machine bugs in major TLS implementations, before analyzing
their security impact in §V.

IV-A IMPLEMENTATION BUGS IN OPENSSL. OpenSSL is
the most widely-used open source TLS implementation, in
particular on the web, where it powers HTTPS-enabled web-
sites served by the popular Apache and nginx servers. It is
also the most comprehensive: OpenSSL supports SSL versions
2 and 3, and all TLS and DTLS versions from 1.0 to 1.2,
along with every ciphersuite and protocol extensions that has
been standardized by the IETF, plus a few experimental ones
under proposal. As a result, the state machines of OpenSSL
are the most complex among those we reviewed, and many of
its features are not exerted by our analysis based on the subset
shown in Figure 3.

Running our tests from Section III reveal multiple unex-
pected state transitions that we depict in Figure 5 and that we
investigate by careful source code inspection below:

Early CCS This paragraph only applies to OpenSSL versions
1.0.1g and earlier. Since CCS is technically not a handshake
message (e.g. it does not appear in the handshake log), it
is not controlled by the client and server state machines in
OpenSSL, but instead can (incorrectly) appear at any point
after ServerHello. Receiving a CCS message triggers the
setup of a record key derived from the session key; because of
obscure DTLS constraints, OpenSSL allows derivation from
an uninitialized session key.

This bug was first reported by Masashi Kikuchi as CVE-
2014-0224. Depending on the OpenSSL version, it may enable

ClientHello

ServerHello(v, kx,riq)
ria =0 & 74k =0 rid = Ureee =1

(full handshake) (abbreviated handshake)

Ntick = 1 J

gverNewSessionTicke] Muck =0

ServerCertificates . S%
Export RS/

kx = DHE\ECDHEJ

ServerCCs
Static DH
¢z = DHE|ECDHE

(authenticate client?) ServerFinished

o = 1 l

CertificateRequest 0 ClientCCs

ServerHelloDone ClientFinished

Cask =1

ClientCertificate(coger)| Ca\r ApplicationData*

ClientKeyExchange

Caske =1 &

Coffer = 1
ClientCertificateVerifjCask I cogrer =0

Early CCS

ClientCCS

ClientFinished
Tgick = 1
ServerNewSessionTickeffifi =0
ServerCCs

ServerFinished

ApplicationData*

Fig. 5. OpenSSL Client and Server State machine for HTTPS configurations.
Unexpected transitions: client in red on the right, server in green on the left

both client and server impersonation attacks, where a man-in-
the-middle first setups weak record keys early, by injecting
CCS messages to both peers after ServerHello, and then
let them complete their handshake, only intercepting the legit-
imate CCS messages (which would otherwise cause the weak
keys to be overwritten with strong ones).

DH Certificate OpenSSL servers allow clients to omit the
ClientCertificateVerify message after sending a
Diffie-Hellman certificate, because such certificates cannot be
used for signing. Instead, since the client share of the Diffie-
Hellman exchange is taken from the certificate’s public key,
the ability to compute the pre-master secret of the session
demonstrates to the server ownership of the certificate’s private
exponent.

However, we found that sending a ClientKey-—
Exchange along with a DH certificate enables a new client
impersonation attack, which we explain in Section V-B.

Server-Gated Crypto (SGC) OpenSSL servers have a legacy
feature called SGC that allows clients to restart a handshake

541

after receiving a ServerHello. Further code inspection
reveals that the state created during the first exchange of
hello messages is then supposed to be discarded completely.
However, we found that some pieces of state that indicate
whether some extensions had been sent by the client or not can
linger from the first ClientHello to the new handshake.

Export RSA In legacy export RSA ciphersuites, the server
sends a signed, but weak (at most 512 bits) RSA modulus
in the ServerKeyExchange message. However, if such a
message is received during a handshake that uses a stronger,
non-export RSA ciphersuite, the weak ephemeral modulus will
still be used to encrypt the client’s pre-master secret. This leads
to a new downgrade and server impersonation attack called
FREAK, explained in Section V-D.

Static DH We similarly observe that OpenSSL clients allow
the server to skip the ServerKeyExchange message when
a DHE or ECDHE ciphersuite is negotiated. If the server
certificate contains, say, an ECDH public key, and the client
does not receive a ServerKeyExchange message, then
it will automatically rollback to static ECDH by using the
public key from the server’s certificate, resulting in the loss of
forward-secrecy. This leads to an exploit against False Start,
described in Section V-C.

IV-B IMPLEMENTATION BUGS IN JSSE. The Java Secure
Socket Extension (JSSE) is the default security provider
for a number of cryptographic functionalities in the Oracle
and OpenJDK Java runtime environments. Sometimes called
SunJSSE, it was originally developed by Sun and open-sourced
along with the rest of its Java Development Kit (JDK) in 2007.
Since then, it has been maintained by OpenJDK and Oracle.
In the following, we refer to code in OpenJDK version 7, but
the bugs have also been confirmed on versions 6 and 8 of both
the OpenJDK and Oracle Java runtime environments.

On most machines, whenever a Java client or server uses
the SSLSocket interface to connect to a peer, it uses the
TLS implementation in JSSE. In our tests, JSSE clients and
servers accepted many incorrect message sequences, including
some where mandatory messages such as ServerCCS were
skipped. To better understand the JSSE state machine, we care-
fully reviewed its source code from the OpenJDK repository.

The client and server handshake state machines are im-
plemented separately in ClientHandshakerjava and Server
Handshaker.java. Each message is given a number (based on
its HandshakeType value in the TLS specification) to indicate
its order in the handshake, and both state machines ensure
that messages can only appear in increasing order, with two
exceptions. The HelloRequest message (n°0) can appear
at any time and the ClientCertificateVerify (n°l5)
appears out of order, but can only be received immediately
after ClientKeyExchange (n°16).

Client Flaws To handle optional messages that are specific
to some ciphersuites, both client and server state machines
allow messages to be skipped. For example, ClientHandshaker
checks that the next message is always greater than the current
state (unless it is a HelloRequest). Figure 6 depicts the
state machine implemented by JSSE clients and servers, where
the red arrows indicate the extra client transitions that are not
allowed by TLS. Notably:

e JSSE clients allow servers to skip the ServerCCS mes-
sage, and hence disable record-layer encryption.

e JSSE clients allow servers to skip any combination of
the ServerCertificate, ServerKeyExchange,
ServerHelloDone messages.

These transitions lead to the server impersonation attack on
Java clients that we describe in Section V-A.

Server Flaws JSSE servers similarly allow clients to skip
messages. In addition, they allow messages to be repeated due
to another logical flaw. When processing the next message,
ServerHandshaker checks that the message number is either
greater than the previous message, or that the last message
was a ClientKeyExchange, or that the current message is
aClientCertificateVerify, as coded below:

void processMessage(byte type, int message_len)
throws /OException
{ if ((state > type)
&& (state '= HandshakeMessage.ht_client_key_exchange
&& type = HandshakeMessage.ht_certificate_verify))
{ throw new SSLProtocolException(
"Handshake message sequence violation,\
state " + state + ", type "+ type);

}

... /* Process Message */

}

There are multiple coding bugs in the error-checking con-
dition. The first inequality should be >= (to prevent repeated
messages) and indeed this has been fixed in OpenJDK ver-
sion 8. Moreover, the second conjunction in the if-condition
(&&) should be a disjunction (||), and this bug remains to be
fixed. The intention of the developers here was to address the
numbering inconsistency between ClientCertificate-—
Verify and ClientKeyExchange but instead this bug
enables further illegal state transitions (shown in green on the
left in Figure 6):

e JSSE servers allow clients to skip the ServerCCS mes-
sage, and hence disable record-layer encryption.

JSSE servers allow clients to skip any combination of
the ClientCertificate, ClientKeyExchange,
ClientCertificateVerify messages, although
some of these errors are caught when processing the
ClientFinished.

JSSE servers allow clients to send any number of new
ClientHello ClientCertificate, Client-
KeyExchange, or ClientCertificateVerify
messages after the first ClientKeyExchange.

We do not demonstrate any concrete exploits that rely on these
server transitions in this paper, but we observe that by sending
messages in carefully crafted sequences an attacker can cause
the JSSE server to get into strange, unintended, and probably
exploitable states similar to the other attacks in this paper.

IV-C BUGS IN OTHER IMPLEMENTATIONS. More briefly, we
summarize the flaws that our tests found in other TLS imple-
mentations.

NSS Network Security Services (NSS) is a TLS library
managed by Mozilla and used by popular web browsers like

542

ClientHello

ServerHello(v, kx,Tiq)

ria =0 ria =1

(full handshake)

|

ServerCertificates

(abbreviated handshake)

|

ServerCCS

ServerKeyExchange ServerFinished

(authenticate client?)

Cask = IJ

CertificateRequest

ClientCCs
ClientFinished

ServerHelloDone ApplicationData®

Cask =1

ClientCertificate(Cofer)

J

ClientKeyExchange

cask =1 &
Coffer =1

ClientCertificateVerify
ClientCCs
ClientFinished
ServercCs
ServerFinished

ApplicationData®

Fig. 6. JSSE Client and Server State Machines for HTTPS configurations.
Unexpected transitions: client in red on the right, server in green on the left.

Firefox, Chrome, and Opera. NSS is typically used as a client.
By inspecting our test results and the library source code, we
found the following unexpected transitions:

e NSS clients allow servers to skip ServerKey-
Exchange during a DHE (or ECDHE) key exchange; it
then treats the key exchange like static DH (or ECDH).

e During renegotiation, NSS clients accept
ApplicationData between ServerCCS and
ServerFinished.

The first of these leads to the attack on forward secrecy
described in Section V-C. The second breaks a TLS secure
channel invariant that ApplicationData should only be
accepted encrypted under keys that have been authenticated
by the server. It may be exploitable in scenarios where server
certificates may change during renegotiation [see e.g. 12].

Mono Mono is an open source implementation of Microsoft’s
NET Framework. It allows programs written for the .NET
platform to be executed on non-Windows platforms and hence
is commonly used for portability, for example on smartphones.

Mono includes an implementation of .NET’s SsIStream inter-
face (which implements TLS connections) in Mono.Security.
Protocol. Tls. So, when a C# client or server written for the
NET platform is executed on Mono, it executes this TLS im-
plementation instead of Microsoft’s SChannel implementation.

We found the following unexpected transitions:

e Mono clients and servers allow the peer to skip the CCS
message, hence disabling record encryption.

e Mono servers allow clients to skip the ClientCert-
ificateVerify message even when a Client-—
Certificate was provided.

e Mono clients allow servers to send new ServerCert-—
ificate messages after ServerKeyExchange.

e Mono clients allow servers to send ServerKey-
Exchange even for RSA key exchanges.

The second flaw leads to the client impersonation attack de-
scribed in Section V-B. The third allows a certificate switching
attack, whereby a malicious server M can send one Server—
Certificate and, just before the ServerCCS, send a new
ServerCertificate for some other server S. At the end
of the handshake, the Mono client would have authenticated
M but would have recorded S’s certificate in its session. The
fourth flaw results in the FREAK server impersonation attack
(Section V-D).

CyaSSL The CyaSSL TLS library (sometimes called yaSSL
or wolfSSL) is a small TLS implementation designed to
be used in embedded and resource-constrained applications,
including the yaSSL web server. It has been used in a variety of
popular open-source projects including MySQL and lighthttpd.
Our tests reveal the following unexpected transitions, many of
them similar to JSSE:

e Both CyaSSL servers and clients allow their peers to skip
the CCS message and hence disable record encryption.

o CyaSSL clients allow servers to skip many messages, in-
cluding ServerKeyExchange and ServerHello-
Done.

e CyaSSL servers allow clients to skip many messages,
notably including ClientCertificatevVerify.

The first and second flaws above result in a full server
impersonation attack on CyaSSL clients (Section V-A). The
third results in a client impersonation attack on CyaSSL servers
(Section V-B).

SecureTransport The default TLS library included on Ap-
ple’s operating systems is called SecureTransport, and it was
recently made open-source. The library is used primarily by
web clients on OS X and iOS, including the Safari web
browser. We found two unexpected behaviors:

e SecureTransport clients allow servers to send Cert-—
ificateRequest before ServerKeyExchange.

e SecureTransport clients allow servers to send Server—
KeyExchange even for RSA key exchanges.

The first violates a minor user interface invariant in DHE
and ECDHE handshakes: users may be asked to choose their
certificates a little too early, before the server has been authen-
ticated. The second flaw can result in the FREAK vulnerability,
described in Section V-D.

543

GnuTLS The GnuTLS library is a widely available open
source TLS implementation that is often used as an alternative
to OpenSSL, for example in clients like wget or SASL servers.
Our tests on GnuTLS revealed only one minor deviation from
the TLS state machine:

e GnuTLS servers allow a client to skip the Client-
Certificate message entirely when the client does
not wish to authenticate.

MITLS and others We ran our tests against MITLS clients
and servers and did not find any deviant trace. MITLS is a
verified implementation of TLS and is therefore very strict
about the messages it generates and accepts. We also ran
our tests against PolarSSL (recently renamed mbedTLS) and
did not find any unexpected state machine behavior. We
speculate that clean-room implementations like PolarSSL and
miTLS may be less likely to suffer from bugs relating to the
composition of new code with legacy ciphersuites.

Discussion The absence of deviant traces should not be taken
to mean that these implementations do not have state machine
bugs, because our testing technique is far from complete. We
tamper with the sequence of messages, but not with their
contents. Our test traces cover neither all misbehaving state
machines, nor all TLS features (e.g. fragmentation, resumption
and renegotiation). Adding tests to cover more cases would be
easy with FLEXTLS, but the main cost for our method is the
manual effort needed to map rejected traces to bugs in the
code. When an implementation exhibits an unexpected error,
or fails to trigger an expected error, the underlying flaw may
be benign (e.g. the implementation may delay all errors to the
end of the current flight of messages) or it may indicate a
serious bug. Separating the two cases requires careful source
code inspection. This is the reason we focus on open source
code, and limit the scope of our tests. We leave the challenge
of providing more thorough coverage of the TLS protocol state
machine to future work.

In general, we believe our method is better suited to devel-
opers who wish to test their own implementations, rather than
to analysts who wish to perform black-box testing of closed
source code. Although we did not run systematic analyses with
closed source TLS libraries, we did test some of them, such
as SChannel, for specific vulnerabilities found in other open
source implementations. We report our results along with the
discussion of vulnerabilities in the next section.

V. ATTACKS ON TLS IMPLEMENTATIONS

We describe a series of attacks on TLS implementations
that exploits their state machine flaws. We then discuss disclo-
sure status and upcoming patches for various implementations.

V-A SKIP EXCHANGE: SERVER IMPERSONATION (JAVA,
CYASSL). Suppose a Java client C' wants to connect to some
trusted server S (e.g. PayPal). A network attacker M can hijack
the TCP connection and impersonate .S as follows, without
needing any interaction with S:

1) C sends ClientHello
2) M sends ServerHello
3) M sends ServerCertificate with S’s certificate

4) M sends ServerFinished, by computing its contents
using an empty master secret (length 0)

5) C treats the handshake as complete

6) C sends ApplicationData (its request) in the clear

7) M sends ApplicationData (its response) in the clear

8) C accepts M'’s application data as if it came from S

Impact At the end of the attack above, C' thinks it has a secure
connection to S, but is in fact connected to M. Even if C' were
to carefully inspect the received certificate, it would find a
perfectly valid certificate for S (that anyone can download and
review). Hence, the security guarantees of TLS are completely
broken. An attacker can impersonate any TLS server to a
JSSE client. Furthermore, all the (supposedly confidential and
authenticated) traffic between C' and M is sent in the clear
without any protection.

Why does it work? At step 4, M skips all the handshake
messages to go straight to ServerFinished. As we saw in
the previous section, this is acceptable to the JSSE client state
machine.

The only challenge for the attacker is to be able to produce
a ServerFinished message that would be acceptable to the
client. The content of this message is a message authentication
code (MAC) applied to the current handshake transcript and
keyed by the session master secret. However, at this point in the
state machine, the various session secrets and keys have not yet
been set up. In the JSSE ClientHandshaker, the masterSecret
field is still null. It turns out that the TLS PRF function in
SunJSSE uses a key generator that is happy to accept a null
masterSecret and treat it as if it were an empty array. Hence,
all M has to do is to use an empty master secret and the log
of messages (1-3) to create the finished message.

If M had sent a ServerCCS before ServerFinished,
then the client C' would have tried to generate connection keys
based on the null master secret, and that the key generation
functions in SunJSSE do raise a null pointer exception in
this case. Hence, our attack crucially relies on the Java client
allowing the server to skip the ServerCCS message.

Attacking CyaSSL The attack on CyaSSL is very similar
to that on JSSE, and relies on the same state machine bugs,
which allow the attacker to skip handshake messages and
the ServerCCS. The only difference is in the content of
the ServerFinished: here M does not compute a MAC,
instead it sends a byte array consisting of 12 zeroes.

In CyaSSL (which is written in C), the expected content of
the ServerFinished message is computed whenever the
client receives a ServerCCS message. The handler for the
ServerCCS message uses the current log and master secret to
compute the transcript MAC (which in TLS returns 12 bytes)
and stores it in a pre-allocated byte array. The handler for
the ServerFinished message then simply compares the
content of the received message with the stored MAC value
and completes the handshake if they match.

In our attack, M skipped the ServerCCS message.
Consequently, the byte array that stores the transcript MAC
remains uninitialized, and in most runtime environments this
array contains zeroes. Consequently, the ServerFinished

544

message filled with zeroes sent by M will match the expected
value and the connection succeeds.

Since the attack relies on uninitialized memory, it may fail
if the memory block contains non-zeroes. In our experiments,
the attack always succeeded on the first run of the client (when
the memory was unused), but sometimes failed on subsequent
runs. Otherwise, the rest of the attack works as in Java, and
has the same disastrous impact on CyaSSL clients.

V-B SKIP VERIFY: CLIENT IMPERSONATION (MONO, CYA-
SSL, OPENSSL). Suppose a malicious client M connects to a
Mono server S that requires client authentication. M can then
impersonate any user u at S as follows:

1) M sends ClientHello

2) S sends its ServerHello flight, requesting client au-
thentication by including a CertificateRequest

3) M sends u’s certificate in its ClientCertificate

4) M sends its ClientKeyExchange

5) M skips the ClientCertificateVerify

6) M sends ClientCCS and ClientFinished

7) S sends ServerCCS and ServerFinished

8) M sends ApplicationData

9) S accepts this data as authenticated by u

Hence, M has logged in as u to S. Even if S inspects the
certificate stored in the session, it will find no discrepancy.

At step 5, M skipped the only message that proves
knowledge of the private key of w’s certificate, resulting in
an impersonation attack. Why would S allow such a crucial
message to be omitted? The ClientCertificateVerify
message is required when the server sends a Certificate-—
Request and when the client sends a non-empty Client—
Certificate message. Yet, the Mono server state machine
considers ClientCertificateVerify to be always op-
tional, allowing the attack.

Attacking CyaSSL The CyaSSL server admits a similar client
impersonation attack.

The first difference is that M must also skip the
ClientCCS message at step 6. The reason is that, in the
CyaSSL server, the handler for the C1ientCCS message is
the one that checks that the ClientCertificateVerify
message was received. So, by skipping these messages we can
bypass the check altogether.

The second difference is that M must then send a
ClientFinished message that contains 12 zeroes, rather
than the correct MAC value. This is because on the CyaSSL
server, as on the CyaSSL client discussed above, it is the
handler for the C1ient CCS message that computes and stores
the expected MAC value for the ClientFinished message.
So, like in the attack on the client, M needs to send zeroes to
match the uninitialized MAC on the CyaSSL server.

The server accepts the ClientFinished and then ac-
cepts unencrypted data from M as if it were sent by w.
We observe that even if CyaSSL were more strict about re-
quiring ClientCertificateVerify, the bug that allows
ClientCCS to be skipped would still be enough to enable a
man-in-the middle to inject application data attributed to u.

Attacking OpenSSL In the OpenSSL server, the Client—
CertificateVerify message is properly expected when-
ever a client certificate has been presented, except when the
client sends a static Diffie-Hellman certificate. The motivation
behind this design is that, in static DH ciphersuites, the client is
allowed to authenticate the key exchange by using the static DH
key sentin the ClientCertificate; in this case, the client
then skips both the ClientKeyExchange and Client-
CertificateVerify messages. However, because of a
bug in OpenSSL, client authentication can be bypassed in
two cases by confusing the static and ephemeral state machine
composite implementation.

In both the static DH and ephemeral DHE key exchanges,
the attacker M can send an honest user u’s static DH certifi-
cate, then send its own ephemeral keys in a ClientKey-
Exchange and skip the ClientCertificateVerify.
The server will use the ephemeral keys from the Client-
KeyExchange (ignoring those in the certificate), and will
report v’s identity to the application. Consequently, an attacker
is able to impersonate the owner of any static Diffie-Hellman
certificate at any OpenSSL server.

V-C SKIP EPHEMERAL: FORWARD SECRECY ROLLBACK
(NSS, OPENSSL). To counter strong adversaries who may
be able to compromise the private keys of trusted server
certificates [13], TLS clients and servers are encouraged to use
forward secret ciphersuites such a DHE and ECDHE, which guar-
antee that messages encrypted under the resulting session keys
cannot be decrypted, even if the client and server certificates
are subsequently compromised. Forward secrecy is particularly
important for clients that implement False Start [11], because
they send application data before completing the handshake,
and hence cannot rely on the full handshake authentication.
Many browsers use forward secrecy as a necessary condition
for enabling False Start.!

Suppose a False Start-enabled NSS or OpenSSL client C'
is trying to connect to a trusted server S. We show how a man-
in-the-middle attacker M can force C' to use a (non-forward
secret) static key exchange (DH|ECDH) even if both C' and S
only support ephemeral ciphersuites (DHE|ECDHE).

1) C sends ClientHello with only ECDHE ciphersuites

2) S sends ServerHello picking an ECDHE key exchange
with ECDSA signatures

3) S sends ServerCertificate containing S°s ECDSA
certificate

4) S sends ServerKeyExchange with its ephemeral pa-
rameters but M intercepts this message and prevents it
from reaching C

5) S sends ServerHelloDone

6) C' sends ClientKeyExchange, ClientCCS and
ClientFinished

7) C sends ApplicationData d to S

8) M intercepts d and closes the connection

When the attacker suppresses the ServerKeyExchange
message in step 4, the client should reject the subsequent
message since it does not conform to the key exchange.
Instead, NSS and OpenSSL will rollback to a non-ephemeral
ECDH key exchange: C' picks the static public key of S’s

ISee e.g. https://bugzilla.mozilla.org/show_bug.cgi?id=920248

ECDSA certificate as the server share of the key exchange and
continues the handshake.

Since M has tampered with the handshake, it will not
be able to complete the handshake: C’s ClientFinished
message is unacceptable to S and vice-versa. However, if False
Start is enabled, then, by step 7, C' would already have sent
ApplicationData encrypted under the new (non forward-
secret) session keys.

Consequently, if an active network attacker is willing to
tamper with client-server connections, it can collect False Start
application data sent by clients. The attacker can subsequently
compromise or compel the server’s ECDSA private key to
decrypt this data, which may contain sensitive authentication
credentials, cookies, and other private information.

V-D FREAK: SERVER IMPERSONATION USING RSA_EXPORT
DOWNGRADE (OPENSSL, SECURETRANSPORT, MONO).
Due to US export regulations before 2000, SSL version 3
and TLS version 1 include several ciphersuites that use sub-
strength keys and are marked as eligible for EXPORT. For
example, several RSA_EXPORT ciphersuites require that servers
send a ServerKeyExchange message with an ephemeral
RSA public key (modulus and exponent) whose modulus does
not exceed 512 bits. RSA keys of this size were first factorized
in 1999 [14] and with advancements in hardware are now
considered broken. In 2000, export regulations were relaxed
and in TLS 1.1, these ciphersuites were explicitly deprecated.
Consequently, mainstream web browsers no longer offer or
accept export ciphersuites. However, TLS libraries still include
legacy code to handle these ciphersuites, and some servers
continue to support them. We show that this legacy code causes
a client to “flashback” from RSA to RSA_EXPORT.

Suppose a client C' wants to connect to a trusted server S
using RSA, but the server S also supports some RSA_EXPORT
ciphersuites. Then a man-in-the-middle attacker M can fool C
into accepting a weak RSA public key for S, as follows:

1) C sends ClientHello with an RSA ciphersuite

2) M replaces the ciphersuite with an RSA_EXPORT cipher-
suite and forwards the ClientHello message to S

3) S sends ServerHello for an RSA_EXPORT ciphersuite

4) M replaces the ciphersuite with an RSA ciphersuite and
forwards the ServerHello message to C'

5) S sends ServerCertificate with its strong (2048-
bit) RSA public key, and M forwards the message to C'

6) S sends a ServerKeyExchange message containing a
weak (512-bit) ephemeral RSA public key (modulus V),
and M forwards the message to C

7) S sends a ServerHelloDone that M forwards to C

8) C sends its ClientKeyExchange, ClientCCS and
ClientFinished

9) M factors N to find the ephemeral private key. M can
now decrypt the pre-master secret from the Client-—
KeyExchange and derive all the secret secrets

10) M sends ServerCCS and ServerFinished to com-
plete the handshake

11) C sends ApplicationData to S and M can read it

12) M sends ApplicationData to C' and C' accepts it as
coming from S

At step 6, C receives a ServerKeyExchange message

even though it is running an RSA ciphersuite, and this message
should be rejected. However, because of a state machine
composition bug in both OpenSSL and SecureTransport, this
message is silently accepted and the server’s strong public key
(from the certificate) is replaced with the weak public key in
the ServerKeyExchange.

The main challenge that remains for the attacker M is
to be able to factor the 512-bit modulus and recover the
ephemeral private key in step 9. First, we observe that 512-bit
factorization is currently solvable in hours, and the hardware
is rapidly getting better. Second, we note that since generating
ephemeral RSA keys on-the-fly can be quite expensive, many
implementations of RSA_EXPORT (including OpenSSL) allow
servers to pre-generate, cache, and reuse these public keys
for the lifetime of the server (typically measured in days).
Hence, the attacker does not need to break the key during the
handshake; it can download the key, break it, then use the
man-in-the-middle attack above for days.

Factoring RSA_EXPORT Keys (FREAK) After the disclosure
of the vulnerability described above, we collaborated with
other researchers to explore its real-world impact. The ZMap
team [15] used internet-wide scans to estimate that more than
25% of HTTPS servers still supported RSA_EXPORT, a sur-
prisingly high number. We downloaded the 512-bit ephemeral
keys offered by many prominent sites and Nadia Heninger
used CADO-NFS? on Amazon EC2 cloud instances to factor
these keys within hours. We then built a proof-of-concept
attack demo that showed how a man-in-the-middle could im-
personate any vulnerable website to a client that exhibited the
RSA_EXPORT downgrade vulnerability. The attack was dubbed
FREAK—factoring RSA_EXPORT keys.

We independently tested other TLS implementations for
their vulnerability to FREAK. We found that Microsoft SChan-
nel and IBM JSSE also allowed RSA_EXPORT downgrades. Ear-
lier versions of BoringSSL and LibreSSL had inherited the vul-
nerability from OpenSSL, but they had been recently patched
independently of our discovery. In summary, at the time of
our disclosure, our server impersonation attack was effective
on any client that used OpenSSL, SChannel, SecureTransport,
IBM JSSE, or older versions of BoringSSL and LibreSSL.
The resulting list of vulnerable clients included most mobile
web browsers (Safari, Android Browser, Chrome, BlackBerry,
Opera) and a majority of desktop browsers (Chrome, Internet
Explorer, Safari, Opera).

V-E SUMMARY AND RESPONSIBLE DISCLOSURE. Including
MITLS, we systematically tested eight TLS libraries, found
serious state machine flaws in six, and were able to mount ten
individual attacks, including eight impersonation attacks that
break the stated authentication guarantees of TLS.

Almost all implementations allowed some handshake mes-
sages to be skipped even though they were required for the
current key exchange. We believe that this misbehavior results
from a naive composition of handshake state machines. Three
implementations (Java, Mono, CyaSSL) incorrectly allowed
the CCS messages to be skipped, leading to serious attacks.
Considering also the recent Early CCS attack on OpenSSL, we

2http://cado-nfs.gforge.inria.fr/

546

note that the handling of CCS messages in TLS state machines
is prone to error and deserves close attention.

Many implementations (OpenSSL, Java, Mono) also al-
lowed messages to be repeated. We do not describe any con-
crete exploits based on these flaws, and leave their exploration
for future work.

We reported all the bugs presented in this paper to the
various TLS libraries. They were acknowledged and several
patches were developed in consultation with us. We then re-
ran our state machine tests against the patched implementations
to test whether they fixed the state machine bugs. We briefly
summarize the status of these libraries below.

e OpenSSL released an update (1.0.1k) and issued 3 vulner-
ability reports (CVE-2015-0205, CVE-2015-0204, CVE-
2015-0205). The update fixes all our reported flaws,
except that it still enables repeated ClientHello mes-
sages for Server-Gated Crypto. In our tests, 2 deviant
traces are accepted by OpenSSL servers (down from 6).
Oracle released an update to JSSE fixing the CCS skip-
ping flaw as part of the January 2014 critical patch update
for all versions of Java (CVE-2014-6593). This update
prevents the impersonation attack of Section V-A but does
not fix the other state machine flaws reported in this paper.
In our tests, 34 deviant traces are still accepted by JSSE
servers (down from 46).

Apple released updates to SecureTransport in iOS 8.2,
AppleTV 7.1, and OS X Security Update 2015-002 (CVE-
2015-1067). These updates prevent FREAK.

Microsoft released a secury advisory (MS15-031) and
security updates for all supported versions of Windows
that fix SChannel to prevent FREAK (CVE-2015-1637).
Mono released a new TLS protocol implementation in
version 3.12.1 that fixes the flaws reported in this paper.
CyaSSL released a new version 3.3.0 that uses a re-
designed state machine to prevent the bugs reported in
this paper.

NSS has an active bug report (id 1086145) on various
state machine bugs and a fix is expected for Firefox 38.

VL

Implementing composite state machines for TLS has
proven to be hard and error-prone. Systematic state machine
testing can be useful to uncover bugs but does not guarantee
that all flaws have been found and eliminated. Instead, it
would be valuable to formally prove that a given state machine
implementation complies with the TLS standard. Since new
ciphersuites and protocol versions are continuously added to
TLS implementations, it would be even better if we could
set up an automated verification framework that could be
maintained and systematically used to prevent regressions.

A VERIFIED STATE MACHINE FOR OPENSSL

The MITLS implementation [8] uses refinement types to
verify that its handshake implementation is correct with respect
to a logical state machine specification. However, it only covers
RSA and DHE ciphersuites and only applies to carefully written
F# code. In this section, we investigate whether we could
achieve a similar, if less ambitious, proof for the state machine
implemented in OpenSSL using the Frama-C verification tool.

OpenSSL Clients and Servers In OpenSSL 1.0.1j, the client
and server state machines for SSLv3 and TLSv1.0-TLSv1.2

are implemented in ssl/s3_clint.c and ssl/s3_srvr.c, respectively.
Both state machines maintain a data structure of type SSL that
has almost 100 fields, including negotiation parameters like
the version and ciphersuite, cryptographic material like session
keys and certificates, running hashes of the handshake log, and
other data specific to various TLS extensions.

Both state machines implement the message sequences
depicted in Figure 9 structured as an infinite loop with a large
switch statement, where each case corresponds to a different
state, roughly one for each message in the protocol. Depending
on the state, the switch statement either calls a ss/3_send x
function to construct and send a message or calls a ssl3_ger_*
function to receive and process a message.

For example, when the OpenSSL client is in the
state SSL3_ST_CR_KEY_EXCH_A, it expects to receive a
ServerKeyExchange, so it calls the function ssi3_ger
key_exchange(s). This function in turn calls ssl3_get_message
(in s3_both.c) and asks to receive any handshake message.
If the received message is a ServerKeyExchange, it pro-
cesses the message. Otherwise, it assumes that the message
was optional and returns control to the state machine which
transitions to the next state (to try and process the message as
a CertificateRequest). If the ServerKeyExchange
message was in fact not optional, this error may only be
discovered later when the client tries to send the Client—
KeyExchange message.

Due to its complex handling of optional messages, it
is often difficult to understand whether an OpenSSL client
or server correctly implements the intended state machine.
(Indeed, the flaws discussed in this paper indicate that they do
not.) Furthermore, the message sequence needs to be consistent
with the values stored in the SSL session structure (such as the
handshake hashes), and this is easy to get wrong.

A new state machine We propose a new state machine struc-
ture for OpenSSL that makes the allowed message sequences
more explicit and easier to verify.

In addition to the full SSL data structure that is maintained
and updated by the OpenSSL messaging functions, we define
a separate data structure that includes only those elements that
we need to track the message sequences allowed by Figure 9:

typedef struct srare {
Role role; // v € {Client,Server}
PV version; // v € {SSLv3, TLSv1.0, TLSv1.1, TLSv1.2}
KEM kx; // kx € {DHx, ECDHx, RSAx}
Auth client_auth; // (Cqsk, Coffer)
int resumption; // (riq, Ttick)
int renegotiation; // reneg = 1 if renegotiating
int ntick; / ngicr

Msg_type last_message; // previous message type
unsigned charx log; // full handshake log
unsigned int log_length;

} STATE;

The STATE structure contains various negotiation parame-
ters: a role that indicates whether the current state machine is
being run in a client or a server, the protocol version (v in Fig-
ure 9), the key exchange method (kx), the client authentication

547

mode (Cask, Coffer), and flags that indicate whether the current
handshake is a resumption or a renegotiation, and whether the
server sends a ServerNewSessionTicket. We represent
each field by an enum that includes an UNDEFINED value
to denote the initial state. The server sets all the fields except
client_auth immediately after ServerHello. The client must
wait until later in the handshake to discover the final values
for resumption, client_auth and ntick.

The STATE structure keeps track of the last message re-
ceived, to record the current position within a protocol message
sequence. It also keeps the full handshake log as a byte array.
We use this array to specify and verify our invariants about
the state machine, but in production environments it would
probably be replaced by the running hashes of the handshake
log already maintained by OpenSSL.

The core of our state machine is in one function:

int ssi3_next_message(SSLx ssl, STATE xst,
unsigned charx msg, int msg_len,
int direction, unsigned char content_type);

This function takes the current state (ssl,st), the next message
to send or receive msg, the content type (handshake/CC-
S/alert/application data) and direction (outgoing/incoming) of
the message. Whenever a message is received by the record
layer, this function is called. It then executes one step of the
state machine in Figure 9 to check whether the incoming
message is allowed in the current state. If it is, it calls the
corresponding message handler, which processes the message
and may in turn want to send some messages by calling
ssI3_next_message with an outgoing message. For an outgoing
message, the function again checks whether it is allowed by
the state machine before writing it out to the record layer. In
other words, ssl3_next_message is called on all incoming and
outgoing messages. It enforces the state machine and maintains
the handshake log for the current message sequence.

We were able to reuse the OpenSSL message handlers
(with small modifications). We wrote our own simple message
parsing functions to extract the handshake message type, to
extract the protocol version and key exchange method from
the ServerHello, and to check for empty certificates.

Experimental Evaluation We tested our new state machine
implementation in two ways.

First, we checked that our new state machine does not
inhibit compliant message sequences for ciphersuites sup-
ported by OpenSSL. To this end, we implemented our state
machine as an inline reference monitor. As before, the function
ssI3_get_message is called whenever a message is to be sent
or received. However, it does not itself call any message
handlers; it simply returns success or failure based on whether
the incoming or outgoing message is allowed. Other than this
modification, messages are processed by the usual OpenSSL
machine. In effect, our new state machine runs in parallel with
OpenSSL on the same traces.

We ran this monitored version of OpenSSL against various
implementations and against OpenSSL itself (using its inbuilt
tests). We tested that our inline monitor does not flag any errors
for these valid traces. In the process, we found and fixed some
early bugs in our state machine.

Second, we checked that our new state machine does detect

and prevent the deviant traces presented of Section III. We ran

our monitored OpenSSL implementation against a FLEX; ¢

peer running deviant traces and, in every case, our monitor

flagged an error. In other words, OpenSSL with our new state
machine would not flag any traces in Table 1.

Logical Specification of the State Machine T, ¢,in fyrther

confidence in our new state machine, we formalized the

allowed message traces of Figure 9 as a logical invariant to
be maintained by ssi3_next_message Qur invariant is called
isValidState and is depicted in Figure 7.

The predicate StateAfterinitialState specifies how the
STATE structure is initialized at the beginning of a message
sequence. The predicate isValidState says that the current
STATE structure should be consistent with either the initial

state or the expected state after receiving some message; it has
a disjunct for every message handled by our state machine.

For example, after ServerHelloDone the current state
st must satisfy the predicate StateAfterServerHelloDone. This
predicate states that there must exist a previous state prev and
a new (message), such that the following holds:

e message must be a ServerHelloDone,
o st—last_message must be S_HD (a Msg_type denoting
ServerHelloDone),
e st—log must be the concatenation of prev—log and the
new message,
e and for each incoming edge in the state machine:
o the previous state prev must an allowed predecessor (a
valid state after an allowed previous message),
o if the previous message was CertificateRequest
then st—client_auth remains unchanged from PTeV
—sclient auth > 10 all other cases it must be set to

AUTH_NONE

o (plus other conditions to account for other ciphersuites.)

Predicates like StateAfterServerHelloDone can be directly en-
coded by looking at the state machine; they do not have
to account for the particular details of any implementation.
Indeed, our state predicates look remarkably similar to (and

were inspired by) the log predicates used in the cryptographic

verification of MI TLS [8]. The properties they capture depend
only on the TLS specification; except for syntactic differences,

they are even independent of the programming language.

Verification with Frama-C To mechanically verify that our
state machine implementation satisfies the isValidState specifi-
cation, we use the C verification tool Frama-C [9]. We annotate
our code with logical assertions and requirements in Frama-C’s
specification language, called ACSL.

For example, the logical contract on the inline monitor
variant of our state machine is listed in Figure 8, embedded
within a /%@ ... @%/ comment.

We read this contract bottom-up. The main pre-condition
(requires) is that the state must be valid when the function is
called (isValidState(st)). (The OpenSSL state SSL is not used
by the monitor.) The post-condition (ensures) states that the
function either rejects the message or returns a valid state. That
is, isValidState is an invariant for error-free runs.

548

predicate isValidState(STATE xstate) =
StateAfterInitialState(state) ||
StateAfterClientHello(state) ||
StateAfterServerHello(state) ||
StateAfterServerCertificate(state) ||
StateAfterServerKeyExchange(state) ||
StateAfterServerCertificateRequest(state) ||
StateAfterServerHelloDone(state) ||
StateAfterClientCertificate(state) ||
StateAfterClientKeyExchange(state) ||
StateAfterClientCertificateVerify(state) ||
StateAfterServerNewSessionTicket(state) ||
StateAfterServerCCS(state) ||
StateAfterServerFin(state) ||
StateAfterClientCCS(state) ||
StateAfterClientFin(state) ||
StateAfterClientCCSLastMsg(state) ||
StateAfterClientFinLastMsg(state)

predicate StateAfterInitialState(STATE xstate) =
state—version == UNDEFINED_PV &&
state—role == UNDEFINED_ROLE &&
state—kx == UNDEFINED_CS &&
state—last_message == UNDEFINED_TYPE &&
state—log_length == 0 &&
state—sclient_auth == UNDEFINED_AUTH &&
state—resumption == UNDEFINED_RES &&
state—srenegotiation == UNDEFINED_RENEG &&
state—ntick == UNDEFINED_TICK;

predicate StateAfterServerHelloDone(STATE xst) =
JSTATE x*prev, unsigned char xmessage,
unsigned int len, int direction;
isServerHelloDone(message,len,handshake) &&
st—last_message == S_HD &&
HaveSameStateValuesButClientAuth_E(st, prev) &&
MessageAddedToLog_E(st, prev, message, len) &&
((StateAfterServerCertificate(prev) &&
st—kx == CS_RSA &&
st—client_auth == NO_AUTH)
|| (StateAfterServerKeyExchange(prev) &&
(st—kx == DHE || st—kx == ECDHE) &&
st—client_auth == NO_AUTH)
|| (StateAfterServerCertificateRequest(prev) &&
(st—kx == DHE || st—kx == ECDHE
|| st—kx = CS_RSA) &&
st—client_auth == s—client_auth)
|| /% other ciphersuites */

B

Fig. 7. Logical Specification of State Machine (Excerpt)

Moving up, the next block of pre-conditions requires that
the areas of memory pointed to by various variables do not
intersect. In particular, the given msg, state st, and log st—log
, must all be disjoint blocks of memory. This pre-condition is
required for verification. In particular, when ssI3_next_message
tries to copy msg over to the end of the log, it uses memcpy,
which has a logical pre-condition in Frama-C (reflecting its
input assumptions) that the two arrays are disjoint.

The first set of pre-conditions require that the pointers given
to the function be valid, that is, they must be non-null and lie
within validly allocated areas of memory that are owned by the
current process. These annotations are required for Frama-C
to prove memory safety for our code: that is, all our memory

/x@
requires \valid(st);
requires \valid(msg+(0..(len—1)));
requires \valid(st—log+(0..(st—log_length+len—1)));

requires \separated(msg+(0..(len—1)),
st+(0..(sizeof(st)—1)));

requires \separated(msg+(0..(len—1)),
st—log+(0..(st—log_length + len—1)));

requires \separated(st+(0..(sizeof(st)—1)),
st—log+(0..(st—log_length+len—1)));

requires isValidState(st)
ensures (isValidState(st) && \result == ACCEPT)
|| \result == REJECT;
@x/
int ssi3_next_message(SSLx s, STATE xst,
unsigned charx msg, int len,
int direction, unsigned char content_type);

Fig. 8. Logical contract on the inline monitor

accesses are valid, and that our code does not accidentally
overrun buffers or access null-pointers.

From the viewpoint of the code that uses our state machine
(the OpenSSL client or server) the preconditions specified here
require that the caller provide ss/3_next_message with validly
allocated and separated data structures. Otherwise, we cannot
give any functional guarantees.

Formal Evaluation Our state machine is written in about
750 lines of code, about 250 lines of which are message
processing functions. This is about the same length as the
current OpenSSL state machine.

The Frama-C specification is written in a separate file and
takes about 460 lines of first-order-logic to describe the state
machine. To verify the code, we ran Frama-C which generates
proof obligations for multiple SMT solvers. We used Alt-
Ergo to verify some obligations and Z3 for others (the two
solvers have different proficiencies). Verifying each function
took about 2 minutes, resulting in a total verification time of
about 30 minutes.

Technically, to verify the code in a reasonable amount
of time, we had to provide many annotations (intermediate
lemmas) to each function. The total number of annotations in
the file amounts to 900 lines. Adding a single annotation often
halves the verification time of a function. Still, our code is still
evolving and it may be possible to get better verification times
with fewer annotations.

One may question the value of a logical specification that
is almost as long as the code being verified (460 lines is all
we have to trust). What, besides being declarative, makes it a
better specification than the code itself? And at that relative
size, how can we be confident that the predicates themselves
are not as buggy as the code?

We find our specification and its verification useful in sev-
eral ways. First, in addition to our state invariant, we also prove
memory safety for our code, a mundane but important goal
for C programs. Second, our predicates provide an alternative
specification of the state machine, and verifying that they agree

549

with the code helped us find bugs, especially regressions due
to the addition of new features to the machine. Third, our
logical formulation of the state machine allows us to prove
theorems about its precision. For example, we can use off-the-
shelf interactive proof assistants for deriving more advanced
properties.

To illustrate this point, using the Coq proof assistant, we
formally establish that the valid logs are unambiguous, that is,
equal logs imply equal states:

theorem UnambiguousValidity: ¥V STATE xsl, xs2;
(isValidState(s1) && isValidState(s2)
&& LogEquality(sl,s2))
==> HaveSameStateValues_E(s1,s2);

This property is a key lemma for proving the security of
TLS, inasmuch as the logs (not the states they encode) are
authenticated in Finished messages at the end of the hand-
shake. Its proof is similar to the one for the unambiguity of
the logs in miTLS. However, the Frama-C predicates are more
abstract, they better capture what makes the log unambiguous,
and they cover a more complete set of ciphersuites.

VII. TOWARDS SECURITY THEOREMS FOR OPENSSL

In the previous section, we verified the functional cor-
rectness of our state machine for OpenSSL (a refinement)
and proved that our logical specification is unambiguous (a
consistency check). We did not, however, prove any integrity
or confidentiality properties. How far are we from a security
theorem for OpenSSL?

Traditional cryptographic proofs for TLS focus on sin-
gle ciphersuite security. They prove, for example, that the
mutually-authenticated DHE handshake is secure when used
with a secure record protocol [2]. One may attempt to ex-
tend these formal results to the fragment of OpenSSL that
implements them, but this would still be thousands of lines of
code. Our experience in verifying our small state machine in
C suggests that verifying all this code might be feasible, but
nevertheless remains a daunting task.

The MITLS verified implementation securely composes
several DHE and RSA ciphersuites in TLS [8] and guar-
antees connection security when a ciphersuite satisfying a
cryptographic strength predicate («) is negotiated. Their proof
technique requires that the code for all supported ciphersuites
be verified to guarantee that connections with different cipher-
suites (but possibly the same long-term keys and short-term
session secrets) cannot confuse one another. Even if this veri-
fied code could be ported over to C, verifying all the remaining
ciphersuites supported by OpenSSL seems unfeasible.

A more practical goal may be to target 1-out-of-k cipher-
suite security. Suppose we can verify, with some concerted
effort, all the messaging functions for some strong ciphersuite
in OpenSSL (e.g. TLS_ECDHE ECDSA_WITH_AES 128 _
GCM_SHA256). The goal is then to prove that, no matter
which other ciphersuites are supported, if the client and server
choose this ciphersuite, then the resulting connection is secure.
This could for instance be captured in a multi-ciphersuite
version of the widely used authenticated and confidential
channel establishment (ACCE) definition [2, 3]). [16] give

such a definition, but require all ciphersuites to be secure.
One could instead define an a-ACCE notion with a strength
predicate & la MITLS that only guarantees channel security
when the strong ciphersuite is negotiated.

The first step to prove this property is to show that
the OpenSSL state machine correctly implements our chosen
ciphersuite, and that message sequences for this ciphersuite
are disjoint from all other supported ciphersuites. These are
indeed the properties we have already proved.

The second hurdle is to show that the use of the same long-
term signing key in different ciphersuites is safe. In current
versions of TLS, this is a difficult property to guarantee be-
cause of the possibility of cross-protocol attacks [17]. Indeed,
these attacks are the main reason why [16] found it difficult
to transfer their multi-ciphersuite security results for SSH over
to TLS. The core problem is that the ServerKeyExchange
message in TLS requires a server signature on one of many
ambiguous formats. However, the new format of this message
in TLS 1.3 [18] is designed to prevent these attacks, and may
make 1-out-of-k ciphersuite security proofs easier.

The third challenge is to show that the session secrets
of our verified ciphersuite are cryptographically independent
from any other ciphersuite. Current versions of TLS do
not guarantee this property, and indeed the lack of context-
bound session secrets can be exploited by man-in-the-middle
attacks [12]. However, the recently proposed session-hash
extension [19] guarantees that the master secret and connection
keys generated in connections with different ciphersuites will
be independent when their logs are unambiguous as guaranteed
by the UnambiguousValidity theorem. We believe that this
extension would significantly simplify our verification efforts.

To summarize, our proofs about the OpenSSL state ma-
chine are an important first step toward a security theorem,
but many open problems remain before we can verify TLS
libraries that include legacy code for insecure ciphersuites.

VIII. RELATED WORK

Cryptographic Proofs Cryptographers have primarily devel-
oped proofs of specific key exchanges in TLS when they are
run in isolation: DHE [2], RSA [3], PSK [4]. More recently,
[8, 20] proved that composite RSA and DHE are jointly secure
in the MITLS implementation, which is written in F# and
verified using refinement types.

[16] analyzes the multi-ciphersuite security of SSH using a
black-box composition technique that falls short of analyzing
TLS because it does not account for cross-protocols attacks
[17]. [21] prove computational security and side channel
resilience for machine code implementing cryptographic prim-
itives, generated from EasyCrypt, but they do not consider full
cryptographic protocols like TLS.

Attacks on TLS We refer the reader to [22] for a survey of
previous attacks on TLS and its implementations. Here, we
briefly discuss closely related work.

Wagner and Schneier [23] discussed various attacks in the
context of SSL 3.0, and their analysis has proved prescient
for many attacks. For instance, they presented an early variant
of a cross-ciphersuite attack (predating [17]) by observing that

550

the ephemeral key exchange parameters signed by TLS servers
could be misinterpreted by the client. They also warned that
if the change cipher spec (CCS) message can be dropped,
the authentication guarantees of SSL can be bypassed, hence
anticipating our message skipping attacks.

The incorrect composition of various TLS sub-protocols
has led to many recent attacks, such as the Renegotiation [24,
25] Alert [8], and Triple Handshake [12] attacks. These flaws
can be blamed in part to the state machine being underspecified
in the standard—the last two attacks were discovered while
designing and verifying the state machine of MITLS.

Cryptographic attacks target specific constructions used
in TLS such as RSA encryption [26-28] and MAC-then-
Encrypt [5, 29, 30]. [31] identifies a class of backwards com-
patibility attacks on cryptographic protocol implementations;
our attack on export ciphersuites (FREAK) can be seen as an
instance of their pattern.

Analyses of TLS Implementations Aside from MITLS, a
variety of works extract formal models from TLS implemen-
tations and analyze them with automated protocol verification
tools. [32] extracts and verifies ProVerif and CryptoVerif
models from an F# implementation of TLS. [33] verifies the
SSL 2.0/3.0 handshake of OpenSSL using model checking
and finds several known rollback attacks. [34, 35] verify Java
implementations of the TLS handshake protocol using logical
provers. [36, 37] analyze the C code of cryptographic protocols
for security properties, but their methodology does not scale
to the full TLS protocol.

Other works analyze TLS libraries for simpler program-
ming bugs. [38] uses the Coccinelle framework to detect
incorrect checks on values returned by the OpenSSL APL
Frama-C has been used to verify parts of PolarSSL.>

IX. CONCLUSION

While security analyses of TLS and its implementations
have focused on flaws in specific cryptographic constructions,
the state machines that control the flow of protocol messages
have escaped scrutiny. Using a combination of automated
testing and manual source code inspection, we discovered
serious flaws in several TLS implementations. These flaws
predominantly arise from the incorrect composition of the
multiple ciphersuites and authentication modes supported by
TLS. Considering the impact and prevalence of these flaws,
we advocate a principled programming approach for proto-
col implementations that includes systematic testing against
unexpected message sequences (fuzzing) as well as formal
proofs of correctness for critical components. Current TLS
implementations are far from perfect, but with improvements
in the protocol [18] and in the available verification tools,
we hope that formal cryptographic verification for mainstream
TLS libraries like OpenSSL will soon be within reach.

ACKNOWLEDGMENT

The authors would like to thank Matthew Green, Nadia
Heninger, Santiago Zanella-Béguelin, the ZMap team, and the
CADO-NFS team for their help with evaluating and exploiting

3http://trust-in-soft.com/polarssl- verification-kit/

FREAK. We thank the developers of OpenSSL, SChannel,
SecureTransport, NSS, BoringSSL, Oracle JSSE, CyaSSL, and
Mono for their rapid response to our disclosures. Bhargavan,
Beurdouche and Delignat-Lavaud were supported by the ERC
Starting Independent Researcher Grant no. 259639 (CRUSE).

(1]
(2]

(3]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.2,” IETF RFC 5246, 2008.

T. Jager, F. Kohlar, S. Schige, and J. Schwenk, “On
the security of TLS-DHE in the standard model,” in
CRYPTO, 2012.

H. Krawczyk, K. G. Paterson, and H. Wee, “On the
security of the TLS protocol: A systematic analysis,” in
CRYPTO, 2013.

Y. Li, S. Schige, Z. Yang, F. Kohlar, and J. Schwenk,
“On the security of the pre-shared key ciphersuites of
TLS,” in Public-Key Cryptography, 2014.

K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag
size does matter: Attacks and proofs for the TLS record
protocol,” in ASIACRYPT, 2011.

T. Dierks and C. Allen, “The TLS protocol version 1.0,”
IETF RFC 2246, 1999.

T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.1,” IETF RFC 4346, 2006.

K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and
P. Strub, “Implementing TLS with verified cryptographic
security,” in IEEE S&P (Oakland), 2013.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Sig-
noles, and B. Yakobowski, “Frama-C,” in Software Engi-
neering and Formal Methods, 2012.

J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “TLS
session resumption without server-side state,” IETF RFC
5077, 2008.

N. M. Langley, A. and B. Moeller, “Transport Layer
Security (TLS) False Start,” Internet Draft, 2010.

K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti,
and P.-Y. Strub, “Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS,” in IEEE
S&P (Oakland), 2014.

C. Soghoian and S. Stamm, “Certified lies: Detecting and
defeating government interception attacks against SSL,”
in Financial Cryptography, 2012.

S. Cavallar, B. Dodson, A. Lenstra, W. Lioen, P. Mont-
gomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist,
G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muf-
fett, C. Putnam, and P. Zimmermann, ‘“Factorization of a
512-bit rsa modulus,” in EUROCRYPT, 2000.

Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap:
Fast Internet-wide scanning and its security applications,”
in USENIX Security, 2013.

F. Bergsma, B. Dowling, F. Kohlar, J. Schwenk, and
D. Stebila, “Multi-ciphersuite security of the Secure Shell
(SSH) protocol,” in ACM CCS, 2014.

N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov,
and B. Preneel, “A cross-protocol attack on the TLS
protocol,” in ACM CCS, 2012.

T. Dierks and E. Rescorla, “The Transport Layer Security
(TLS) Protocol Version 1.3,” Internet Draft, 2014.

K. Bhargavan, A. Delignat-Lavaud, A. Pironti, A. Lan-
gley, and M. Ray, “Transport Layer Security (TLS)

551

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(33]

(34]

(35]

(36]

[37]

(38]

Session Hash and Extended Master Secret Extension,”
IETF Internet Draft, 2014.

K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-
Y. Strub, and S. Zanella-Béguelin, “Proving the TLS
handshake secure (as it is),” in CRYPTO, 2014.

J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir,
“Certified computer-aided cryptography: efficient prov-
ably secure machine code from high-level implementa-
tions,” in ACM CCS, 2013.

C. Meyer and J. Schwenk, “Lessons learned from previ-
ous SSL/TLS attacks — A brief chronology of attacks and
weaknesses,” TACR Cryptology ePrint Archive, Report
2013/049, 2013.

D. Wagner and B. Schneier, “Analysis of the SSL 3.0
protocol,” in USENIX Electronic Commerce, 1996.

M. Ray and S. Dispensa, “Renegotiating TLS,” 2009.
E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “TLS
renegotiation indication extension,” IETF RFC 5746,
2010.

D. Bleichenbacher, “Chosen ciphertext attacks against
protocols based on RSA encryption standard PKCS #1,”
in CRYPTO, 1998.

V. Klima, O. Pokorny, and T. Rosa, “Attacking RSA-
based sessions in SSL/TLS,” in CHES, 2003.

C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk,
S. Schinzel, and E. Tews, “Revisiting SSL/TLS im-
plementations: New bleichenbacher side channels and
attacks,” in USENIX Security, 2014.

S. Vaudenay, “Security flaws induced by CBC padding -
applications to SSL, IPSEC, WTLS ...” in EUROCRYPT,
2002.

N. J. AlFardan and K. G. Paterson, “Lucky thirteen:
breaking the TLS and DTLS record protocols,” in /IEEE
S&P (Oakland), 2013.

T. Jager, K. G. Paterson, and J. Somorovsky, “One bad
apple: Backwards compatibility attacks on state-of-the-art
cryptography,” in NDSS, 2013.

K. Bhargavan, C. Fournet, R. Corin, and E. Zilinescu,
“Verified Cryptographic Implementations for TLS,” ACM
TISSEC, vol. 15, no. 1, pp. 1-32, 2012.

S. Chaki and A. Datta, “ASPIER: An automated frame-
work for verifying security protocol implementations,” in
IEEE CSF, 2009.

J. Jiirjens, “Security analysis of crypto-based java pro-
grams using automated theorem provers,” in Automated
Software Engineering, 2006.

M. Avalle, A. Pironti, D. Pozza, and R. Sisto, “JavaSPI: A
framework for security protocol implementation,” Inter-
national Journal of Secure Software Engineering, vol. 2,
p. 3448, 2011.

J. Goubault-Larrecq and F. Parrennes, “Cryptographic
protocol analysis on real C code,” in Verification, Model
Checking, and Abstract Interpretation, 2005.

F. Dupressoir, A. D. Gordon, J. Jiirjens, and D. A.
Naumann, “Guiding a general-purpose C verifier to prove
cryptographic protocols,” Journal of Computer Security,
vol. 22, no. 5, pp. 823-866, 2014.

J. Lawall, B. Laurie, R. R. Hansen, N. Palix, and
G. Muller, “Finding error handling bugs in OpenSSL
using Coccinelle,” in European Dependable Computing
Conference, 2010.

0= hu

0 = iy 2y [4SdVSH = 2y
ASd = 7y

VSYdus|

L,elequorieoT1ddy

POYSTUTIISAISS

SDDIBAIDS

19O TLUOTSSOSMBNISAISS

1= AUy

PoUSTUTAIUSTTD

SOD3USTID

sbueyoxgAsyuaTTD

SUOQOTTOHISAISS

sbueyoxygAayIaaisg

1= |
VSY dys = Ty

91O TITITISIIDAISS

MSd VSH = &@;

VSH d¥S|duS|iSd daHA|YSd VSy[isd = Ty

(eyspuey [[ny)

Lelequotieot1ddy

POYUSTUT JISATISS

SDDIBAIDS

39YOTLUOTSSOSMOINISAIDS 0= A%y

1= Uy

POUSTUTAIUSTTD

SODAUSTID

0 = “lop
o= 0 AITI9AR3ROTITITSDIUSTI
1 = ol
X 1=""
obueyOXTASYIUSTTD

1 = “loy

0 = #v (*2#°0)23e0TITIA8DIUSTTD

=75
SUOQOT[SHISAISS
woue HADA
[wowe Hq = xy | 3SSNDSYSILOTITIID
| 0= %7
HADH|HA = =y
X 1= 1"
({UI[d eONUAYINE)
HaddA
[Ha = @y
9burYOXTASNISAIDS
Q — quryy
23 ysd = 2|

93BOTITITISDIBAISS

|

uoue HEDE[HADH|wowe HA|HA = Ty
(ayeyspuey [[ny)

MSd AHA|d¥S =Ty

0= Priy (=P

¢ = “Hop

(Pt

1¥0dXd dHA|L¥0dXT ¥SH

uoue HIOH
|wowe Ha = =y

0=""1290="Pu

OTTSHIUSTTD

LealequotieoT1ddy

POYUSTUT JISATSS

SDDIBAIDS

JOYOTLUOTSSOSMONISAISS 0= A2y

1= AUy

PSYSTUTAIUSTTD

SOD3USTID

£31a9n9790TITI790qusTTy 0 = %
[0= v

= oy

3=

oburyOXTASYIUSTTD

24°)23€0TITITSDIUSTTO| (= 7
=7
SUOQOT[SHISAISS
31senbays3edTITIASD | = ¥
1="""%
({UI[d AeONUYINE)

sbueyoxgAoISAIDS ysy = Ty

[qHQOA|THA = 2y
93BOTITIASDISAISS

I

L¥0dXT FHA|1¥0dXd VSH|THADH|THA|VSY = =y
(yeyspuey [[ny)

T = Pul|] = Pl

‘a)oTToHI=AISS

Leaequorieot1ddy

PSUSTUTIIUSTTD

SOD3USTTO

POYSTUTIISAISS

S0DI8ATSS

19O TIUOTSSOSMONIBATSY () = ¥y

1= Py

(eyspury pajeIrdiqqe)

Message sequences for the ciphersuites commonly enabled in OpenSSL

Fig. 9.

552

